
Citation: Trzciński, G. Bearing

Capacity of Forest Roads on

Poor-Bearing Road Subgrades

following Six Years of Use. Forests

2022, 13, 1888. https://doi.org/

10.3390/f13111888

Academic Editor: Stefano Grigolato

Received: 26 September 2022

Accepted: 8 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Bearing Capacity of Forest Roads on Poor-Bearing Road
Subgrades following Six Years of Use
Grzegorz Trzciński
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Abstract: The research was conducted on a forest road on the territory of the State Forests in Poland,
in the Brzeziny Forest District, where eight test sections with a total length of 422 m were created
with different pavement system on a low-bearing soil substrate (clay, silt loam) as part of the road
reconstruction in 2016. The bearing capacity of the pavement was evaluated based on the static strain
modulus ME MN·m−2 by measuring with a statistic plate (VSS), the dynamic deformation modulus
Evd MN·m−2 obtained from lightweight deflectometer measurements, and the elastic deflection of
the pavement Us mm evaluated from Benkelaman beam measurements. It has been shown that
pavements made of crushed aggregate and common gravel on timber roller substructure maintain
good bearing capacity parameters, where the average values of secondary modulus of strain are
above 130 MN·m−2, and in the case of pine rollers, this modulus has increased. Pavements on low-
bearing soils reinforced with willow brushwood mattresses have low bearing capacity parameters,
with averages of 26.09 ≤ MEII ≤ 53.93 and 22.1 ≤ Evd ≤ 39.1 MN·m−2, but the technical condition of
the pavement makes it possible to continue carrying out forestry-related transportation. The research
confirms the possibility of reinforcing soils with poor bearing capacity with wooden rollers, and in
the case of willow mats for roads with light truck movements.

Keywords: VSS measurements; lightweight deflectometer Evd; pavement of road; subgrade rein-
forced with timber logs; willow brushwood mattresses

1. Introduction

Forest roads ensure the proper functioning of forest management [1,2] with their
specific conditions of use, designed in a similar or different way than public roads [3–5].

The construction of forest road surfaces on weak roadbeds requires reinforcement in
order to obtain the load-bearing parameters of the entire road structure to allow forestry-
related transportation, regardless of weather conditions, especially roundwood transport by
heavyweight vehicles [6–9]. This is all the more important when dealing with overloaded
round wood transport sets above the permissible gross weight [10–13], or to improve the
efficiency of wood transport, increasingly heavier transport sets are allowed [14–16].

Pavement elements are subjected to loads by the movement of vehicle wheels, which
induce vertical, horizontal and shear stresses that contribute to the deformation of the
road structure [6,7,17–20]. The load-bearing capacity and durability of road structures
and pavements are influenced by many factors, among which the most common are the
parameters of the materials used, water and moisture conditions of the road body, design
solutions and the road bed [3,8,21–24]. Particular attention is paid to the importance of
road base parameters on the load-bearing capacity of forest roads [6–8,25,26].

The main aspect described in studies of the technical condition of forest roads is their
load-bearing capacity [5–9,25–28], the damage that occurs (ruts, potholes) [3,5] and the
parameters of the road body [3,8]. Studies also analyze the effects of aggregate degra-
dation [29] and hydrological occurrences [30], as well as the possibility of using various

Forests 2022, 13, 1888. https://doi.org/10.3390/f13111888 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f13111888
https://doi.org/10.3390/f13111888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-7734-6913
https://doi.org/10.3390/f13111888
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f13111888?type=check_update&version=1


Forests 2022, 13, 1888 2 of 16

measurement methods to assess the technical condition of roads [5,31–33]. Measurements
of the technical condition of forest roads often use equipment used in public roads [34–36].

The method of reinforcing road surfaces with wooden rollers or willow brushwood
mats was known much earlier than the use of geosynthetics [37,38], and it was also used
in the State Forest Districts of Poland’s State Forests [39,40]. The variety of solutions used
(sometimes incidental) for reinforcing with wooden rollers and willow mats on forest roads
in forest districts contributed to the development of construction solutions and the building
of experimental sections of forest roads in 2016 [39].

The aim of the study is to confirm the suitability of the applied low-bearing soil rein-
forcements with wooden rollers and willow mats on forest roads made in 2016. Obtaining
positive results of the technical condition of the roads and good load-bearing parame-
ters of the pavement will confirm the possibility of using such road structures on weak
road substrates.

The research hypothesis was that the load-bearing capacity and pavement structure
of forest roads on low-bearing soils reinforced with wooden rollers or willow brushwood
mats would not significantly deteriorate after several years of use, and the condition of the
pavement would allow the road to continue to be used for forest management.

The following issues were considered in the study:

(1) Analysis of pavement bearing capacity under static loading (VSS statistic plate and
dynamic plate);

(2) Analysis of pavement deflections under dynamic loading with a Benkelman beam;
(3) Analysis of the loading of the road with heavy traffic (round wood transport);
(4) Comparison of the obtained results with the original data.

2. Materials and Methods
2.1. The Analyzed Section of the Forest Road

The research was conducted on a forest road on the territory of the Polish State Forests
in the Brzeziny Forest District, Wiączyń forest complex, along the forest units 164/170
(GPS 51.790048880716434, 19.65544477298789–51.78323823685908, 19.647842602109776).
The road is the main route for the entire forest complex with the habitat type of fresh forest,
with an area of 975.71 ha covering 39 forest units. The road provides a connection between
the national road No. 72 in very close proximity to the A1 highway and junction No. 21
‘Brzeziny’ and the local road. The area is dominated by deciduous stands (birch—Betula
pendula L., hornbeam—Carpinus betulus L., oak—Quercus robur L.) and pine trees over
60 years old and older (even over 100 years old). Research sections with different surface
structures were created as part of the 2016 road reconstruction on a 422 m section. Eight test
sections were carried out on a road with subsoil on low-bearing soils (clayey dust, clayey
sands, clays) classified in the weakest group of bearing capacity of road subsoils.

The proposed road is a single, one-lane road with a width of 3.5 m, in both directions
and shoulders.

The road sections were built specifically for the research project funded by the Polish
State Forest Service, General Directorate of State Forests in Poland, grant number DGLP
ER-0333-1/14. The pavement system was designed using crushed aggregates, 0/31.5 mm
grain size and sand–gravel mix on a sub-base reinforced with wood rollers (pine or oak)
and willow mats. Different variants of the pavement design of the applied rollers and
willow mats with aggregate for the pavement were provided to study the impact on the
technical parameters of the road and technological aspects, as shown in Table 1. A reference
road section without road base reinforcement (Bzw) was carried out only with the profiling
of the existing pavement and a new layer of aggregate (Table 1). We used pine and oak
logs, mats made of willow and mats with a reinforced structure (timber poles placed in the
middle of the mat) using different aggregates (Figures 1 and 2).
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Table 1. Pavement construction in the research sections.

Symbol of Road
Section

Chainage of the
Road Section Description of Pavement System *

A1 0 + 010 ÷ 0 + 050 180 mm quarry aggregate 0/31.5 mm, 200 mm drainage layer of coarse sand CSa,
subgrade reinforced with oak timber logs φ 120 ÷ 180 mm filled with sand

A2 0 + 050 ÷ 0 + 092 200 mm sand–gravel mix 0/31.5 mm, 200 mm drainage layer of coarse sand CSa,
subgrade reinforced with oak timber logs φ 120 ÷ 180 mm filled with sand

B1 0 + 285 ÷ 0 + 320 180 mm quarry aggregate 0/31.5 mm, 200 mm drainage layer of coarse sand CSa,
subgrade reinforced with pine timber logs φ 120 ÷ 180 mm filled with sand

B2 0 + 250 ÷ 0 + 285 200 mm sand–gravel mix 0/31.5 mm, 200 mm drainage layer of coarse sand CSa,
subgrade reinforced with pine timber logs φ 120 ÷ 180 mm filled with sand

C1 0 + 320 ÷ 0 + 350 180 mm quarry aggregate 0/31.5 mm, 120 mm drainage layer of coarse sand CSa,
subgrade reinforced with 200 mm thick 2.0 × 2.0 m willow brushwood mattresses

C2 0 + 350 ÷ 0 + 375
180 mm sand–gravel mix 0/31.5 mm, 120 mm drainage layer of coarse sand CSa,

Subgrade reinforced with 200 mm thick 2.0 × 2.0 m willow brushwood mattresses
strengthened with timber logs

C3 0 + 375 ÷ 400
100 mm sand–gravel mix 0/31.5 mm, 160 mm sand–gravel mix 0/63 mm, 400 g·m−2

geotextile, alignment layer 50 mm of sand, subgrade reinforced with 200 mm thick
2.0 × 2.0 m willow brushwood mattresses

Bzw 0 + 092 ÷ 0 + 250 120 mm quarry aggregate 0/31.5 mm, existing pavement profiled and thickened

* Prepared on the basis of the technical design of the reconstruction of the forest road.

According to data from the road manager (State Forest District), only as part of
warranty repairs before the end of the three-year warranty period (September 2019), road
leveling was performed on the study sections, with the 0 + 092 ÷ 0 + 175 m section without
reinforcements (Bzw) of the 0/31.5 mm aggregate brought in, and no road work was
performed on the other sections.

Based on data from the State Forest District and consultations with the Forester
of the Wiączyń Forestry District, it was evaluated that, on the analyzed section, round
wood is transported from forestry units 154–172 of the Wiączyń forest complex. In 2017–
2022, a total of 3701 m3 of wood was harvested from the above-mentioned units, which
amounts to 617 m3 per year. Assuming an average volume of a single load of about
29.0 m3 of timber [12,41], we obtain a total of almost 128 transports with round wood, and
21 transports per year. The studied road section is characterized by a low traffic load of
high-tonnage wood transport sets.
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2.2. Methods for Determining the Bearing Capacity of Forest Road Surfaces

The ability of the tested pavements to absorb loads from vehicle wheels was evaluated
by the static modulus of deformation ME evaluated by measuring with a VSS MN·m−2

plate, the dynamic deformation modulus Evd MN·m−2 obtained from lightweight deflec-
tometer measurements, and the elastic deflection of the pavement Us mm evaluated from
Benkelaman beam measurements. The compacted state of the pavement was evaluated by
the deformation index I0 (also known as the compaction index).

Measurements in 2016 were performed as part of the acceptance of road works in
accordance with the “Technical Specification for the Execution and Acceptance of Works”,
the number of repetitions of which was much smaller than those obtained in 2022.

2.2.1. Determination of Static Modulus of Deformation—Measurements with a VSS Plate

The measure of pavement bearing capacity is the ME strain modulus, defined as the
ratio of the unit load increment to the strain increment of the tested surface over a fixed
range of unit loads multiplied by the diameter of the loading plate [42]. The determination
of the pavement’s modulus of deformation ME was conducted using a 300 mm diameter
VSS plate with settlement measurements at one center point of the plate [43,44] at unit
loads up to 0.55 MN·m−2, and ME was calculated according to Formula No. 1 for a unit
load range of 0.25 ÷ 0.35 MN·m−2 [42–46]. Measurements were performed with a VSS
plate cooperating with a Benkelman beam with electronic recording of the results, and
high-tonnage vehicles were used as counterweights. A load of up to 0.55 MN·m−2 was
assumed, since the entire pavement system was tested, not individual structural layers [9].

ME =
3∆p
4∆s

D (1)

where: ∆p—pressure differential [MN·m−2], ∆s—settlement increment corresponding to
the pressure difference [mm], D—plate diameter [mm].

VSS plate loading measurements were taken in duplicate at the same point to deter-
mine the magnitude of the primary strain modulus MEI and secondary strain modulus MEII.
On each section, at least three primary-load strain measurements and three secondary-load
measurements were taken at the points that were tested in 2016 with the VSS plate on
the road surface on which the wheels of vehicles moved (left and right ruts), as well as a
measurement in the centerline of the road. VSS plate measurements were obtained in two
rounds, taking measurements in the wheel tracks of vehicles on the left and right sides of
the road (left and right ruts, three measurements each) and a control measurement in the
axis of the road. A total of 56 measurements were obtained with the VSS plate and static
strain modulus (primary and secondary) was calculated from them.
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2.2.2. Determination of Dynamic Modulus of Deformation—Lightweight
Deflectometer Measurement

The dynamic modulus of strain was evaluated with a lightweight dynamic plate
weighing 10 kg. The measurement starts with a preload, where the load is dropped
three times, followed by the actual measurement, where the recording device gives the
finished result of the Evd modulus in MN·m−2. The measurement was made at the same
road sections and points (left/right side and road axis) as the VSS plate. At least three
proper measurements were taken at each point in each series of measurements [47]. A
total of 383 measurements were made with the dynamic plate. The first 45 measurements
of determining the dynamic modulus (with the dynamic plate) were carried out by the
“Classification and Inspection Road Laboratory” from Łódź (a certified laboratory).

2.2.3. Determination of Elastic Deflection—Benkelman Beam Measurement

The value of elastic deflection Us [mm] was calculated as the doubled difference
between the deflection of the loaded pavement and the deflection after the pavement was
fully unloaded [48]. Measurements of the deflection of the pavement, with a Benkelman
beam deflectometer, were carried out in accordance with the standard [48] according to
the variant I—load at descent, and then the elastic deflection was calculated according to
Formula (2).

Us = 2(C0 − C) [mm] (2)

where: C0—reading under load [mm], C—unloading reading [mm].
Over the entire length of the experimental sections of the forest road, deflection

measurements were taken between the twin wheels of the rear axle of the transport vehicle
(on the rutted surface of the pavement), with a spacing of 6 m between points so that the
truck could drive off to the desired distance according to the standard. From the results
obtained, the average elastic deflection for the test section and the reliable deflection will
be calculated according to Formula (3) [49].

Um = Uavg + 2Su [mm] (3)

where: Um—reliable elastic deflection, Uavg—the average elastic deflection for a given
homogeneous section, Su—standard deviation of deflections for homogeneous section.

A total of 287 deflection measurements were taken with a Benkelman beam deflection
meter. For each section (depending on the length) there were at least 10 measurements in
the wheel tracks on the left and right sides of the road.

2.2.4. Determination of Deformation Index I0

The deformation index I0 was calculated as the ratio of the secondary strain modulus
to the primary strain modulus according to Formula (4).

I0 =
MEII
MEI

(4)

where: MEI—static primary strain modulus [MN·m−2], MEII—secondary static modulus of
strain [MN·m−2].

2.3. Analysis of Measurement Results

First, an analysis of the results of measurements obtained in 2022 will be presented.
Then, a comparative analysis of the obtained strain modulus and strain rate will be carried
out between groups of pavements, as well as between the results obtained in subsequent
test periods (after the construction of the sections—measurements from 2016 and now 2022).
The secondary modulus of strain evaluated after the second load [42,49,50] was adopted
for comparative analyses of the load capacity of the tested pavements. In order to analyze
in detail the behavior of the pavement system in each section, the analyses of the results
from the measurements in the right and left ruts and the road axis are presented, and the
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average values were used for comparison with the 2016 data. Comparative analyses will
be performed for the average results (ME, Evd, I0, Us) of the measurements on a particular
section and in a given year. Statistical analyses and characterizations (mean, mean ± Std.
error, mean ± 1.96·Std. error, outliers) of the results were performed using STATISTICA 12.

3. Results
3.1. Bearing Capacity of the Pavement on the Research Sections from Measurements in 2022
3.1.1. Static Strain Modulus Values from Measurements Taken in 2022

Taking 56 complete deflection measurements with the VSS plate allowed the calcu-
lation of primary and secondary modules of deformation according to Formula (1). The
obtained values of primary and secondary modules of deformation differ between sections,
as well as on the same section, measurement on the right and left side of the road and in
the axis (Table 2).

Table 2. Values of static modulus of primary and secondary deformation for the tested pavements.

Section Road Side

Value of Static Strain Modulus [MN·m−2]

Primary Secondary

Mean
Range of Results In the Road

Axis
Mean

Range of Results In the Road
AxisMin. Max. Min. Max.

A1
Left 95.03 62.50 150.00

39.47
203.53 173.08 250.00

160.71
Right 48.58 34.62 56.25 135.42 125.00 140.63

A2
Left 70.95 59.21 83.33

30.41
157.05 125.00 173.08

90.00
Right 52.83 44.12 60.81 121.50 107.14 132.25

B1
Left 52.08 46.88 62.50

56.25
144.12 112.50 187.50

132.35
Right 75.72 70.31 86.54 146.09 118.42 187.50

B2
Left 77.65 75.00 80.36

60.81
138.54 125.00 150.00

118.42
Right 75.90 66.18 86.54 145.26 140.63 150.00

C1
Left 25.95 23.44 28.85

17.44
44.32 38.14 48.91

40.18
Right 28.02 23.44 32.14 45.06 40.18 50.00

C2
Left 24.54 24.32 27.44

22.96
47.44 42.45 54.88

56.25
Right 37.12 30.41 47.87 59.65 53.57 66.18

C3
Left 23.60 22.50 24.73

16.19
34.52 30.00 39.47

35.71
Right 20.80 17.31 25.00 37.21 32.14 46.88

Bzw
Left 69.68 62.50 80.36

72.58
132.52 118.42 160.71

118.42
Right 65.17 52.33 75.00 141.67 112.50 187.50

The values of average primary strain modules range from a minimum of 20.80 MN·m−2

(section C3, right side) to a maximum of 95.03 MN·m−2 (A1, left side) with a range of
all results from 16.19 MN·m−2 (C3 road centerline) to 150 MN·m−2 (A1). The smallest
differences in primary strain modules values are observed for section B2 and for the given
section and between sections C1, C2 and C3.

The average secondary modulus of strain for the tested pavements ranges from a
minimum of 34.52 MN·m−2 (C3 left side) to a maximum of 203.53 MN·m−2 (A1 left side)
with a range of results from 32.14 MN·m−2 (C3 left side) to 250 MN·m−2 (A1 left side). The
pavement on sections B1 and B2 has good load-bearing capacities with small differences,
while on sections A1 and A2, there are good load-bearing capacities but there are differences
between measurement points (especially A1 left/right side, and on A2 in the axis of the
road). The obtained average secondary modules of 135.42 ÷ 203.53 MN·m−2 for roller-
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reinforced pavements (sections A1 and A2, and B1 and B2) are satisfactory, and in most of
the measurements reached values above 120 MN·m−2, only the measurement on section
B1 with minimum values of 115–118 MN·m−2 are slightly smaller. The obtained results of
secondary modules for pavement reinforced with willow mats, regardless of the aggregate
used and the additional reinforcement of the mats, in the range of 30.00 ÷ 66.18 MN·m−2

are low and do not meet the requirements even for light transports (Table 2).

3.1.2. Evd Dynamic Strain Modulus from 2022 Measurements

The values of dynamic modules, like static modules, are different for each research
section as well as on the same section but at a different measurement point (picket, left/right
side or road axis). The values of the obtained dynamic modules are shown in Table 3, and
the statistical characteristics are shown in Figure 3. The largest 75 MN·m−2 average Evd
values were obtained for the A1 section with crushed aggregate pavement on an oak roller
substructure, whereas the values for the left and right-side measurements coincide. Similar
to static modules, the smallest average Evd values of 19.63–39.04 MN·m−2 were achieved
for sections with willow mats (C1, C2, C3).

Table 3. Evd MN·m−2 dynamic strain modules values for the tested pavements.

Section

Values of Dynamic Strain Modules Evd MN·m−2

Road Side Mean
Range of Results

Min. Max.

A1

Left 75.12 46.90 102.74

Right 75.68 57.11 99.56

Road axis 45.94 24.06 68.81

A2

Left 61.48 46.68 72.35

Right 62.94 54.50 78.40

Road axis 38.38 31.40 45.64

B1

Left 56.15 41.44 75.50

Right 68.62 50.20 85.88

Road axis 36.75 18.91 46.58

B2

Left 59.03 33.33 75.25

Right 61.73 50.00 76.01

Road axis 38.35 21.63 52.45

C1

Left 37.36 21.57 47.77

Right 39.04 26.72 54.61

Road axis 26.14 19.18 33.65

C2

Left 27.89 15.55 48.00

Right 31.31 23.27 48.91

Road axis 24.59 15.69 34.04

C3

Left 19.63 13.98 29.30

Right 23.04 14.28 38.20

Road axis 23.21 14.51 35.71

Bzw

Left 42.76 22.27 65.79

Right 47.29 28.37 81.52

Road axis 36.00 19.50 68.39
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Figure 3. Statistical characteristics of Evd dynamic strain modules from year 2022 measurements.

The value of average dynamic modules Evd in the road axis for most pavements except
section C3 is significantly smaller than those obtained in the wheel track (Figure 3).

3.1.3. Analysis of Elastic Deflection and Measured Pavement Deflection

The reliable deflection was then calculated, and a summary of the results for each
test section is shown in Table 4 The reference section (Bzw) without reinforcements in the
substructure (the longest section) had the most measurements of elastic deflections, with
almost identical results for the left and right sides at 1.64–4.50 mm.

Table 4. The values of elastic and measured deflection for the tested pavements.

Section Road Side
Value of Elastic Deflection [mm] Number of

MeasurementsMean Min. Max. Reliable

A1
Left 1.65 1.22 2.12 2.18 16

Right 1.83 1.20 2.22 2.44 16

A2
Left 2.03 1.54 2.30 2.45 16

Right 2.43 1.42 3.34 3.52 16

B1
Left 2.27 1.82 3.14 3.07 13

Right 2.25 1.70 2.76 2.84 13

B2
Left 2.24 1.02 3.12 3.60 13

Right 2.34 1.58 3.34 3.28 13

C1
Left 2.85 1.98 3.98 4.13 13

Right 6.19 4.32 7.74 7.90 13

C2
Left 5.97 2.72 8.22 9.43 12

Right 4.81 3.72 6.22 6.58 12

C3
Left 7.81 6.44 10.68 10.78 11

Right 7.89 7.36 8.70 8.75 11

Bzw
Left 2.60 1.72 4.50 3.93 44

Right 2.64 1.64 4.34 3.82 55

The values (mean, min, max.) of the elastic deflections as well as the reliable deflection
measured on the right and left sides for the pavement on the timber roller substructure
are similar (Figure 4). The values of average elastic deflections on sections A1–B2 are in
the range of 1.65–2.43. The reliable deflection calculated for the left and right sides of the
road on sections on the substructure of willow mats differ significantly, which indicates a
large discrepancy of the results (significant standard deviation) and that with the use of
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combined mats (Figure 2), there is uneven settlement of the pavement under load. The
pavements on the willow mats substructure have large average elastic deflections in the
range of 2.85–7.89 mm and measured deflections of 4.13–10.78 mm.
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3.2. Pavement Deformation Index I0

According to the formula for I0 (Formula (4)), for 56 primary and secondary strain
modules of pavements, the strain rate was calculated, and its minimum and maximum
values obtained for the test section are shown in Table 5.

Table 5. Pavement deformation index I0.

Section Road Side
Pavement Deformation Index I0

Average Min. Max. Road Axis

A1
Left 2.54 1.25 4.00

4.07
Right 2.95 2.28 4.06

A2
Left 2.26 1.78 2.92

2.96
Right 2.32 2.06 2.47

B1
Left 2.74 2.40 3.00

2.35
Right 1.91 1.68 2.17

B2
Left 1.79 1.61 2.00

1.95
Right 1.93 1.73 2.13

C1
Left 1.71 1.59 1.91

2.30
Right 1.62 1.40 1.76

C2
Left 1.93 1.85 2.00

2.45
Right 1.64 1.38 1.79

C3
Left 1.46 1.33 1.60

2.21
Right 1.79 1.62 1.88

Bzw
Left 1.89 1.79 2.00

1.63
Right 2.16 1.83 2.50

The obtained minimum values of strain rates of 1.25 ÷ 2.06 (for section A1 left side and
A2 right side of the road) in most of the pavements, except for section A1 (right side) and B1
measurement on the left side, meet the stipulated condition for I0, and the maximum values
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of 1.60 ÷ 4.06 for the results from measurements on sections A1 and A2 and B1 (left) are
higher than acceptable. For 11 cycles of measurements on sections A and B with shafts (road
section and measurement point left/right side), I0 values greater than 2.2 were obtained,
with secondary strain modules at good levels on more than one occasion. Good values of
I0 and MEII were obtained for pavements made of interbedded sand (0/31.5 mm) on a pine
roller foundation (B2). The pavements reinforced with willow mats are characterized by
low strain indices I0 of 1.33 ÷ 2.00 with low values of MEII (30.00 ÷ 66.18 MN·m−2), with
the pavements having poor bearing capacity.

3.3. Comparison of Static and Dynamic Strain Modulus Values from 2016 and 2022 Measurements

As already mentioned, there is a very large difference in the number (18/56) of VSS
measurements taken (2–3 measurements in 2016, at least 7 per section in 2022) and Evd
measurements (14/383), where in 2022 measurements were taken for different points in
the cross-section of the roadway (as described above), and in 2016, the location of the
measurement (left/right side or axis of the road) was not specified. Average values for the
section were taken for comparison and are presented in Table 6.

Table 6. Comparison of static and dynamic strain modulus values from 2016 and 2022 measurements.

Section Year of
Measurement

Value of Static Strain Modulus MN·m−2 Value of Dynamic Strain Modulus Evd MN·m−2

Mean
Range of Results

Mean
Range of Results

Min. Max. Min. Max.

A1
2016 188.81 173.08 104.55 67.97 66.00 69.40

2022 168.22 125.00 250.00 65.42 24.06 102.74

A2
2016 136.16 107.14 160.71 64.10 - -

2022 132.24 107.14 173.08 53.80 31.40 78.40

B1
2016 136.49 132.35 140.63 75.00 - -

2022 143.28 112.50 187.50 54.19 18.91 85.88

B2
2016 125.39 118.42 132.35 75.00 74.00 76.00

2022 138.55 125.00 150.00 52.64 21.63 76.01

C1
2016 50.90 44.12 57.69 39.70 - -

2022 44.05 38.14 50.00 34.32 19.18 54.61

C2
2016 48.66 45.00 52.33 38.30 - -

2022 53.93 42.45 66.18 27.99 15.55 48.91

C3
2016 26.02 25.57 26.47 22.10 19.20 25.00

2022 35.84 30.00 46.88 22.43 13.98 38.20

Bzw
2016 141.81 132.35 160.71 77.90 65.00 86.90

2022 134.42 112.50 187.50 42.01 19.50 81.52

- no range of results (one measurement per test section).

In comparing the values of parameters characterizing the bearing capacity of the
pavement between 2016 and 2022, it is important to determine whether the pavement
retains its bearing capacity to allow forestry transport despite several years of road use. In
four sections (B1, B2, C2 and C3), the average values of secondary modules of strain from
the 2022 measurements are higher than in 2016, with a maximum of 13.16 MN·m−2 for
section B2. There is a slight decrease in the average values of secondary modulus of strain
in 2022 for the sections on the oak roller substructure (A1 and A2), but many of the results
are very good as evidenced by the minimum and maximum values (where the minimum
values were most often obtained from measurements in the road axis). The bearing capacity
of the pavement in 2022 on section C1 (crushed aggregate on willow mat substructure)
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expressed by the secondary modulus of strain is lower compared to 2016, not only the
average value, but also over the entire range of results.

The 2022 average values of dynamic modulus of strain Evd MN·m−2 obtained are lower
than in 2016, but this difference is due to the large number of measurements taken also in
the road centerline, where there are much lower Evd values (see Table 3 and Figure 3). If
one were to compare the average Evd values of 2022 measured in the wheel track (left/right
side, Table 3) and the range of results obtained, it could be concluded that pavements on a
substructure of wood (oak, pine) rollers maintain Evd values at a satisfactory level. Surfaces
on willow mats substructure still (in 2022) have low values of secondary modulus of strain,
as well as dynamic modulus of strain.

3.4. Comparison of Deformation Indexes from 2016 and 2022 Measurements

For most sections, the average strain index I0 obtained in 2022 is smaller than the
2016 measurements, indicating that the pavement (mainly in the wheel tracks) has been
compacted by vehicle movements. The maximum values of I0 were mainly obtained from
measurements in the axis of the road.

4. Discussion

The high variability of the obtained results of static deformation modulus (MEI and
MEII) from VSS measurements, or dynamic Evd, is pointed out by many authors [8,9,26,51,52].
Direct comparison of parameters characterizing the bearing capacity of the pavement (ME,
Evd results, elastic deflections) made at different times, and this means different weather
conditions and, for example, moisture content of the road body, can lead to erroneous
conclusions. The results of the obtained modulus from VSS plate and dynamic plate
measurements are affected by many factors, and one of the most important is the very
way the measurements were obtained [47,51,52]. Research teams presenting the results
of forest road bearing capacity measurements with the same equipment and maintaining
measurement procedures note the large variance in the results obtained, even on the same
research section [8,9,26,53]. Bearing capacity studies of the analyzed sections of the forest
road in 2016 were performed with the same VSS plate as in 2022, but with a different
counterweight, and dynamic plate studies were performed with different equipment (also
in 2022). At the same time, it was not possible to carry out measurements in the same
weather conditions as in 2016 (they were not specified, only the known date of the second
half of September) as well as in 2022—it was not possible to carry out such a large number
of measurements (56-VSS and 383-Evd) with identical conditions (for example, in the
measurements in May 2022 there was rainfall). Measurements in 2022 were obtained in the
same picket of the road (mileage) at three points (left and right side of the track and axle)
as in 2016, in which the exact point of measurement was not recorded. Hence, there may be
differences in the results, which is why the comparisons used average values for a given
entire road section with a given pavement system.

The obtained average values of secondary modulus of strain (VSS plate test) in 2022 on
sections reinforced with wooden rollers (A1, A2, B1 and B2) are satisfactory at a level above
130 MN·m−2, and in the case of pine rollers (B1 and B2) are higher than in 2016. Assuming
that on forest roads there is light or very light traffic (max. KR1), which is also the case on
the studied road serving the forest complex (about 30 units), the obtained values of MEII ≥
120 MN·m−2 and even in some cases MEII ≥ 140 MN·m−2 for pavement on wooden rollers
ensure the crossing of vehicles with wood.

The observed differences in modulus values from the 2022 measurements between the
left and right sides of the road of pavement on wooden rollers may be due to stagnation of
water in the ditches on one or the other side of the road, which was observed during the
research (Figure A1). For pavement on a willow mats substructure, these differences may
be further compounded by the fact that the willow mats were laid in two courses, rather
than homogeneously across the entire width of the road (Figure 2).
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Aggregate and gravel pavements on a substructure reinforced with willow mats,
as in 2016, are characterized by low load-carrying capacity values—static and dynamic
modulus (Tables 2 and 3), while the condition of the pavement allows vehicle traffic to
proceed except for a section of the end of the test section. This failure may be due to the
non-functioning of the drainage in the road, as well as the poor execution of the connection
of the further section of the road during its reconstruction (lack of proper alignment
of the pavement alignment). It is difficult to assess the suitability of such pavements,
with such low bearing capacity parameters MEII ≤ 50 MN·m−2 and Evd ≤ 40 MN·m−2

(Tables 2, 3 and 6) and very low traffic of round wood transports, about 21 per year. At the
same time, the pavement compaction indices on these sections are at a good level for the
most part, I0 ≤ 2.2 (Tables 2, 3 and 7).

Table 7. Comparison of deformation indexes from 2016 and 2022 measurements.

Section Year of Measurement

Deformation Index I0

Mean
Range of Results

MIN. MAX.

A1
2016 2.18 2.00 2.36

2022 2.94 1.25 4.06

A2
2016 2.42 2.10 2.81

2022 2.38 1.78 2.96

B1
2016 1.91 1.76 2.06

2022 2.23 1.68 3.00

B2
2016 2.83 2.76 2.89

2022 1.87 1.61 2.13

C1
2016 1.90 1.76 2.06

2022 1.76 1.40 2.30

C2
2016 2.16 2.00 2.32

2022 1.88 1.38 2.45

C3
2016 1.99 1.85 2.14

2022 1.71 1.32 2.21

Bzw
2016 2.48 2.14 2.88

2022 1.97 1.63 2.50

The 200 mm thick willow brushwood mats used are consistent (150–250 mm) with
those proposed by Munro [37], but the expected load-bearing parameters were not obtained.
Structures on timber rollers (timber grillages) gave positive results and their inherent
stiffness can provide better load distribution properties than high strength geotextiles [37].
Willow mats as well as wooden rollers have replaced geosynthetics in the reinforcement
of weak road base, so it is worth mentioning here the shortcomings of pavement bearing
capacity measurements (VSS plate and light dynamic plate) reported in the literature [54,55].
Obtaining low values of static and dynamic modules on forest roads reinforced with
geosynthetics is confirmed, among other studies [8,9,27].

The obtained slightly smaller values of static modules for the sections on oak rollers
may additionally result (in addition to the factors affecting the measurement discussed
above) also from the behavior (wood decay) of the wooden rollers, although this was not
the subject of the current study, but may be illustrated by the acquired slices of rollers from
the road sections (Figure A2) [56]. One can see significant biological decomposition of
earlywood (sapwood) in oak rollers.
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The deformation index I0 for a properly constructed pavement, depending on the
material, should be less than 2.2 and is a measure of pavement compaction, which affects
the ability to take loads from vehicle wheels, and its excessive value may be one of the
explanations for the causes of rutting. For pavements made of coarse-grained materials
(crushed aggregate and aggregate with a grain size of 0/31.5 mm), according to the guide-
lines of the General Technical Specifications (GTS), the deformation index should be less
than 2.2.

5. Conclusions

It has been shown that pavements made of crushed aggregate and common gravel on
wooden roller substructure maintain good bearing parameters, where the average values
of secondary modulus of strain are above 130 MN·m−2, and in the case of pine rollers the
modulus has increased.

The pavements on low-bearing soils reinforced with willow mats have low bearing
capacity parameters, with averages of 26.09 ≤ MEII ≤ 53.93 and 22.1≤ Evd ≤ 39.1 MN·m−2,
but the technical condition of the pavements allows further transportation related to forest
management. No major damage to the pavement in the form of large ruts is observed.

It seems necessary to increase the thickness of aggregate layers in the pavement to
improve its bearing capacity, which also requires further research.

Research confirms the possibility of using the reinforcement of soils with poor bearing
capacity with wooden rollers on most forest roads, in particular, in the case of willow mats
for forest roads with light truck movement.
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publication in 2022).
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1980.

50. Rolla, S. Badania Materiałów i Nawierzchni Drogowych; (Wydawnictwo Komunikacji i Łączności) WKŁ: Warsaw, Poland, 1985.
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