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Abstract: Climate change has caused substantial shifts in the geographical distribution of many
species. There is growing evidence that many species are migrating in response to climate change.
Changes in the distribution of dominant tree species induced by climate change can have an impact
not only on organisms such as epiphytes and understory vegetation, but also on the whole ecosystem.
Cyclobalanopsis glauca is a dominant tree species in the mingled evergreen and deciduous broadleaf
forests of China. Understanding their adaptive strategies against climate change is important for
understanding the future community structure. We employed the Maxent framework to model
current suitable habitats of C. glauca under current climate conditions and predicted it onto the climate
scenarios for 2041–2060 and 2081–2100 using 315 occurrence data. Our results showed that annual
precipitation was the most critical factor for the distribution of C. glauca. In the future, increasing
precipitation would reduce the limitation of water on habitats, leading to an expansion of the
distribution to a higher latitude and higher altitude. At the same time, there were habitat contractions
at the junction of the Jiangxi and Fujian Provinces. This study can provide vital information for the
management of C. glauca, and serve as a reminder for managers to protect C. glauca in the range
contraction areas.

Keywords: Cyclobalanopsis glauca (Thunberg) Oersted; Maxent modelling; climate scenarios; species
distribution model; suitable habitats

1. Introduction

Climate is the most important ecological factor affecting plant distribution [1]. Climate
change has become an increasingly important driver of species distribution shifts, inevitably
affecting species composition and richness [2], and influencing ecosystem structure and
functions [3–6]. In recent years, climate change driven by rapid anthropogenic disturbances
is affecting the abundance and distribution of species [7]. Therefore, plants respond to
climate change by changing their distribution, such as by migrating to higher latitudes or
higher elevations to track suitable environment conditions [8–10]. Otherwise, they may
face extinction [11]. Studies from both North America [12] and Europe [13] have shown
that tree species would move north in the future under climate change. The intensifying
changes in the climate have increased the vulnerability and the possibility of extinction
in some plant species [14], leading to the extinction of nearly one-quarter of the world’s
species [15,16]. In the face of this crisis, knowledge about the change in species distribution
and the strategies to protect the species is becoming more important.

Different species respond differently to climate change. Many species have shifted
their geographic distributions to higher latitudes and higher elevations to avoid local or
global extinction in response to the decrease in suitable habitats under climate change [14].
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Researchers undertook a meta-analysis to estimate latitudinal and elevational range shifts
of species and found that 764 individual species from 17 taxonomic groups showed a shift
to higher latitudes at a median rate of 16.9 km/decade, and 1367 species from 18 taxonomic
groups showed a shift to higher elevations at a median rate of 11 m/decade [8]. A study of
14 European tree species showed that 12 tree species among them would move northward
under climate warming; meanwhile, most of these species would face severe habitat
contraction [13]. Another study modelled 1996 woody plant species distributed in Yunnan
Province, China; although only 6% of them were predicted to become extinct, 70% of the
species would lose more than one third of their current distribution ranges under the most
extreme climate change scenario for the years 2070–2099 [17].

In recent years, species distribution models (SDMs) have been utilized to simulate
species distributions by establishing relationships between species occurrences and environ-
mental factors [18,19]. By incorporating future climate data under different climate change
scenarios into models, the potential distributions of suitable habitats can be predicted
and habitat suitability can be evaluated [20,21]. Various SDMs have been used to make
these predictions more precise, including Domain Model [22], Ecological Niche Factor
Analysis (ENFA) [23], Bioclimatic Prediction System (Bioclim) [24], Genetic Algorithm for
Rule-set Production (GARP) [25], and Maximum Entropy Model (Maxent) [26]. SDMs have
been used to forecast changes in species suitable habitats [27,28], access habitat suitabil-
ity [29,30] and extinction risk [17], estimate the spatial variation of species richness [31],
and determine possible migration directions under future scenarios [32]. Among these,
Maxent is a very prevalent and widely accepted tool for species distribution modelling.
Phillips et al. (2006) performed a case study using two Neotropical mammals (Bradypus
variegatus and Microryzomys minutus) to compare the efficacy of Maxent with GARP, and
showed that Maxent outperformed GARP [32]. Elith et al. (2006) compared 16 SDMs
over 226 species and also showed that Maxent performed better [33]. Maxent is suitable
for all existing applications involving presence-only datasets and is suitable even with a
small sample size [34]. Moreover, Maxent uses a receiver operating characteristic curve
(ROC) analysis to evaluate model performance [35]. Recently, many research studies have
employed Maxent to predict the species future potential distribution change affected by
climate change [19,36].

Cyclobalanopsis glauca (Thunberg) Oersted is a typical subtropical evergreen tree.
C. glauca is thermophilic, hygrophilous, cold-resistant, shade-enduring, and has a strong
adaptability to environmental change [37]. The species is distributed in central and south-
eastern of Yunnan, Jingxi, Debao of Guangxi, northern Guangdong, southern Fujian, and
Mount Yu of Taiwan in China [38]. C. glauca represents the dominant tree species or con-
structive species in the mingled evergreen and deciduous broadleaf forests. It is reported
that dominant tree species have an effect on nutrient cycling [39], light availability [40], and
microclimate [41]. Hence, the changes in dominant tree distributions induced by climate
change can not only affect organisms that depend on dominant species, such as epiphytes
and understory vegetation, but also alter ecosystem function [3]. For example, the stand
diversity level and composition of bryophyte assemblages were correlated to dominant
tree species diversity and composition [39]. The change of dominant species had an effect
on the herbaceous layer composition mainly through their litter quality, and the canopy
density enhanced species diversity in favor of indifferent herb species [39,42]. Therefore,
changes in the distribution pattern of C. glauca caused by climate change may alter not
only the dependent species, but also the entire ecosystem. We need to focus on how are
the suitable habitats of C. glauca changing and what the impact is of these changes. It
was predicted using GLM, GAM, and CART models that its geographical distribution in
China would shift to the northwest under the influence of climate change; however, they
focused more on the comparison of the three species distribution models [43]. Therefore,
its elevational movement range and the climatic factors that led to the habitat changes
remain undetermined. To evaluate the properties of suitable habitats and environmental
factors affecting the suitability of those habitats, we predicted the potential distribution
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of C. glauca in China. We aimed to (a) project the potential climate change impacts on the
suitable habitats of C. glauca, (b) determine the climatic factors that affect habitat change,
(c) and determine the latitudinal and elevational migration range under climate change.

2. Materials and Methods
2.1. Occurrence Collection

Occurrence data for C. glauca were compiled from the Global Biodiversity Information
Facility (www.gbif.org, accessed on 24 July 2021) [44] and the literature [38,45–47]. In total,
we collected 902 geo-referenced occurrences. The accuracy of the model could be affected
by the distance between occurrences. Therefore, we measured the spatial heterogeneity of
climate factors using SDM-Toolbox [48] and rarefied the occurrence data according to the
climate heterogeneity. Finally, 315 presence points were used in the modelling (Figure 1).
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Figure 1. Occurrence data of C. glauca employed in Maxent.

2.2. Environmental Variables

Twenty environmental variables related to the distribution of C. glauca were collected,
namely altitude (ALT) and 19 bioclimatic variables (Table S1), because it has been indicated
that these variables had great impact on the distribution of C. glauca [38]. ALT variables
were selected from the Harmonized World Soil Database v1.2 [49] (http://www.fao.org/
soils-portal/soil-survey/soil-maps-and-databases, accessed on 11 March 2019), which
was jointly developed by the Food and Agriculture Organization (FAO) of the United
Nations; the International Institute for Applied Systems Analysis (IIASA); the Institute of
Soil Science, Chinese Academy of Sciences; and the European Commission’s joint research
center. The resolution of ALT variables was at 30 arc seconds (~1 km). The 19 bioclimatic
variables, at a resolution of 2.5 arc minutes (~5 km), were obtained from WorldClim version
2.1 [50] (https://www.worldclim.org/data/worldclim21.html, accessed on 25 July 2021).
In order to ensure all the variables had the same resolution, we resampled ALT variables to
2.5 arc minutes, and all the variables were defined projection as WGS1984 in ArcGIS 10.2
before modelling.

www.gbif.org
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases
https://www.worldclim.org/data/worldclim21.html
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The Scenario Model Intercomparison Project (ScenarioMIP) is a new climate change
scenario proposed by the sixth phase of the Coupled Model Intercomparison Project
(CMIP6). ScenarioMIP combines different shared socio-economic pathways with recent
trends in anthropogenic emissions (SSP-RCP) [51,52]. SSP126 represents a green develop-
ment pathway, it will produce a multi-model mean of significantly less than 1.5°C warming
by 2100. SSP245 represents an intermediate development pathway, and the radiation
forcing is approximately 4.5 W/m2 in 2100. SSP370 represents the combination of high
social vulnerability and relatively high anthropogenic radiation forcing. SSP585 represents
the high end of the range of future pathways, with a radiation forcing of 8.5 W/m2 in
2100. In this paper, the potential suitable habitats of C. glauca were predicted by using the
BCC-CSM2-MR climate model under four SSP-RCPs scenarios (SSP126, SSP245, SSP370,
and SSP585) for three periods, namely current (1970–2000), mid-term (2041–2060), and
long-term (2081–2100).

To avoid multicollinearity between environment variables that can lead to overfit of
the model [36], the SDM-Toolbox was employed to remove highly correlated bioclimatic
variables. For variables that had a correlation coefficient greater than 0.75, only one was
used in the projection [48] ( Table S1).

2.3. Potential Habitat Evaluation

We employed Maxent to predict the potential distribution of C. glauca in China. Max-
ent uses environment variables as a constraint to infer the response of species potential
distribution to environmental factors. Then, present and future potential distribution maps
and habitat suitability can be calculated. We presented species occurrences and environ-
mental variables into Maxent 3.4.1 and randomly selected 75% of the distribution points as
training data to build a model and the remaining 25% as test data for model verification [36].
The Maxent model includes a jack-knife method to analyze the percentual contribution
and importance of environment variables, and it uses the area under the receiver operating
characteristic curve (AUC) to estimate the model accuracy. The model accuracy can be
rated as failed when the AUC value is between 0.5 and 0.6, poor when the AUC value is
between 0.6 and 0.7, fair when the AUC value is between 0.7 and 0.8, good when the AUC
value is between 0.8 and 0.9, and excellent when the AUC value is between 0.9 and 1 [53].

Although AUC has been widely used in evaluating the accuracy of SDMs, it has been
criticized because the spatial distribution errors are ignored and AUC varies with the
spatial extent of background points and so on [54]. Hence, an improved method (the partial
AUC) was recommended to assess the accuracy of SDMs [55]. We employed Niche Analyst
3.0 [56] to calculate the partial AUC (AUCratio) in order to evaluate the accuracy of our
model. We began with defining the parameter E, which refers to how much omission errors
can be acceptable in our study. Peterson et al. (2008) suggested to set 5–20% when using
found data [55]. Therefore, we selected 5%, 10%, and 20% as our parameter E, according to
our occurrence data, to calculate the AUCratio.

The logistic output was used in Maxent; therefore, a continuous existence probability
grid map of species was obtained by processing the simulated results in ArcGIS10.2, and the
existence probability of presence ranged from 0 to 1. A higher probability value corresponds
to a greater likelihood of species distribution. We set 10 percentile training presence as
the threshold value to evaluate the potential habitats. A threshold value higher than
10 percentile training presence was selected as the total suitable habitats. The total suitable
habitat was further divided into three kinds of suitability: marginally suitable habitats,
moderately suitable habitats, and highly suitable habitats. Maps of suitable habitats under
the present and future climate scenarios were drawn in ArcGIS10.2. The SDM-Toolbox was
applied to calculate the movement trajectory of suitable habitats by comparing the centroid
changes in the present and future total suitable habitats [48]. The coordinate system was
projected to the Albers Equal Area Projection before the centroid changes were calculated.

Finally, we used ArcGIS 10.2 to calculate the mean altitude of suitable habitats to
determine the elevational migration of C. glauca in the future.
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3. Results
3.1. Model Performance

Models for C. glauca performed well with the given set of training and test data. The
AUC training values were 0.925 for both of the training data and the test data (Figure S1).
Moreover, the AUCratio were all greater than 1 when the omission error (E) was set to 0.05,
0.1 and 0.2 (Table 1) indicating that the models performed well [55] and generated reliable
predictions for C. glauca.

Table 1. AUC ratio values based on the estimation of different E values for Maxent.

AUCratio

E = 0.05 E = 0.1 E = 0.2

Maxent 1.036 1.034 1.027

3.2. Contribution of Environmental Variables

After removing highly correlated bioclimatic variables by SDM-Toolbox, altitude and
six bioclimatic variables (Bio3, Bio7, Bio10, Bio11, Bio12, and Bio15) were selected as the
environment variables for the prediction of C. glauca. The results revealed the annual
precipitation (Bio12), which contributed to 78.9%, was the most important environmental
variable that affected the distribution of C. glauca (Table S2). This was followed by the
temperature annual range (Bio7, 10.3%) and the mean temperature of coldest quarter (Bio11,
5.9%), which meant that Bio7 and Bio11 also made the great contributions to the distribution
model for C. glauca. The cumulative contributions of the above factors reached 95.1%. In
summary, the annual precipitation was the dominant environmental variable predicted to
limit the distribution of C. glauca.

3.3. Current Suitable Habitat
3.3.1. Distribution of Current Suitable Habitat

We identified the total suitable habitats according to the threshold of 10 percentile
training presence (>0.247), and further divided the total suitable habitats into three kinds of
suitability: marginally suitable habitats (0.247~0.4), moderately suitable habitats (0.4~0.6),
and highly suitable habitats (>0.6).

The total suitable habitats were evaluated to occur in the whole Taiwan, Hainan,
Zhejiang, Fujian, Guangdong, Guangxi, Jiangxi, Hunan, and Shanghai; the southern of
Jiangsu, Henan, and Yunnan; central and the southern of Anhui, Hubei, and Chongqing;
the eastern of Sichuan and Guizhou; and a small part of Tibet (Figure 2). The areas of the
total suitable habitats for C. glauca encompass 162.93 × 104 km2.

Within the total suitable habitats, the highly suitable habitats were distributed to the
south, while the marginally suitable habitats were distributed to the north. The highly
suitable habitats for C. glauca in China comprised 33.09 × 104 km2, and accounted for
20% of the total suitable habitats. The highly suitable habitats were found to be primarily
located in most of Taiwan, Hainan, and Guangdong; central and south-eastern Yunnan;
and the northern border of Fujian and Jiangxi. The moderately suitable habitats comprised
74.66 × 104 km2, and accounted for 46% of the total suitable habitat area. The marginally
suitable habitats comprised 55.18 × 104 km2, and accounted for 34% of the total suitable
habitats area (Table 2).
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Table 2. Suitable habitat areas for C. glauca in present and future climate scenarios (×104 km2).

Habitats
Current SSP126 SSP245 SSP370 SSP585

2041–2060 2081–2100 2041–2060 2081–2100 2041–2060 2081–2100 2041–2060 2081–2100

Marginally
suitable 55.18 72.87 45.73 51.53 45.57 65.03 38.66 80.14 40.97

Moderately
suitable 74.66 71.94 81.66 79.33 80.78 71.99 74.27 56.87 71.46

Highly
suitable 33.09 26.45 43.90 42.64 45.51 29.86 51.69 37.68 54.48

Total suitable 162.93 171.26 171.29 173.50 171.86 166.88 164.63 174.69 166.91

3.3.2. The Altitude of Current Suitable Habitats

The predictions of the altitude of suitable habitat for C. glauca in the current period are
shown in Figure 3.

Under the current climate, the mean altitude of the total suitable habitat for C. glauca
was 494.82 m. Among the three types of suitable habitats, the highly suitable habitat had
the lowest mean altitude, which was predicted to be 348.97 m; conversely, the low suitable
habitats had the highest mean elevation, which was predicted to be 644.55 m.
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3.4. Potential Suitable Habitats under Future Climate
3.4.1. Potential Suitable Habitat Distribution under Future Climate

In the future, the suitable habitat of C. glauca would expand under all the four scenarios
(Figure 4).

Under the SSP126-2060 climate scenario, Maxent predicted C. glauca gains in total
suitable habitat in central Anhui and Yunnan, southern Henan, northern Hubei; while the
area of total suitable habitats would lost in the eastern Sichuan, and central and western
Guizhou. In the three-classified suitable habitats, the marginally suitable habitat would
expand by 17.69 × 104 km2; however, the moderately and highly suitable habitat had a
trend of contraction. Under SSP126-2060, the total suitable habitats exhibited an expansion,
amounting to 8.33 × 104 km2. Under SSP126-2100, the moderately and highly suitable
habitats were predicted to increase, and the area of marginally suitable habitats would
reduce due to its transformation to moderately suitable habitats. The total suitable habitats
were predicted to expand in the northward and westward regions along the boundary of
the current habitats. The range expansion was expected to be 8.36 × 104 km2.
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Under the SSP245 climate scenario, Maxent predicted a range expansion in the north-
ward and westward direction along the boundary of the current habitats both in 2041–2060
and 2081–2100. Under SSP245-2060, with the increase of the moderately and highly suitable
habitats, the total suitable habitats would expand by 10.56 × 104 km2. Under SSP245-2100,
a larger expansion was predicted in northward along the current habitats. The total habitat
would expand by 8.92 × 104 km2.

Under the SSP370-2060 climate scenario, Maxent predicted C. glauca gains in the to-
tal suitable habitat in northern Anhui, southern Henan, and northern Hubei. Moreover,
there were sporadic increases in Jiangsu, Sichuan, Yunnan, and Guizhou, while in Jiangsu,
Sichuan, and Guizhou, there were sporadic decreases. Overall, the total suitable habitat
would expand by 3.94 × 104 km2. Under the SSP370-2100 climate scenario, Maxent pre-
dicted an expansion in northern Hubei, western Guizhou, and central Yunnan, and there
were sporadic increases in Jiangsu, Anhui, Henan, Chongqing, and Tibet. Overall, the total
suitable habitats would expand by 1.69 × 104 km2.

Under the SSP585 climate scenario, Maxent predicted a range expansion in the north-
ward and westward directions along the boundary of the current habitats both in 2041–2060
and 2081–2100. The difference is that the range expansion in 2041–2060 was mainly dis-
tributed northward, and the total range expansion was expected to be 11.75 × 104 km2,
while the westward expansion became more obvious in 2081–2100. Overall, the total
suitable habitat would expand by 3.97 × 104 km2.

In general, in all the future scenarios we used, the total suitable habitat was predicted
to expand, and it exhibited a trend of expansion to the northwest. We inferred that it may
be related to the increase of precipitation in the future. It is worth mentioning that the total
suitable habitat tended to expand to areas with a higher altitude in the west, which suggests
that although Bio12 (a precipitation variable) was predicted to be the most important factor
in controlling the distribution of C. glauca, the rise of temperature could not be ignored in
areas with higher altitude.

3.4.2. Altitude of Potential Suitable Habitat under Future Climate

The predictions of the altitude of suitable habitat for C. glauca in the future are shown
in Figure 3.

The mean altitude of the total suitable habitat of C. glauca was 494.82 m under the
current climate. It was predicted to migrate upward about 2.67 m to 497.49 m in 2041–
2060, and then kept moving upward to 515.66 m in 2081–2100 under SSP126. Specifically,
only the moderately suitable habitat had an upward trend in 2041–2060, while all of the
three-classified suitable habitats showed an upward trend in 2081–2100 under SSP126.

There was the same pattern for the mean altitude changes of the total suitable habitat
under SSP245, SSP370, and SSP585 to SSP126. The mean altitude was predicted to migrate
upward in 2041–2060, and then kept moving upward by 2081–2100.

Under SSP245, the mean altitude of the total suitable habitat was predicted to migrate
upward about 6.51 m to 501.33 m in 2041–2060, and then it would keep moving upward to
501.91 m until 2081–2100. Different from SSP126, all of the three classified suitable habitats
under SSP245 showed an upward trend both in 2041–2060 and 2081–2100.

Under SSP370, the mean altitude of the total suitable habitat was predicted to migrate
upward about 2.59 m to 497.41 m in 2041–2060, and then it would keep moving upward
to 522.46 m until 2081–2100. Different from SSP126 and SSP245, the marginally suitable
habitat showed a downward trend in 2041–2060. Meanwhile, all of the three classified
suitable habitats showed an upward trend in 2081–2100.

Under SSP585, the mean altitude of the total suitable habitat was predicted to migrate
upward 4.16 m to 498.98 m in 2041–2060, and then kept moving upward to 522.79 m until
2081–2100. There was the same pattern of change for the three classified suitable habitats
under SSP585 to SSP370 both in 2041–2060 and 2081–2100.

In general, the mean altitude of the suitable habitats showed an increasing trend in
the future, and the rise in 2081–2100 would be greater than that in 2041–2060.
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3.4.3. Spatial Shifts of Centroids in the Future

The geographical centroid of the total suitable habitat of C. glauca was located at
111.32◦ E and 26.95◦ N under the current climate scenario, migrated eastward about 7.93 km
to the position of 111.40◦ E and 26.95◦ N in 2041–2060, and then shifted northwestward
about 31.25 km to 111.15◦ E and 27.12◦ N in 2081–2100 under SSP126 scenario (Figure 4).

The geographical centroid of the total suitable habitat migrated northwestward about
20.50 km to the position of 111.24◦ E and 27.12◦ N in 2041–2060, and then shifted northeast-
ward about 20.49 km to the 111.32◦ E and 27.29◦ N in 2081–2100 under SSP245 scenario.

Under the SSP370 scenario, the geographical centroid migrated northward about
8.90 km to the position of 111.32◦ E and 27.03◦ N in 2041–2060, and then shifted westward
about 20.49 km to the 111.07◦ E and 27.03◦ N in 2081–2100.

Under the SSP585 scenario, the geographical centroid of the total suitable habitat
migrated northward about 18.90 km to the position of 111.32◦ E and 27.12◦ N in 2041–2060,
and then shifted southeastward about 18.94 km to the 111.13◦ E and 27.10◦ N in 2081–2100.

However, the magnitude and direction of the geographical centroid movement were
slightly different under different climate scenarios. In general, the centroid would migrated
northward or westward in the future.

4. Discussion

The knowledge of species potential distribution pattern variations under climate
change is essential as a measurement of its impact on species and to develop conservation
strategies to maintain ecological balance [18]. Therefore, we employed Maxent models to
evaluate the suitable habitats of C. glauca in China. This study inferred species potential
suitable habitats for C. glauca in China under current and future climate scenarios; we be-
lieved that the Maxent performance was robust and reliable to understanding the potential
distribution for C. glauca.

In this study, we found that the most critical environmental factor determining the
suitable habitat distribution of C. glauca was the annual precipitation (Bio12). C. glauca was
predicted to be suitable for regions with Bio12 ranging from 731 mm to 5095 mm. This
finding suggested that precipitation was critical for the survival of C. glauca. Our prediction
supported previous studies, in that, because of precipitation, the northern boundary of
evergreen broadleaf forest in coastal China was more southward than that in Japan [57].

The main factors affecting plant distribution are climate [1], soil composition [58],
orography [59], biotic interactions [60], and so on. Climate is one of the important ecological
factors. Plants respond to climate change by changing their distribution, such as migrating
to higher latitudes or higher altitudes to track suitable environment conditions [8–10].
We quantified the suitable habitat change of C. glauca under four climate scenarios, and
found that the total suitable habitat would expand to the northwest and the mean altitude
showed an upward trend both in 2041–2060 and 2081–2100 under the four climate scenarios;
moreover, the mean altitude of the total suitable habitat in 2081–2100 was significantly
higher than that in 2041–2060. The results were consistent with the prediction that the
northern boundary of the suitable habitats would expand northward in the future [43].
We analyzed the annual precipitation changes in the habitat expansion area and found
that under four climate scenarios, the annual precipitation increased significantly in both
2041–2060 and 2081–2100, and the increase in 2081–2100 was significantly greater than
that in 2041–2060. Accordingly, the increase of precipitation promoted the northward and
upward shift of the total suitable habitat. It should be noted that the total suitable habitat
would be lost in parts of Sichuan, Guizhou, and Jiangsu under SSP126 and SSP370 in
2041–2060, and more habitat would be lost under SSP126. According to our analysis, the
annual precipitation showed a decreasing trend in 2041–2060 relative to current climate
scenario in the areas that experienced a range contraction. It decreased by 23.99 mm under
SSP126 and 4.1 mm under SSP370 on average. The results from the previous projection of
climate zone shifts in the twenty-first century in China were contrary to ours; they found
that precipitation in Sichuan and Guizhou would increase less than 2% compared to that in
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1981–2000. However, they also predicted that the temperature in these areas would increase
more than 1.3 ◦C [61]. This imbalance in temperature change and precipitation change
would also lead to intense evaporation, which could result in drought. This was extremely
detrimental for the growth of hygrophilous plants. Overall, we believe that the increase
of the annual precipitation in the future would reduce the limitation of precipitation on
the distribution of C. glauca, which would cause suitable habitats to move northward
and upward, while the decreasing precipitation along with increasing temperature would
strengthen the limitations and lead to a contraction of suitable habitats.

In addition, we found that the geographical centroid of the total habitat of C. glauca
was located at 111.32◦ E and 26.95◦ N, which was in south-western Hunan. Although the
direction of centroid movement was slightly different at different periods, it would move
northward (SSP245) or northwestward (SSP126, SSP370, and SSP585) in 2081–2100, relative
to the current climate, with an average movement range of 23.86 km. The movement of the
centroid reflected the movement of the core habitats of C. glauca. The future movement of
the suitable habitats was partly caused by the northward and westward movement of the
core habitat, and also by the fragmentation and disappearance of the highly suitable habitat
at the junction of Jiangxi and Fujian, especially under the climate scenarios of SSP126-2060,
SSP126-2100, and SSP370-2060. This suggests that an increase in efforts to protect and
cultivate C. glauca at the junction of Jiangxi and Fujian is necessary and critical in order to
protect the understory vegetation and ecosystem structure.

This paper adopted Maxent to simulate the suitable habitat changes of C. glauca in
2041–2060 and 2081–2100. We mainly considered the biological climate factors (Bio1-19)
and the effects of altitude. However, the road distribution, the distance to residential areas,
and land use also greatly affect the distribution of plants, and all these factors should be
taken into consideration in the future. Furthermore, Qiao et al. (2015) tested eight niche
modelling algorithms and found there was no algorithm that could perform best in all
species distribution modelling [62]. They suggested that various algorithms should be
tested before simulation and the final approach should be chosen based on the results of the
test. Therefore, in future work, we need to fully test the accuracy of the modelling methods.

5. Conclusions

Assessing the impact of climate change on the distribution of C. glauca is of critical
importance for the conservation of the understory vegetation and ecosystem structure. Our
results indicated that with the increasing precipitation, the total suitable habitat for C. glauca
tended to expand under SSP126, SSP245, SSP370, and SSP585 climate scenarios, and the
total suitable habitats showed a north-westward and upward trend both in 2041–2060
and 2081–2100. Nevertheless, in parts of Sichuan, Guizhou, and Jiangsu, the reduction of
precipitation in 2041–2060 under SSP126 and SSP370 was predicted to result in the reduction
of highly suitable habitats, which meant that the dominant species in these areas were
likely to change, and it would have an important impact on the understory vegetation. This
reminds us that it is useful to predict the spatial and temporal patterns of the range shifts
for C. glauca. This study can provide vital information for the management of C. glauca and
serve as a reminder for managers to protect biodiversity in areas where C. glauca could be
lost in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f13010126/s1, Figure S1: The Maxent predicted ROC curve of C. glauca, Table S1: Correlation
matrix for different environmental variables, Table S2: Percent contributions of variables included in
Maxent, Table S3: Geographical distribution and data sources of C. glauca population occurrences.
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