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Abstract: Forests are an important natural resource and are instrumental in sustaining environmental
sustainability. Burning biomass in forests results in greenhouse gas emissions, many of which are long-
lived. Precise and consistent broad-scale monitoring of fire intensity is a valuable tool for analyzing
climate and ecological changes related to fire. Remote sensing and geographic information systems
provide an opportunity to improve current practice’s accuracy and performance. Spectral indices
techniques such as normalized burn ratio (NBR) have been used to identify burned areas utilizing
satellite data, which aid in distinguishing burnt areas using their standard spectral responses. For
this research, we created a split-panel web-based Google Earth Engine app for the geo-visualization
of the region severely affected by forest fire using Sentinel 2 weekly composites. Then, we classified
the burn severity in areas affected by forest fires in Wolgan Valley, New South Wales, Australia, and
the surrounding area through Difference Normalized Burn Ratio (dNBR). The result revealed that the
region’s burnt area increased to 6731 sq. km in December. We also assessed the impact of long-term
rainfall and land surface temperature (LST) trends over the study region to justify such incidents. We
further estimated the effect of such incidents on air quality by analyzing the changes in the column
number density of carbon monoxide and nitrogen oxides. The result showed a significant increase of
about 272% for Carbon monoxide and 45% for nitrogen oxides. We conclude that, despite fieldwork
constraints, the usage of different NBR and web-based application platforms may be highly useful
for forest management to consider the propagation of fire regimes.

Keywords: forest fire (FF); Google Earth Engine (GEE); burnt vegetation; difference normalized burn
ratio (dNBR); normalized burn ratio (NBR)

1. Introduction

Forests are an essential natural resource that plays a crucial role in sustaining envi-
ronmental sustainability. Forest health is a true predictor of the predominant ecological
condition in the region. The frequent occurrence of forest fires (FFs) is one of the main
reasons why most of our valuable flora have been depleted and distressed [1]. Further, the
devastation from these deadly fires directly or indirectly impacts human beings [2]. Forest
fires are also viewed as a potential human, ecological, economic, and environmental threat.
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Fire causes partial or complete forest canopy loss, altering radiation balance by increasing
the surface albedo, water drainage, and increased soil erosion [3].

Using remote sensing to monitor, analyze, and restore burned regions has become an
essential part of postfire mitigation efforts on a global and regional scale. It provides reliable
and speedy data and enables rapid diagnosis across burned areas. This approach further
demands innovative technologies in the prompt, cost-effective collection, encoding, and
proper visualization of spatial information. Space technology benefits from the ability of a
computer to store and process enormous amounts of data. In this regard, the Google Earth
Engine—a remote sensing datasets processing cloud-based web platform [4–7]—plays
a vital role. It offers an efficient assessment of the fire status and the corresponding
environmental impact of wildfire through geo-visualization. Change identification (e.g.,
amid postfire and pre-fire images) models commonly utilize remote sensing in fire intensity
mapping [8–10].

Satellite imagery identifies forest fires using special techniques, including the fire
intensity measurement by the normalized burn ratio (NBR), intended to distinguish areas
burnt. Numerous indices, including the difference Normalized Burn Ratio (dNBR), and
the soil-adjusted vegetation index burned zone index, have been derived and compared
in the past [11–13]. The most widely used index, dNBR, provides a fair description of
various vegetation populations (e.g., 60–70% precision as opposed to field validation) of the
spatial disparity in intensity within a single fire [10,14]. Even the Landsat satellite data’s
short-wave infrared (SWIR) band is appropriate for detecting moisture both in vegetation
and soils, and the near-infrared reflection (NIR) band is sensitive to green pigment, i.e.,
chlorophyll levels in leafy vegetation [15]. Therefore, satellite imagery analysis proves to
be a powerful method for measuring and evaluating the intensity of fires since they have a
sufficient temporal and spatial resolution [16].

Forest fires have environmental consequences, as they release carbon that contributes
to global warming and can eventually alter biodiversity [17]. Fire activity has a significant
influence on air pollution, atmospheric composition, and the climate. The toxic and
chemical reactive gases, such as methane, carbon dioxide (CO2), carbon monoxide (CO),
hydrocarbons, nitrogen oxides (NOx), methyl chloride, and particulate matter are released.
The emissions from forest fires are a significant source of carbon dioxide (CO2), affecting
interannual variability and biogeochemical processes with atmospheric impact. Carbon
monoxide (CO), emitted by incomplete combustion, affects the national and global air
quality. Nitrogen oxides (NOx), radical OH, volatile organic compounds, and black carbon
can create troposphere ozone depletion while particulate matter affects human health and
negatively impacts climate [18–20]. Various tests to assess the air quality of forest fires
have since been conducted in the past [18,21,22]. The variability in weather can have a
considerable impact on the fire regimes. Past experiments have shown that short-term
(seasonal to annual) precipitation shifts that affect the humidity content of the fuel are
related to the volatility of wildfires [23–25]. Further, due to climate change, the world’s
mean temperature is increasing, which may increase the chances of forest fires [4,24,26].

There have been many forest fires in the world recently, but the Australian forest
fire has been the most powerful. By 9 March 2020, about 18.6 million hectares [27] had
been burnt, at least 34 people killed [28–30], and more than 5900 buildings damaged [31].
About 1 billion animals were killed, and other endangered species could have been made
extinct [32,33]. The objectives of this study were to estimate the forest fire footprints by uti-
lizing Landsat-8 satellite imageries, analyze the fire intensity classification efficiency using
standard spectral indices, estimate the impact of long-term temperature and precipitation
on forest fire incidents, evaluate the impact of forest fires on air quality, and development of
an interactive visualization web-application for quick geo-visualization of the burn severity.
This application has been implemented to raise awareness of Australia’s forest fire issues
using an advanced Google Earth Engine (GEE) cloud-based platform.
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2. Materials and Methods
2.1. Study Area

Australia is the sixth-largest nation in the world total-area-wise and Oceania’s largest
country. Twenty-six million people are mostly urbanized on the eastern seaboard. In
Australia, semiarid and arid areas cover 50%–75% of the land [34]. The study region lies in
the vicinity of Wolgan Valley near Lidsdale, Eastern Australia (Figure 1), areas hit by fires
in 2019–2020. Wolgan Valley is a small valley on the Wolgan River in the New South Wales
(NSW) region of Lithgow, Australia.
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Figure 1. Location of the study areas. Wolgan Valley, near Lidsdale, Eastern Australia, is represented
in the red box.

The valley lies about 32 km north of Lithgow and 150 km northwest of Sydney.
Accessible from Castlereagh Highway via the Wolgan Valley Discovery Path (Wolgan
Route), the route crosses the valley leading to Newnes historical village with its extensive
industrial ruins. It runs wide east until it reaches the Capertee River and then the Colo River.
The Wollemi Wilderness is the largest protected area in NSW and the largest in eastern
Australia. The Wollemi protected area is 361,000 hectares east. Wolgan Valley comprises
Wollemi National Park, Stone Gardens National Park, and the UNESCO World Heritage
Region of Blue Mountains. Recently, in 2019, the region suffered from the hazardous
incident of forest fire, which distressed flora and fauna of the region and deteriorated the
air quality.

2.2. Materials and Methods

This study used the images from the Operational Land Imager (OLI) sensor of
Landsat-8 Satellite to map the burn severity. The images were acquired using an im-
age export algorithm in Google Earth Engine. The temporal filter was applied for March,
and October to December 2019. The minimum cloud cover imageries were chosen for the
research area to help classify burned areas during the 2019 fire. Using the principles and
elements of image interpretation (pattern, situation, association, size, shape, tone, NBR,
and dNBR), we identified the burnt patches and area, and the geospatial layer of the burnt
area was generated. The overall methodology of this research is shown in Figure 2. For
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air quality monitoring, we used the Sentinel-5P dataset. CHIRPS (Climate Hazards Group
Infrared Precipitation with Station) was used for rainfall time series estimation. The MODIS
(Moderate Resolution Imaging Spectroradiometer) Terra Land Surface Temperature (LST)
and Daily Emissivity dataset (MOD11A1.006) were used for validation. The details of the
datasets are displayed in Table 1.
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Table 1. Various datasets employed in this research for burnt area estimation and pollution monitoring.

S. No. Purpose Data Duration Resolution/Scale Source

1 Burned Area Mapping LANDSAT-8 Operational
Land Imager

March, October, November,
December 2019 30 m

Google Earth Engine
https:

//code.earthengine.
google.com/
(Accessed on

20 August 2021).

2 Web App Visualization Sentinel 2 March, October, November,
December 2019 10 m

3 Rainfall CHIRPS daily 1981–2019 5000 m

4 Land Surface
Temperature MODIS Terra LST daily 2001–2019 1000 m

5 Pollution Mapping
and Monitoring Sentinel 5P March, October, November,

December 2019 1000 m

6 Validation MODIS Burned Area
Monthly

October, November,
December 2019 500 m

2.2.1. Spectral Indices

The fire spectral index determines the edge of burning areas by normalization of burn
ratio. The NBR is a normalized Burn Ratio index (see Equation (1)), based on the OLI sensor
bands 5 and 7 reflectance data classifying burnt areas. Band 5 has a 30 m spatial resolution
corresponding to Near-Infrared (NIR), equal to 0.85- and 0.88-µm spectral range; band 8
corresponds to SWIR, which has a 30 m spatial resolution equal to a 2.11–2.29 µm spectral
range. In determining multitemporal identification of change, we considered the bispectral
SWIR–NIR bands [16,35].

NBR = ((NIR − SWIR))/((NIR + SWIR)) (1)

https://code.earthengine.google.com/
https://code.earthengine.google.com/
https://code.earthengine.google.com/
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where NIR represents Landsat-8 OLI sensor Band 5 and SWIR denotes Landsat-8 OLI
sensor Band 7.

We also measured the dNBR using the bitemporal difference of the NBR images (see
Equation (2)) [36]. Teobaldo and Baptista (2016) found that the dNBR strengthens the
differences between the NBR scenes and emphasizes fire [37].

dNBR = NBRpre − NBRpost (2)

where NBRpre—pre-fire data, NBRpost—postfire data, and dNBR—difference NBR.

2.2.2. Rainfall and Temperature Retrieval

GEE makes fast analysis possible by using Google’s machine infrastructure. For
this study, CHIRPS, a quasi-global rainfall dataset, was coded to obtain Wolgan Valley’s
precipitation information from 1981 to 2019. We used GEE to determine the precipitation
values around the study region with a 0.05◦ × 0.05◦ daily temporal and spatial resolution.
For the estimation of land surface temperature (LST), the MOD11A1.006 Terra LST dataset
was processed in GEE to obtain the day surface temperature from 2001 to 2019. This method
uses JavaScript coding on the GEE platform. The resulting chart was saved in ‘csv’ format.

2.2.3. Pollution Monitoring

The Nitrogen oxides and carbon monoxide datasets of Sentinel 5P satellite were
retrieved using a GEE algorithm for pollution monitoring. Both Carbon monoxide (CO)
and the Nitrogen oxides (NO2 and NO) are important trace gases in the atmosphere to
understand tropospheric chemistry. The primary sources of CO and NOx include the
combustion of fossil fuels, biomass burning in the atmosphere, and natural processes
(wildfires, lightning, and microbiological mechanisms in soils). TROPOMI on the satellite
Sentinel 5P measures CO global abundance using clear-sky and cloud-sky Earth’s radiation
parameters in the 2.3 µm-SWIR components of the solar spectrum. The TROPOMI NO2
processing method for OMI is based on the algorithm innovations for the DOMINO-2
software, and the EU QA4ECV NO2 reprocessed dataset has been modified for TROPOMI.
The datasets for March, October, November, and December 2019, were used to evaluate the
change in air quality due to the forest fire.

2.2.4. Web-App Development

We have created a split-panel interactive geo-visualization app using GEE’s create app
feature. The weekly composites using Sentinel 2 Multispectral Instrument (MSI) Level-1C
images were also created. Sentinel-2 is a wide-ranging, multispectral, high-resolution
imaging initiative promoting Copernicus Land Monitoring studies involving vegetation
mapping, soil and waters cover, and the study of inland and coastal waterways. Filter
metadata function was used to filter out the images with a cloud pixel percentage of
less than 30%. For the proper visualization of the Fire event, False Color Composite was
created using Bands 12 (Short-wave Infrared-2, 2202.4 nm), 8 (Near-Infrared, 835.1 nm), and
3 (Green, 560 nm) over the median images. The min and max band values for visualization
were set to 0 and 5000, respectively. For the pre-fire event, March’s second week composites
were taken; for the postfire event, the weeks of October, November, and December 2019
were taken. The desired weekly composites could be selected from the dropdown list
provided in the corners of each panel for the users.

Various inbuilt functions of GEE such as ui.Map(), ui.Label(), ui.Select(), ui.Panel(),
ui.SplitPanel(), and ui.Map.Linker() were used judiciously to this interactive app. The
output window was split into two parts to visualize the changes in the fire events easily.
This app also has a search toolbar at the top to directly examine the affected places. The
created app could be accessed from https://bit.ly/fires-aus (Accessed on 20 August 2021).
This created app was used to visually analyze the zones deeply affected by forest fires over
all of Australia.

https://bit.ly/fires-aus
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3. Results and Discussion

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Web App Visualization

Numerous places in Australia are severely affected by the forest fire. We developed
the split-panel web-based application to analyze the change in the forest fire event visually.
Some of the places severely affected were Wolgan Valley, NSW; Crawney, NSW; Nowendoc,
NSW; and Nullo Mountains, NSW, as shown in Figures 3–6. The weekly composites of the
images of Sentinel 2 were effective in visualizing forest fire growth.

Among all, Wolgan valley was taken as a study area from the most severely affected
region, as shown by the web app.
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3.2. Rainfall and Temperature Variation

Due to the warming climate, precipitation patterns and moisture levels change, leading
to more dryness. The cooler air enhances the evaporation, leaving the soil drier by the
atmosphere. Prolonged dry conditions are one of the driving factors behind forest fires.
Dryness and high-temperature conditions cause the fire to occur frequently and exacerbate
the length and severity of fires.

The annual rainfall time series analysis from 1981 to 2019 for Wolgan Valley was
analyzed using the satellite-derived CHIRPS datasets in GEE (Figure 7). The region showed
a decreasing trend (although insignificant) with a slope of −2.5. However, for 2019, the
region received an annual rainfall of 596 mm, which is approximately 30% lower than
the mean annual rainfall of 825 mm of the study area, which could be a major reason for
the occurrence and enlargement of the forest fire. The Mann–Kendall Trend Test was also
performed in order to obtain the trend behavior of the series; the test was performed based
on yearly and yearly moving average. The test result is shown below in Table 2.

As shown in Table 2, the time series shows no trend when yearly data are considered,
but it starts showing the decreasing trend as we move for a more realistic approach of
moving average in the test. All parameters obtained by performing the Mann–Kendall
trend test are shown in Table 2.
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Figure 7. Annual rainfall time series from 1981–2019 for Wolgan Valley estimated from CHIRPS
datasets in GEE.

The mean annual land surface temperature (LST) time series analysis during 2001 to
2019 for Wolgan Valley was performed using the satellite derived MOD11A1.006 Terra
datasets in GEE (Figure 8), which found that the region showed an increasing trend with a
slope of 0.0236. Moreover, for the year of 2019, the region experienced the mean annual
LST of 23.7 ◦C, which is approximately 8% higher than the mean annual LST of 21.9 ◦C.
The increase in temperature has a drying effect on the flora that could be one of the reasons
for the forest fire events in the region.
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Table 2. Trend analysis of CHIRPS rainfall data using Mann–Kendall moving average method.

Time Period Trend h p z Tau s var_s Slope Intercept

Yearly no trend FALSE 0.110313 −1.59679 −0.17949 −133 6833.667 −0.55886 48.80874

2-yearly moving average no trend FALSE 0.056014 −1.91093 −0.21764 −153 6327 −0.48733 48.69761

3-yearly moving average decreasing TRUE 0.008567 −2.62886 −0.3033 −202 5846 −0.56612 53.42137

4-yearly moving average decreasing TRUE 0.001132 −3.25539 −0.38095 −240 5390 −0.66736 58.51139

5-yearly moving average decreasing TRUE 0.000222 −3.69237 −0.43866 −261 4958.333 −0.72488 61.15642

3.3. Burnt Area Estimation

The altitude for the bounding box ranges from 47 to 1599 m and is situated in the east
of New South Wales. By analyzing the periodic increase in the geospatial boundary of
burnt regions, we found it was 21 sq. km in October 2019, which increased to 912 sq. km in
November 2019 primarily in the eastern region; later in December 2019, it further increased
to 6731 sq. km with the growth in the east, north, and south directions (refer to Figure 9).
So, it could be easily determined that the region suffered a severe overall increase of about
6710 sq. km within two months of the forest fire.
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Figure 9. Map displaying the burned area footprints as estimated from visual interpretation.

The NBR multitemporal difference, i.e., due to their ease of application, the dNBR
index has recently become the standard for fire intensity metrics using Landsat satellite
data, as they typically provide a broad spectral range that can be accomplished between
SWIR and NIR bands. The NBR pre-, NBR postestimation allows for the evaluation of
change detection by multiple passes of thorough observation. From Equation (1), NBRpre
and NBRpost values for the processed satellite imageries were observed. Key and Benson,
(2006) who created the NBR, conceptualized the data-slicing index and suggested that the
theoretical range spans from −1.0 to 1.0. An NBR near “0” means that clouds, grasses,
exposed soil, or rocky outcrops can occur, and if pixels have a negative NBR, this implies
extreme water stress on plants and the negative trace of a fire [38]. Thus, it is important
to note that recent fire results usually vary from “0” to strongly negative. The dNBR
(Equation (2)) combines multitemporal datasets of the NBR in one gradient, so the dNBR
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has a theoretical range from −2 to +2. Positive dNBR values indicate a reduction in
vegetation, while negative values are a rise in vegetation cover [10,14,39].

Table 3 shows NBR data from the Landsat-8 image estimation for March, October,
November, and December 2019. Concerning the NBR data for March 2019, it was found
that pixel values ranged between −0.68 and +1.0; for October, the values ranged between
−0.77 to 1; for November 2019, values ranged from −0.86 to +1.0, while the NBR data of
December 2019 was found between −0.87 and +0.88.

Table 3. Theoretical and obtained bands, considering the pixels of Wolgan Valley, NSW NBR indices.

Month Theoretical Range NBR

Mar-19 [−1 to 1] [−0.68 to +1]
Oct-19 [−1 to 1] [−0.77 to +1]
Nov-19 [−1 to 1] [−0.86 to +1]
Dec-19 [−1 to 1] [−0.87 to +0.88]

The dNBR index for the severity groups was obtained using Equation (2). As such,
Figure 10 shows the severity class for the fire burning in Wolgan Valley in the images used
in this analysis. It is important to emphasize that the results of intensity display differences
within the same burned area [36] and that determination and fire distribution perimeter,
as well as the intensity within the fire, are useful for unit management managers seeking
to grasp fire impacts on forests, such as the recovery of vegetation and postfire sequence
for example [16,39].
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Figure 10. The dNBR indices for the identification of the severity level of the burnt area for Wolgan
Valley, NSW.

The severity levels (Table 4) were used to classify the severity of indices. Moreover,
we used a five-layer configuration, which has proven useful in several aspects. The dNBR
value classes can differ between paired scenes. Values below −0.1 or greater than +0.66
may also exist, which may not be classified as burned. Alternatively, they are disguised
as phenomena caused by lack of monitoring, clouds, or other causes not linked to actual
ground cover variations.
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Table 4. Severity levels and dNBR interval.

Severity Level dNBR Range
Enhanced Regrowth [>−0.1]

Unburned [−0.1 to +0.1]
Low Severity [+0.1 to +0.27]

Moderate Severity [+0.27 to +0.66]
High Severity [>+0.66]

The first level of severity reflects areas in which vegetation is present and can identify
vegetation patches for postfire productivity. They occur almost entirely in vegetation where
dNBR can be strongly negative, suggesting areas of improved after-fire efficiency (postfire
NBR is much higher than pre-fire). Regular unburned pixels are located below zero. The
last three stages include all other burned areas of which dNBR is explicitly constructive
(postfire NBR is much less than pre-fire), including what is known as burned recently.

3.4. Validation

To validate the derived output of the burned area, the fire footprint for October and
December 2019 were compared spatially with MCD64A1.006 MODIS Monthly Burned
Area product obtained from GEE at 500 m-resolution as shown in Figure 11. On spatial
interpretation, it was seen that the MODIS product overpredicted the burnt area derived
from visual interpretation estimates for October and November. For October, MODIS
product estimated the area to be 58 sq. km while, from Landsat-8 OLI visual interpretation,
the area obtained was 22 sq. km. For December, MODIS product estimated the area to be
6205 sq. km while, from visual interpretation, the area obtained was 6731 sq. km. It could
be stated that the visually interpreted region overlaps with the MODIS-derived burned area
region. However, this variability could be due to the difference in their spatial resolution.
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3.5. Impact on Air Pollution Due to the Forest Fire

A significant fire event recently took place in the woods of Australia from October
to December 2019. A total of 5,595,739 hectares have been burned, and 2475 houses and
25 lives have been lost in 10,520 bushfires in NSW. These incidents further resulted in heavy
pollution, in the form of CO and NO, in the vicinity of the event. For comparison, the air
pollutants datasets were fetched for pre-fire and during-fire events.

It was found that the actual (satellite-based) mean spatial distribution of Carbon Monox-
ides Column Number Densities (COCND) (Figure 12) increased from 0.0177 mol/sq. m.
to 0.066 mol/sq. m. during March–December 2019 with 272% change. Further, the pe-
riodic observation exhibits that the minimum and maximum COCND were 0.014 and
0.021 mol/sq. m, respectively, in March 2019, which increased to 0.022 and 0.035 mol/sq. m,
respectively, in October 2019 with a 47% increase. In November 2019, it increased to a
minimum and maximum value of 0.021 and 0.11 mol/sq. m, respectively, with 23% succes-
sive amplification mostly in the eastern direction. Later, in December 2019, the densities
enlarged to a minimum and maximum value of 0.029 and 0.15 mol/sq. m, respectively, with
103% incremental increase in almost every direction. The stats obtained for the COCND
are shown in Figure 13.
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Figure 12. Maps showing the variation of COCND during the event of forest fire.

The obtained result could also be visualized from the histogram (Figure 14a) and violin
graph (Figure 14b) of the COCND images for March, October, November, and December
2019. It is found that most of the pixel counts lie close to the value of 0.01 mol/sq. m for
March; for the October month, it shifts towards 0.025 mol/sq. m. For November, the pixel
spans with max counts close to 0.03 mol/sq. m and, finally, for December 2019, the pixels
become very distributed with maximum counts close to the value of 0.05 mol/sq. m.

Similarly, the overall trend of mean Nitrogen Oxides Column Number Densities
(NOCND) (Figure 15), for the forest area was found to increase from 0.0000287 mol/sq. m
to 0.0000416 mol/sq. m during March–December 2019 with 45% change. It was observed
that the minimum and maximum NOCND were 0.0000027 and 0.0002496 mol/sq. m,
respectively, in March 2019, which increased to 0.0000041 and 0.0002627 mol/sq. m,
respectively, in October 2019 with a 10% increase. In November 2019, it decreased to a
minimum and maximum 0.0000033 and 0.0002478 mol/sq. m, respectively, with a 6%
decrease. However, again in December 2019, the densities increased to a minimum and
maximum value of 0.0000033 and 0.0004636 mol/sq. m, respectively, with 40% incremental
increase. The stats obtained for the NOCND is shown in Figure 16.
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Figure 16. Statistics of NOCND variation for the forest fire event.

The obtained result could also be visualized from the histogram (Figure 17a) and violin
graph (Figure 17b) of the NOCND images for March, October, November, and December
2019. It is found that most of the pixel counts lie close to the value of 0.0000116 mol/sq. m
for March and, for October, it shifts towards 0.0000155 mol/sq. m. For November, the
pixel value reduces to 0.000012 mol/sq. m and, finally, for December 2019, the pixels get
distributed with maximum counts close to the value of 0.00002 mol/sq. m.
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The increase in CO is attributed to incomplete biomass combustion. NO emissions
are due to the high nitrogen content of biomass and new leaves. The analysis reveals that
forest fire does not just affect the ecosystem in which it occurs, but also has effects on the
surrounding regions.

4. Conclusions

Forest fires are one of the major sources of forest loss and air pollution. The NBR
index was sensitive to pre- and postfire images of fire pixels in the SWIR–NIR region.
Based on the methodology used in this work, the pre- and postfire difference index (dNBR)
proved adequate to identify fire-affected pixels. The use of the dNBR index proved to
be a valuable tool for the classification of burned areas in the region. It was found that
the rate of loss of forest was very large (approx. 6730 sq. km) at the time of the fire. It is
necessary to consider that the temporal information obtained from Landsat satellite images
can provide valuable data for efficient management of natural resources. Moreover, in the
limitations of fieldwork, the use of GEE-based Web-application, the geo-visualization of
the fire events became quick and easy. This application could be extremely beneficial for
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forest management to understand the spread of fire regimes, as it could contribute to the
execution of effective environmental training actions and restoration.

Burning biomass also has a significant effect on air quality in nearby cities. During
the fire period, major contaminants CO and NOx were found to increase compared with
the pre-fire time-period. The long-term time series analysis of rainfall and temperature
revealed their increasing trend in the region. It is hypothesized that, due to climate change,
forest fire incidences may further increase in the coming years. The joint management from
the forest department and local village communities is important in this context. Further,
there is an urgent need for effective management practices and a better weather forecasting
system to ensure proper monitoring of such incidents.
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