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Abstract: Recent cases of climate disasters such as the European floods in 2021 and Korea’s longest
rainy season in 2020 strongly imply the importance of adaptation to climate change. In this study, we
performed a numerical prediction on how much climate change adaptation factors related to forest
policy can reduce climate disasters such as landslides. We focused on the landslide in Korea and
applied a machine learning model reflecting adaptive indicators in the representative concentration
pathway 8.5 climate scenario. The changes in the landslide probability were estimated using the
Random Forest model, which estimated the landslide probability in the baseline period (2011)
with excellent performance, and the spatial adaptation indicators used in this study contributed
approximately 20%. The future landslide risk predicting indicated a significant increase in the Very
High and High risk areas, especially in 2092. The application of the forest-related adaptation indices
based on the policy scenario showed that in 2050, the effect was not pronounced, but in 2092, when
the risk of landslides was much higher, the effect increased significantly. In particular, the effect was
remarkable in the Seoul metropolitan and southern coastal regions. Even with the same adaptive
capacity, it exerted a larger effect on the enhanced disasters. Our results suggest that the enhancement
of adaptive capacity can reduce landslide risk up to 70% in a Very High risk region. In conclusion,
it implies an importance to respond to the intensifying climate disasters, and abundant follow-up
studies are expected to appear in the future.

Keywords: landslide; adaptive capacity; climate change; forest disaster; machine learning

1. Introduction

The global declaration of carbon neutrality and the emergence of environmental, social,
and governance criteria-based management is becoming a new trend in the twenty-first
century for countries and companies to take the lead in responding to the climate crisis [1–3].
The recent recognition of climate change as a crisis includes the mandatory obligation to
reduce greenhouse gas emissions, but also because climate-induced disasters are getting
worse every year [4,5]. Consequently, in response to climate change, the importance
of technology to adapt to the changing climate as well as greenhouse gas reduction is
increasing, and this can be confirmed in the direction and reports of the United Nations
Framework Convention on Climate Change and the Intergovernmental Panel on Climate
Change [6–8].

The recent examples of climate disasters strongly suggest the importance of adaptation.
In July 2021, floods that hit Germany, Belgium, and the Netherlands caused the loss of
hundreds of lives and astronomical property damage [9]. However, the precipitation that
produced this flood was only 100–150 mm for two days. These developed countries suffered
excessive damage, despite the amount of precipitation that can often occur during the rainy
season in the monsoon climate zone, due to lack of “adaptation”. In the northwestern
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European countries such as Germany, the seasonality of precipitation is low, and heavy
rains rarely occur throughout the year; therefore, the rivers and water supply networks are
not prepared to withstand climatic disasters [10]. It is speculated that the future climate
change will shift the traditional climate system and cause new types of disasters even in
areas where such disasters have not occurred before.

Forests play a significant role in climate change and are valuable resources that can
contribute to both mitigation and adaptation [11,12]. In particular, extreme climatic disas-
ters such as floods and droughts are directly linked to forest disasters such as landslides
and forest fires [13–15]. Among them, landslides are mostly caused by heavy rains, and are
greatly impacted by the climate change [16]. To reduce forest disasters such as landslides,
there are forest management policies and technical applications such as erosion control
facilities. However, their contribution toward the reduction or prevention of forest disasters
is significantly less. In other words, the prediction of forest disasters via the application of
adaptation policies or forest management is severely limited.

Recently, artificial intelligence techniques have been proposed as an alternative for the
spatial prediction of adaptation policies established in the form of documents or numeric
value [14,17,18]. If the policies and future plans are spatialized through a rational process,
then they can be learned by artificial intelligence and reflected in disaster prediction.
Because machine learning techniques have an advantage in predicting disasters such
as landslides, this approach has a high utility in integrated prediction with adaptation
policy [19,20]. By combining artificial intelligence and spatialization techniques, it could be
possible to predict the extent by which the adaptation factors can reduce climate disasters
such as landslides.

In the case of Republic of Korea (hereafter, referred to as “Korea”), which belongs
to the temperate monsoon zone and where the summer precipitation is concentrated,
a number of landslides occurred due to the longest rainy season ever recorded in 2020.
Again in 2011, hundreds of landslides occurred across the country in just a few days owing
to short-term heavy rains [21,22]. In particular, the heavy rains in 2011 were similar to the
form of torrential rain predicted to occur in the future, and it can be utilized to develop
disaster mitigation guidelines that can prevent climate-induced forest disasters in the
future [16]. This is the reason why the 2011 landslide still plays an important role in Korea’s
landslide research and policy, even though it occurred 10 years ago. According to these
characteristics, Korea will be effective as a case for reduction of climate disasters such as
landslides, and it will be possible to simulate the impact of adaptive capacity enhancement
by learning actual policies through artificial intelligence models.

This study was conducted with the aim to perform a numerical prediction of how
much climate change adaptation factors such as forest policy can reduce climate disasters
such as landslides in Korea, which has experienced record landslides in the past. We
predicted the landslide probability using a machine learning-based model. The model
learns the adaptive factors together to evaluate their landslide reduction ability of the
adaptive capacity. In particular, we evaluated the extent to which climate change risks
can be offset by applying future adaptation factors based on forest policies. Herein, our
ultimate object is to discuss the effectiveness of policy-based adaptive capacity, and how it
can be evaluated in terms of response to climate disasters such as landslides.

2. Materials and Methods
2.1. Study Area

Korea is located in the mid-latitude region in East Asia and occupies half of the Korean
Peninsula, covering an area of approximately 100,000 km2, with mountainous areas in the
east and plains in the west and south. In Korea, approximately 63% of the land is covered
by forests, followed by agricultural land with the highest percentage of land use (Figure 1b).
Although the ratio of land use in cities is not high, most of them show a dense population
distribution, and a high proportion of the population resides in the metropolitan area and
major base cities (Busan, Daegu, Daejeon, etc.) [14]. Korea is a temperate climate region,
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and forests are mainly distributed as temperate forests. Some subtropical forests are found
in Jeju Island and parts of the southern coast, whereas subalpine forests are present the
mountainous areas centered at Baekdudaegan which is main mountain range of the Korean
Peninsula. However, due to climate change, subalpine forests are significantly declining,
while the subtropical forest habitats are increasing [10,23,24].
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Figure 1. (a) Study area indicating the region where landslide occurred in 2011 and (b) administrative
boundary.

Korea has a temperate monsoon climate with high temperature and high humidity
in summer and a cool and dry climate in winter [25,26]. The average annual temperature
is 10–15 ◦C, and the average annual precipitation is 1000–1800 mm [26]. Due to these
seasonal climatic characteristics, landslides and floods occur frequently in summer, and
drought and forest fires occur in winter and spring. In the future projection according to the
representative concentration pathways (RCP) 8.5 scenario, the temperature in the second
half of the twenty-first century is predicted to increase by approximately 4.7 ◦C, and the
precipitation is also expected to increase by approximately 13% in the long term, although
there will be a large annual variation [27]. In particular, significant changes are expected in
the heat waves, rainfall intensity, and drought intensity [14,28].

The number of landslides recorded in 2011 were the highest in the past 20 years, and
numerous landslides occurred in the metropolitan areas and the southern slopes of Mt. Jiri
(Figure 1a). In particular, the landslides in the metropolitan areas resulted in a large number
of casualties and property damage. This event was used as a benchmark to increase the
awareness about landslide prevention and reduction.

2.2. Data
2.2.1. Landslide Occurrence Data

For the machine learning model to learn the representative landslide occurrence
information in Korea, national-scale information on landslide occurrences (in 2011), which
caused the largest landslide-induced damage in the metropolitan area during the last
20 years (2000–2019), was used [29]. The landslide occurrence data was collected via
field surveys conducted by the Korea Forest Service after the landslide and provided by
the National Institute of Forest Science. The information on a total of 573 occurrences
that occurred in 2011 was utilized, and it was confirmed that all these landslides were
caused by heavy rain and typhoons. Approximately 30% of all the occurrences occurred on
27–28 July 2011, when heavy rain was recorded. In particular, the landslide occurrences
were concentrated in some areas such as the metropolitan area and the southern coast,
where the precipitation intensity was high. To train the model, information other than the
spatial location of the landslide was excluded, and the occurrence location was processed
to be the presence data.
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2.2.2. Climate Indicators and Data

In this study, three climate indices representing precipitation intensity were selected
to predict the landslide probability. These indices were the simple daily intensity index
(SDII; an indicator that statistically describes the rainfall intensity), five days of maximum
precipitation (MX5D; showed a high correlation with the occurrence of landslides reported
in a number of studies) [30,31], and number of days with over 80 mm of precipitation
(R80; the standard for heavy rain in Korea) (Table 1). SDII is calculated as the total annual
precipitation divided by the number of wet days (precipitation ≥ 1 mm) in a certain year,
and MX5D represents the highest five consecutive precipitation days in a year. In contrast,
R80 is counted as the number of days in a year when precipitation ≥ 80 mm.

Table 1. Input variables used to assess landslide probability.

Input Variable Acronym Input Variable Unit Source

MX5D 5 Days of Maximum
Precipitation mm KMA 1

R80 Number of days over
80 mm of rainfall Days KMA 1

SDII Simple Daily
Intensity Index - KMA 1

Owner Forest Ownership Class KFS 2

F-road Distance from Forest
Road Class KFS 2

Economic-F Economic Forest
Utilization Level Class KFS 2

Erosion-C Erosion Control
Facilities Y/N KFS 2

Protect Protection Area Class KFS 2 and MOE 3

Elev Elevation m MLIT 4

TWI Topographical
Wetness Index - MLIT 4

S-depth Effective Soil Depth Class RDA 5

S-drain Soil Drainage Class Class RDA 5

LC Land Cover Class Class MOE 3

1 Korea Meteorological Administration (http://www.kma.go.kr/, accessed on 11 July 2021); 2 Korea Forest
Service (http://www.forest.go.kr/, accessed on 11 July 2021); 3 Ministry of Environment (http://www.me.go.kr/,
accessed on 11 July 2021); 4 Ministry of Land, Infrastructure and Transport (http://www.molit.go.kr/, accessed
on 11 July 2021); 5 Rural Development Administration (http://www.rda.go.kr/, accessed on 11 July 2021).

For climate indicators, data from three periods were used (Figure 2). First, to learn
and evaluate the past occurrences, climate data from 2011, the same period as that when
the landslide data was collected, were used. For the meteorological data of 2011, three
indices were obtained through the modified Korea parameter–elevation regressions on
independent slopes model (MK-PRISM) v12 data provided by the Korea Meteorological
Administration (KMA). The MK-PRISMv12 data provided daily and monthly grid unit
weather information by combining the national automated synoptic observing system and
the automatic weather system network and downscaling the data a resolution of 1 km2

using the MK-PRISM method. The PRISM technology was developed by the Oregon State
University in the US and has been used in many areas [32,33]. In Korea, this technology
is being used since the late 2000s. By improving the PRISM technique, K-PRISM [34]
and MK-PRISM [35] were developed. The MK-PRISM method is weighted according to
altitude, slope direction, and ocean level, and is an improved methodology for analyzing
and predicting the climatic situation of Korea.

http://www.kma.go.kr/
http://www.forest.go.kr/
http://www.me.go.kr/
http://www.molit.go.kr/
http://www.rda.go.kr/
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The future period was selected as the years 2050 and 2092, for which the precipitation
intensity has been projected to be high in the RCP8.5 scenarios. Although the precipitation
intensity in 2011 in Korea was very high, even in the RCP8.5 scenarios for East Asia where
the precipitation increases, it did not exceed by this much amount in many years. Therefore,
a specific year with a high precipitation intensity was selected and applied. As a result of
analyzing the rainfall intensity for the entire 21st century by RCP8.5 scenarios, the years
that can represent the intensity of the middle and the end of the century are 2050 and 2092.
Among the downscaled climate models provided by KMA, HadGEM3-RA, which enables
an extreme climate simulation, was selected. HadGEM3-RA is a Korean regional climate
model of HadGEM2-AO GCM, and it has been most used in modeling the impact of climate
change in Korea.

2.2.3. Forest-Related Adaptive Indicators and Data

Forest-related adaptation indices can change depending on forest management and
policies, and we tried to select indices that are strongly related to the occurrence of land-
slides. In particular, we considered indicators that can be applied to achieve the numerical
plans targeted by the Korea’s sixth Basic Forest Plan (2018–2037) [36]. The five forest-related
adaptation indicators were selected based on the review results of previous studies such as
statistics on the decreasing number of landslides in national forests [37], the effect of forest
disaster prevention according to forest management conditions (forest roads, economic
forests, etc.) [38,39], the reduction of landslides the closer to the erosion control facility [40],
and the forest disasters decreased in national parks or protected areas. Forest ownership,
distance from forest road, economic forest utilization level, erosion control facilities, and
protection area were selected as the forest-related adaptation indicators based on the results
reported in previous studies (Tables 1 and 2, Figure 3).
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Table 2. Class criteria of forest-related adaptive indicators.

Input
Variable Class Criteria Input Variable Class Criteria

Owner

National Forest

Economic-F

Level 7
(Economic forest, national forest,

and near forest road)Public Forest
(Provincial and Town)

Others
(Private and etc)

Level 6
(Economic forest, national forest,

and far forest road)

F-road

>1 km

>2 km
Level 5

(Economic forest, public forest, and
near forest road)<2 km

Protect

National and
Provincial Park

Level 4
(Economic forest, public forest, and

far forest road)Forest protected area

Other protected area
Level 3

(Economic forest, other forest, and
near forest road)Non-protected area

Erosion-C

>1 km
Level 2

(Economic forest, other forest, and
far forest road)

Other Level 1
(Non-economic forest)
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In the case of forest ownership, only forest areas were extracted by collecting land
ownership information in Korea as spatial data, and these were classified into three classes:
national forests, provincial forests, and others (private forests, etc.), and subsequently
processed as input variables.
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For the distance from forest road, which was extracted from the Korean forest road
data, the distance from the forest road was calculated in meter using the Euclidean distance
method, graded according to the distance, and finally used as an input variable. It was
divided into areas within 1 and 2 km, and beyond.

The economic forest utilization level was designed in this study to spatialize the
concentration rate of the economic forest area, which is an industrial forest use area in
Korea. To design this indicator, the economic forest development area, forest ownership,
and distance from forest road were overlapped and divided into seven sections. The class
details are shown in Table 2.

The erosion control facilities indicator collected precise location information of in-
stalled erosion control facilities in Korea and classified them into forest areas with and
without erosion facilities. Here, the distance from the erosion facilities was calculated
in meter, and it was used as an input variable by dividing it into cases within 1 km and
others. However, since the landslide occurred in 2011, only data up to that point were
included, and the erosion control facilities installed after 2011 were used as the data for
future scenarios.

Protection area was classified into three categories by collecting geospatial information
on legally protected public areas in Korea. The “National and Provincial Park” for national
parks and parks designated by the local governments, “Other protected area” for conserva-
tion green areas, forest protection areas, and urban nature parks, and “Non-protected area”
for forest areas without any legal protection were used as the input variables.

2.2.4. Environmental Data

The environmental variables mainly used in existing studies on landslide occurrence
and forest disasters were employed in the present investigations [30,31]. Five variables
for topography, soil, and land use were used. For topography, elevation and topographic
wetness indices (TWI) were used (Table 1 and Figure 4). For elevation, the digital elevation
model (DEM) produced by the Korean Ministry of Land, Infrastructure and Transport was
resampled to the standard spatial resolution, extracted, and then used for the forest areas.
TWI is a topographical indicator of soil wetness and can be calculated using the DEM and
relevant equations [41]. For soil data, effective soil depth and soil drainage class, which
are strongly related to landslides, were used from the survey information obtained from
the soil environment information system of the rural development administration, Korea.
Land use was included according to the characteristics of landslides in Korea, where many
landslides occur in urban or adjacent developed areas. The forest areas are divided into
conifers, deciduous, and mixed forests, and the non-forest areas are divided into urban,
cropland, and water bodies. For land use data, the mid-class land cover map of 2013,
produced by the Korean Ministry of Environment, was used.
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3. Method
3.1. Random Forest for Assessing Landslide Probability

The Random Forest (RF) algorithm, which is a widely used machine learning technol-
ogy, was used to predict the landslide probability. The RF algorithm is based on ensemble
techniques for regression and classification using various decision trees [42,43]. This model
generates decision trees on several randomly selected bootstrap samples to obtain an esti-
mation from each tree, select a subset of explanatory variables at every node [43] and yield
the final result as the average of all trees [42].

In this study, the R packages (R core team, Vienna, Austria, http://www.R-project.org,
accessed on 11 July 2020) of “randomForest” and “sdm” were used to run the RF algo-
rithm [44]. The point shapefiles of the landslide occurrence data indicate the labeled data
for the RF model. Our model creates decision trees for the randomly selected 1500 bootstrap
samples from the labeled data of landslide probability to be predicted by each tree [45]. The
selected climate, environmental, and adaptive indicators were used as independent vari-
ables, and the absence points were randomly selected individual points across the country.

For evaluating the model performance, we partitioned the combined points into two
subsets: training and validation. We applied 70% of the landslide occurrence data for model
training, and the other 30% was used as the testing dataset. The prediction performance of
the model was evaluated by applying the most common threshold independent method,
i.e., the receiver operating characteristic (ROC) curve [25]. The area under the ROC curve
(AUC) is a recognized quantitative performance metric that explains the model accuracy.
An AUC value closer to 1 implies a higher prediction accuracy. These concepts have been
described in detail in the previously published reports [25,43,46,47].

The landslide probability value between 0 and 1 was classified into five classes of
risk [30]. For the classification, the predicted landslide probability was extracted from the
total landslide-occurrence location information, and 0.9095 or higher, which corresponds
to the top 50%, was classified as Very High. In addition, 0.7888 or higher, i.e., the top 80%
was classified as High, 0.7126 or higher meaning the upper 90% was classified as Medium,
and 0.5198 or higher meaning 90–100% was classified as Low. Below 0.5198, which was the
lowest value of the landslide point, was classified as Very Low.

3.2. Constructing an Adaptive Scenario Based on National Policy

In this study, the various goals to be achieved in the sixth Basic Forest Plan (2018–2037)
established by the Korea Forest Service were constructed using detailed scenarios and
applied to the machine learning model. Although this is basically a plan for forest man-
agement, it corresponds to adaptation in terms of climate change; therefore, herein, it is
referred to as an adaptation scenario. We derived the future information that underwent
changes according to the sixth Basic Forest Plan on the aforementioned five forest-related
adaptation variables and implemented it in the spatial data (Figure 3).

First, in the case of forest ownership, a scenario was designed to convert the points
that meet specific conditions into state land by considering the national forest expansion
plan (1.62–2.04 million ha) of the 6th Basic Forest Plan. The Basic Forest Plan also suggests
the nationalization of economic forests and protected areas. Therefore, in this study also,
the scenario of converting the economic forests or protected areas (that are not currently
national forests) to national forests was applied. Accordingly, the national forest area
14,074 km2, used as an input variable, was expanded to 18,022 km2. However, in the
process of converting the spatial units, forest areas made of small patches were lost or
merged into other owner areas, resulting in a slight deviation from the actual statistics.

In the case of distance from forest road, a scenario also was designed based on the sixth
Basic Forest Plan. For forest roads, the goal is to increase the density of forest roads, within
the economic forest area, from 4.8 to 12.8 m/ha. Therefore, in this study, the economic forest
development area was overlaid on the distance information obtained from the previously
classified forest road to minimize the area with low forest-road density within the economic
forest. Accordingly, the forest road grades of 1300 (economic and national forests far from

http://www.R-project.org
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the forest road) and 800 cells (economic forests and public forests far from forest road)
were upgraded.

In the case of economic forest utilization level, the increase in the concentration of
forestry projects in economic forests (60% to 90%) was reflected from the sixth Basic Forest
Plan. In this study, the economic forest utilization level was classified according to forest
ownership and distance from forest road. Therefore, this variable was designed to increase
the concentration of forestry projects with changes in the other two variables. In the
adaptation scenario, the highest level, Level 7, was increased from 3089 to 6801 km2.

The erosion control facilities proposed a policy to expand the management of areas
vulnerable to landslides from the current 21,000 to 90,000 locations in the sixth Basic Forest
Plan. To reflect this policy directive, we designed a scenario in which the erosion protection
facilities are expanded to areas where erosion protection facilities do not currently exist,
even in areas vulnerable to landslides. However, since in this study, the model learning is
performed using the 2011 landslide data, the erosion control facilities installed in 2011 were
included into the adaptation scenario. As a result, the forest area with erosion facilities
(12,181 km2) increased to 14,242 km2 after the adaptation scenario was applied.

In the sixth Basic Forest Plan, the forest protection area is set to be expanded from 427
to 500 ha. Accordingly, in this study as well, the protected areas were expanded. However,
it was difficult to predict the new designation of national and provincial parks, and thus,
the expansion of forest-related protected areas was applied. Based on this, among the areas
that are not currently designated as protected areas, the ecological nature grade 1 in the
national ecosystem and nature map, conservation forest in the forestry classified map, and
national forest areas were added as forest protection areas. Overall, a total of 1224 km2 of
protected areas were added.

4. Results and Discussion
4.1. Evaluation of Model Performance and Baseline Prediction

The landslide probability of the baseline period (2011) predicted using the RF model
was evaluated through AUC along with a spatially qualitative evaluation. The AUC value
of the landslide probability for the baseline period was 0.951. This AUC value and the ROC
curve revealed a relatively high statistical accuracy, considering the adaptive indicators, and
predicted at a 1 km spatial resolution on a national scale (Figure 5a). In terms of qualitative
evaluation, the baseline prediction accurately simulated major landslide-concentrated
areas such as Seoul and the southern coast (Figure 5c,d). In the national distribution of
landslide probability, the actual risk areas were excellently simulated. However, some
small-scale landslide occurrence areas were not well reflected, which can be understood
as an overfitting issue that is a structural limitation of RF. Nevertheless, macroscopically,
the validity of the future forecast could be confirmed by predicting the major risk areas.
Considering the five stages of the landslide risks, Very Low (81.3%) was observed for a
very large area, but Very High (1.8%) was also reflected for a relatively larger area (Table 4).
A detailed forecast was made based on the actual landslide occurrence area.

In the analysis of the importance of the 13 variables used to predict the landslide
probability, the proportion of climatic factors was very high (Table 3). In particular, MX5D
showed more than 33% importance and was found to be the most influential factor. The
climate factor alone showing an importance of 51% indicates that the extreme climate
was the largest factor that caused the landslides in 2011. The forest-related adaptive
indicators were also found to have an influence of more than 20%, implying that if forest-
related adaptation is done well, then the risk can be lowered by 20%. Moreover, the
geo-environmental factors such as soil and topography that do not change significantly
over time contributed approximately 27% to the landslide risk.
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diction result and overlaying occurrence data, (c) close-up view of the main hazardous region—Seoul,
(d) close-up view of the main hazardous region—southern coastal region, and (e) result of landslide
probability prediction.

4.2. Assessing Climate Change Impact on Landslide Risk

As a result of the prediction of landslides in 2050 according to the RCP8.5 scenario,
it was predicted that the risk would be similar to that in 2011, i.e., the baseline period.
High risk was shown in the southern coastal area and the northern part of the metropolitan
area, and a high-risk area was predicted locally (Figure 6a). The Very High risk area
decreased compared to that in 2011, whereas the High, Medium, and Low risk areas
increased (Table 4). In the input data, R80 in 2050 increased from that in the baseline period.
However, it was considered that similar levels were reflected in the regions with high SDII
and MX5D (Figure 2).

For 2092, the overall rainfall intensity increased significantly, resulting in a wide
landslide risk area. Very High and High risk areas were found in various regions such as the
southern coast, central mountains, metropolitan area, and east coast (Figure 7a). Compared
to the baseline, the Very High risk area also increased, the High risk area increased by
approximately four times, and the Medium and Low risk areas also showed an overall
increase (Table 4). As a result, the Very Low risk area, which was 49,769 km2 at the baseline,
was reduced by almost half to 26,997 km2. This can be seen as a change that occurred
as the precipitation indices predicted for 2092 showed extreme values. R80 exhibited a
significant overall increase, and MX5D also showed a very high value, indicating a wide
distribution of the extreme rainfall area than that in 2050 (Figure 2). Although national
disasters occurred in 2011, the current results showed that more climate disasters may
occur in 2050 and 2092.
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Table 3. Importance of variables used in baseline prediction.

Variables Variable Importance (%)

Climate Indicator

MX5D 33.17

R80 8.40

SDII 10.31

Forest-related Adaptation
Indicator

Owner 6.70

F-road 2.40

Economic-F 2.86

Erosion-C 6.33

Protect 2.44

Environmental Indicator
(Uncontrollable)

Elev 11.97

TWI 7.24

S-depth 2.35

S-drain 1.91

LC 3.93
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Table 4. Landslide probability distribution of each scenario.

Landslide
Probability 2011

2050
Climate
Scenario

2050
Climate and
Adaptation

Scenario

2092
Climate
Scenario

2092
Climate and
Adaptation

Scenario

Very High 1080 836 435 1310 390

High 2507 2788 2395 9921 8163

Medium 1821 2550 2171 7909 7521

Low 6064 9645 9004 15,104 15,525

Very Low 49,769 45,422 47,237 26,997 29,642
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4.3. Assessing Landslide Risk under Climate and Adaptive Scenarios

As a result of predicting the landslide probability by adding the adaptation scenario
to the future climate scenario, the decrease in the Very High risk area was remarkable.
However, the application of the forest-related adaptive scenario in 2050 did not show any
significant difference at the national scale, although a detailed regional difference was
confirmed (Figure 6b). In particular, numerically by grade, the probability decreased in all
the grades except Very Low and showed the largest decrease (48%) in Very High.

Even the application of the adaptation scenario to the climate change expected in 2092
showed no remarkable results at the national scale. Nevertheless, a large sub-regional
difference was observed; furthermore, a significant effect was found in the areas where
rainfall intensity was traditionally strong and the risk of disaster was high, such as the
southern coast or metropolitan area (Figure 7b). In particular, the Very High risk area was
significantly decreased, and when only climate change was applied, it became 1310 km2.
Furthermore, the Very High risk area decreased by more than 70% to 390 km2 (Table 4).
For 2050, the area decreased in all the grades except Very Low, and the High risk area was
also reduced by 1758 km2.

As a result of a close-up analysis of the major regions in the 2092 projected results,
it was confirmed that the risk grade decreased significantly in Gangnam, Seoul, and
Gyeonggi regions, which were heavily damaged by the landslides in 2011 (Figure 8(A1,A2)).
In addition, it was confirmed that the Very High and High risk areas disappeared even in
the southern coast, where traditionally localized heavy rains occur owing to topographical
rainfall (Figure 8(B1,B2)). This implies that risk reduction was implemented in the detailed
regions where forest-related adaptation was realized. When only the Very High, High, and
Medium sections, indicating 90% of the landslide probability, were analyzed separately, the
effect of adaptation was more pronounced (Figure 9). The adaptive effect of each period
was visually confirmed through a bar plot, which showed that the adaptive effect in 2092
was more than double that in 2050. This suggests that even with the same adaptive capacity,
a stronger disaster causes a significant adaptive effect. Numerical disaster reduction was
confirmed in all the results reflecting adaptation. This implies the potential advantages to
have significant spatial and numerical effects to respond to climate change.
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Figure 8. Close-up image of the highlighted region for comparing adaptation in 2092: (A1) only cli-
mate change applied in Seoul metropolitan region; (A2) applied with adaptation in Seoul metropolitan
region; (B1) applied only climate change in the southern coastal region; (B2) applied with adaptation
in the southern coastal region.

Although the forest-related adaptive indicators exhibit limitations in reducing the risk
of a wide range of landslides, they can effectively reduce the Very High or High risk areas
by increasing the local adaptability. Even with the same adaptation scenario applied in
2050 and 2092, the significant effect in 2092 can be explained by the increase in disaster
intensity, which enhanced the effect of adaptation.
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4.4. Implication of Forest-Related Adaptive Capacity in Climate Change

Through this study, we could confirm the effect of adaptive capacity in response to
climate change through future changes in forest-related adaptive indicators. The increase
in forest-related adaptive capacity at two future time points commonly reduced the risk
area and had a significant effect in the Very High risk area. Although it was not a dramatic
change, it suggested that an effective response would be possible by improving the local
adaptation factors centered on landslide risk areas. Thus, we quantitatively predicted that
adaptation through forest management is an effective way to reduce climate disasters in
the face of accelerating climate change, despite global efforts to be carbon neutral and to
reduce greenhouse gases. In addition, although forest management basically contributes to
the enhancement of carbon sequestration in forests, the results of this study suggest that it
can also be effective in reducing disasters. Through our study, we confirmed the adaptation
and mitigation co-benefits of forest management in terms of responding to climate change.

The reported landslide probability predictions were focused on environmental vari-
ables such as topography and precipitation, which have a large influence on the occurrence.
However, these are uncontrollable variables, and the role of society and policy could not
be confirmed [48,49]. There were difficulties in reflecting policy variables in the proba-
bilistic model because work such as quantification and spatialization of policies must be
preceded [18,50,51]. In this study, we were able to make full use of the available spatial
data and converted the future policies into data through rational classification. In recent
times when the importance of adaptation to climate change is increasing [52], predicting the
landslide probability by reflecting forest-related adaptation indicators that can contribute
to the reduction of landslide occurrence in the present time is timely and crucial.

Due to the utilization of the advantages of the machine learning model, it was possible
to reflect the adaptive indicators in the probability model. The model, by learning the
spatialized forest adaptation indicators together with the machine learning model that
learns the location information of landslides that occurred during heavy rain as well as the
geographic and environmental characteristics of the region, could simulate the adaptation
effect. The grafting of spatialized adaptive variables to a machine learning model with a
high degree of freedom of variables was effective [53]. This form can be used in various
fields in the future, as an approach to evaluate the effectiveness of policies in reducing the
risk of climate change and natural disasters.
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In this study, Korea’s sixth Basic Forest Plan was treated as a major adaptation policy,
and the directions and numeric values presented in the plan were spatialized and applied
to the model. Compared to the established plan, the adaptive scenario applied in this study
implemented a passive change. This adaptive scenario was designed in consideration of the
reality that can be implemented in Korea. Since the process of changing land ownership or
opening a new forest road cannot be drastic, we predicted the change from a conservative
point of view. If it is applied in real society as much as the actual plan in the future,
greater benefits than the adaptation effect explored in this study will be achieved. Most
of the adaptive indicators applied in this study were components highly related to forest
management. This was indexed from the perspectives that forest management activities
can contribute to the reduction of forest disasters, and the outcomes suggested that these
indicators can actually have an impact. Although forest management is mainly dealt with
from the point of view of enhancing carbon sinks, this study was able to confirm again that
it is effective in reducing forest disasters. According to our result, the higher forest road
density and the more active forestry industries are the fewer landslides occur, therefore
such synergy can greatly contribute to the promotion of policy-based forest management
activities in the future. Ultimately, it is significant in the era of the climate crisis and carbon
neutral that forest management can have co-benefits in the two main components of climate
change, adaptation and mitigation.

4.5. Limitations and Recommendations

The future scenarios of forest-related adaptation indicators presented in in this paper
have various implications as well as limitations. Similar previous reported cases in terms
of variable selection are scarce; thus, a subjective selection was performed owing to the
limitations of spatializable variables. In addition, a limited classification system such as
the classification of some variables into 2–3 classes may influence the simulation of the
adaptation effect and result in underestimation or overestimation.

Since this study was a new attempt to spatialize adaptation policies to learn and
evaluate the effects using artificial intelligence, it is expected that numerous follow-up
studies will complement the limitations of this study. In particular, it is necessary to deal
with the process of spatialization and future scenarioization of non-spatial data such as
adaptation policies and technologies from a more technical point of view. More realistic
results will be possible if each element is spatially scenarioization and learned in artificial
intelligence using more rational techniques such as probabilistic spatialization technology.
In addition, an algorithm design that can perform more high-accuracy prediction while
learning more landslide cases is also required. If the amount of learning increases, it can
be advanced through deep learning techniques. Besides, if a new climate change scenario
based on CMIP6 (Coupled Model Intercomparison project Phase 6) that has been recently
released and used is applied, the degree of results may vary. Moreover, the development
and application of adaptive scenarios including concepts such as nature-based solutions,
natural climate solutions, and climate-resilient adaptation, which have been emphasized
recently, are also expected in the future. In the long term, it is necessary to prepare a
conceptual and technical system that can spatialize policies or plans and use them for
machine learning.

5. Conclusions

A thorough spatial modeling approach for assessing landslide probability and adap-
tive drivers was employed to obtain an improved understanding of landslide risk in the
future climate and broaden the perspective on risk reduction. In this study, we attempted
to evaluate the extent to which adaptive capacity can reduce the occurrence of landslides
by adding an adaptation factor to the variables that have been used to predict landslide
probability. The changes in landslide probability under a past and future climate and
the adaptive scenarios were estimated through an RF model, which is a representative
machine learning tool. The RF model estimated the landslide probability in the baseline
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period with excellent prediction performance, and the spatial adaptation indicators used
in this study contributed approximately 20%. The predicted future landslide risk for 2050
showed no significant difference from that observed in 2011; however, a very high level of
landslide risk was predicted for the year 2092. In particular, the Very High and High risk
areas increased significantly. As a result of applying the forest-related adaptation indices
based on the policy scenario, the areas at risk of landslides decreased, although differences
according to time and region were observed. For 2050, the effect was not pronounced, but
for 2092, when the risk of landslides was predicted to be much higher, the effect increased
significantly. In particular, the effect was remarkable in the Seoul metropolitan region and
southern coastal region. Even with the same adaptive capacity, it exerted a greater effect
on the enhanced disasters. Our results suggest that the enhancement of adaptive capacity
can reduce landslide risk up to 70% in a Very High risk region. In conclusion, it implies
an importance to respond to the intensifying climate disasters, and abundant follow-up
studies are expected to appear in the future. In particular, we anticipate technological
advances in spatialization technology and in designing adaptive scenarios. However, the
forest-related adaptive capacity in this study was spatialized to a level that achieved a part
of Korea’s Basic Forest Plan, and a significant effect can be expected when this plan is more
actively implemented in the future.
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