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Abstract: Mangrove forests are salt-tolerant intertidal vegetation in tropical and subtropical areas.
Mangrove ecosystems provide commercial products, valuable fisheries, and aquaculture resources,
protect and stabilize coastlines, and are important carbon sinks. However, they are threatened
globally by human activities such as deforestation, pollution, and development causing fragmentation
between the well-preserved, restored, and disturbed mangrove forests. Despite this, mangroves can
adapt and strive well and are notable well associated with microbial diversity. Here, we investigate
the diversity of microbes in different environmental settings using preferred reporting items for
systematic and meta-analyses (PRISMA) analysis for publications from Scopus and the Web of Science
databases. We report publications since 1987, and observed an exponential increase in publications
beginning in the year 2000, which may be associated with the development of molecular and
sequencing technologies. Differences in bacterial diversity was observed across the well-preserved,
restored, and disturbed mangrove environments. Disturbed mangrove forests had a higher diversity
(70 unique taxon orders reported) compared to well-preserved (33 unique taxon orders reported)
and restored forests (38 unique taxon orders reported). Based on our analysis, we found that the
microbial community plays an important role in the survival and adaptability of mangroves under
varying environmental conditions. Thus, there is a need and a lot of potential for research in the area
of mangrove microbiology with reference to ecology, biogeochemistry, and geomorphology.

Keywords: mangrove; sediment microbiome; bacterial diversity; systematic analysis

1. Introduction

Mangrove forests are salt-tolerant intertidal vegetation along coastal margins and
brackish water of coastal estuaries, bordering the land and the sea in tropical and subtrop-
ical areas [1,2]. Adapted to harsh coastal conditions, they serve as a barrier for coastal
protection and stabilization, play important roles in carbon fixation, and facilitate the
reduction of terrestrial nutrient loading from upstream inputs [3]. Mangrove forests occupy
approximately eight million ha of coasts worldwide [4] and the highest proportion is found
in Asia with about 42% of the global coverage [5]. Mangroves are very dynamic and highly
productive ecosystems [6].

Mangrove ecosystems provide valuable services to coastal communities and industries.
As an important resource for human sustainability and livelihood, mangroves are exploited
for food, timber, fuel, and medicine [7]. Mangrove forests act as carbon sinks that absorb
CO2 and sequester carbon as above-ground and below-ground biomass [8]. Mangrove
sediment is deposited below soaked and anoxic environments which impedes the degra-
dation of organic matter resulting in undisturbed carbon that will last for centuries [9–11].
Therefore, dubbed the blue carbon ecosystem, mangroves can facilitate reducing global
carbon emissions which helps mitigate climate change [12–14].
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The unique zonation of mangroves; according to the substrate condition, tidal regime,
and topographic ground elevation [15–17] promotes diversity in flora [18] and fauna.
Though the diversity of mangrove species is typically low compared to other forest en-
vironments, they provide shelter and food for organisms such as crustaceans, mollusks,
amphibians, reptiles, small mammals [19], and migratory birds [20]. Mangrove ecosystems
are also important for the maintenance of the local coastal fishery industry [21]. The terres-
trial nutrients from upstream nourish and nurture the coastal waters by supplementing
downstream minerals. These forests provide food and shelter for marine organisms, and
a nutrient source exchange for the coastal fishery environment [22,23]. The ecosystem
services of mangroves are shown in Figure 1.
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Figure 1. Ecosystem services of mangrove forests.

Despite their multiple ecosystem services as shown in Figure 1, mangrove ecosystems
have undergone serious alterations largely induced by anthropogenic activities [6,24,25],
monsoons, and tidal effects. The reduction of mangrove forests has been estimated at
1%–2% per year globally and accumulate to about 35% since the year 2000 [7]. Human
and natural impacts have left us with well-preserved, regenerated, and disturbed man-
grove ecosystems. Well-preserved (pristine) mangroves are naturally regenerated, healthy
mangrove forests with less human disturbance and low pollution. Restored (also termed
regenerated, reforested, or rehabilitated) mangroves include both naturally and anthro-
pogenically planted mangrove trees as conservation. The latter are mainly monospecies
plantations used to curb soil erosion and serve as a reintroduction of vegetation in coastal
areas. Disturbed mangrove forests are degraded or deforested mangroves which are
subjected to contaminants such as hydrocarbons, human wastewater, sewage, microplas-
tics, invasive species, and others. This group of mangrove forests have high artificially
introduced nutrients which alter the mangrove ecosystem equilibrium of the microbial
community and its mangrove host.

The current mangrove species distribution and composition are subject to geochronol-
ogy changes [26] and the distribution of mangrove coverage around the world is uneven
and cannot be explained by a single influencing factor [27]. A higher concentration of
mangroves and a high mangrove species diversity is found in the tropics between longitude
60◦ E and 170◦ E with the largest amount of mangrove coverage in Southeast Asia [4,28].
The adaptation and succession of mangroves are speculated to be closely related to the
diversity of microbes in the sediments [29]. In fact, the microbial community and the man-
grove microbiome, including bacteria, archaea, fungi, and protists is vital in maintaining
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primary productivity, providing nutrient transformations, and aiding in the conservation
of vegetation, to an extent that their presence cannot be ignored. In essence, degradation
activities are associated with the microbial community by breaking down organics into
inorganics, and vice versa, to be absorbed into the ecosystem and the food web [30]. Man-
grove microbial communities are active participants in the biogeochemical cycles such as
the carbon cycle and nitrogen cycle which supply nutrients to plants and animals. Limiting
nutrients such as phosphorus and nitrogen in sediments, and tidal flooding near the rhizo-
sphere, forces microbes to be involved in special roles such as nitrogen fixation, phosphate
solubilization, assimilation of photosynthesis, sulfate reduction, enzyme production, and
hydrocarbon degradation [31]. Microbial species distribution is known to have a close rela-
tion to their corresponding plant hosts. Their community is highly dependent on mangrove
species for species selection [32,33] and is driven by the environment’s physiochemical
properties and other factors.

To date, the diversity and composition of the microbial community in the mangroves
it still not entirely known. Without this information, the potential roles of microbes and
their functions in mangrove ecosystems are still poorly understood [32–34]. The various
environmental factors, zonation [16,35], and spatial–temporal settings [36–38] in mangrove
forests affect microbial compositions and the roles each taxon plays in the mangroves [16,35].
The different mangrove forest types, well-preserved, restored, and disturbed, are expected
to host a unique set of microbiotas influenced by their surroundings and any external
contributing factors such as development and pollution. With technological developments
in bioinformatics, we are one step closer to studying species, and communities while
paving the way to new fields of ecology with respect to mangrove forests. Every year, more
scientific research is conducted and the number of publications that are readily available is
on the rise. Figure 2 shows the frequency of publications related to mangrove sediment
microbial diversity globally.
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Figure 2. Map of mangrove sediment microbial diversity publication counts. The country polygon
fill gradient indicates the number of publication counts while the polygon outline represents the top
50 mangrove coverage in km2 according to the continuous mangrove forest cover for the 21st century
(CGMFC-21) created by Hamilton et al. [4]. The green plots are the sampling plots of each publication.
The figure was generated using the ggplot2 package [39] in R [40] using the Mercator projection.

With the advancement of biochemical taxonomy and molecular biotechniques, the
identification, classification, and nomenclature of microbes especially bacteria are everchang-
ing with time. Responses to the call to unify and standardize taxonomy prompt databases
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such as The National Center for Biotechnology Information (NCBI) Taxonomy [41,42] and
The Genome Taxonomy Database Toolkit (GTDB-Tk) [43,44]. Both databases provide a
phylogenetically diverse set of taxonomic assignments for microbial diversity study. Here,
we retain all nomenclature of microbes from our reviewed articles concerning the original
articles and their taxon alignment of respective databases, we found that most published
articles aligned their results with the NCBI Taxonomy for its widespread usage. In response
to the changes in taxonomic order nomenclature, the comparison of both the NCBI taxon-
omy and GTDB-Tk databases of the top 20 bacterial taxonomic orders found in the three
different mangrove conditions are listed in Table S1.

Since the health of mangrove forests is very much associated with mangrove–microbial
interactions, understanding this relationship will be vital for the successful conservation
and rehabilitation of mangrove ecosystems. To our knowledge, at present, no study or
review has investigated microbial diversity across these three mangrove forest types namely
well-preserved, restored, and disturbed. Therefore, in this article we systematically re-
viewed the diversity of the microbial community in well-preserved, restored, and disturbed
mangrove forest ecosystems to determine: (1) whether varying mangrove types host a
unique pattern of microbiota; (2) the dominant microbial taxa in each forest type; (3) what
the research trend of mangrove sediment microbial studies is; (4) if environmental physio
parameters alter the mangrove sediment microbial diversity.

2. Materials and Methods
2.1. Construction of Database

Database establishments of published studies on microbial diversity of different man-
grove conditions were performed by using the topic search term: topic = (microb* OR
bacteria* OR fung* OR prokaryot*) AND (diversity OR structure OR assemblage) AND
mangrove AND (regenerat* OR pristine OR disturb* OR restor* OR degradat*) in Web
of Science (WoS) on 12th of June 2022. The document types ranged from articles, review
papers, meetings, and others, yielding a total of 653 publications. The earliest publication
captured within the search parameters was in 1987.

To encourage a more robust and thorough review, Scopus-indexed databases were
searched using TITLE-ABS-KEY ((microb* OR bacteria* OR fung* OR prokaryot* OR
diversity OR structure OR assemblage) AND mangrove AND (regenerat* OR pristine OR
disturb* OR restor* OR degradat*)) generating a total of 1,815 publications on 14th of June
2022. Combinations of keyword search terms in those databases to acquire relevant kinds
of literature are listed in Table 1.

Table 1. Searched terms used for database review.

Search Terms

microb* OR bacteria* OR fung* OR prokaryot*
diversity OR structure OR assemblage
mangrove
regenerat* OR pristine OR disturb* OR restor* OR degradat*

After combining results from both databases, a total of 2468 published papers were
identified. The title, abstract, year of publication, authors, and digital object identifier (DOI)
of each paper, were manually screened using R 4.1.3 [40], metagear package [45], preferred
reporting items for systematic and meta-analyses (PRISMA) flow chart were used to form
a more comprehensive and ideal meta-analysis using the R PRISMA2020 flow diagram
package [46] provided in Figure 3.
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Data extraction was performed manually and categorized into three groups of the
surrounding mangrove conditions, namely well-preserved, restored, and disturbed. For a
better environmental condition comparison, all articles that mentioned samples collection
from pristine and well-preserved mangrove areas were grouped into well-preserved; regen-
erated, reintroduced, and planted mangroves were regarded as restored; while all articles
with microplastic, hydrocarbon incubation, anthropogenic influenced, and waste-water
contaminations were classified as disturbed. We reviewed a total of 94 articles associated
with mangrove environments profiling the microbial community structures using a variety
of sequencing approaches. The majority of the articles were focused on several locations in
China, India, and Brazil, while the rest can be traced to Columbia, the USA, Saudi Arabia,
Australia, Malaysia, Honduras, and Singapore.

2.2. Trends in Scientific Publication

In this review, we compiled a total of 2428 articles from the years 1987 to 2022. Our
analysis revealed that the field of mangrove microbiology exhibited an upward trend. To
illustrate the increment of studies regarding microbial diversity within mangrove sediment,
the combined database of WoS and Scopus publications were sorted by year, as shown in
Figure 4. Interestingly there was a sudden increment in microbial diversity studies in the
early 2000s, probably due to the advancement of metagenomics methods and techniques
such as denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing
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(HTS), also known as next generation sequencing (NGS). The popularization of sequencing
methods coalescing with molecular biological techniques has driven the capability to take
microlevel biodiversity and its ecological structural composition from a given environ-
mental sample to new heights. Hence, using metagenomics, the quantification of a given
biocommunity’s dynamics and roles are made possible, while parsing the relationship with
the corresponding environmental gradients and factors.
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Figure 4. Trends and numbers of published articles on mangrove sediment microbial studies in two
main databases. Publication counts skyrocketed in early 2000.

Furthermore, we found that most publications concentrated on mangroves with
various types of pollution and contaminations. A higher amount of attention on disturbed
mangrove environments might be due to mangrove microbial dynamics, environmental,
and ecological impacts, and the responses to impacts such as hydrocarbon leakage and
alien-invasive species altering microbial structure compositions.

3. Factors Influencing Microbial Community and Diversity

Microbial community composition and activities are very much influenced by environ-
mental conditions and interactions with the biotic components. Environmental parameters
often differ by forest type and are dependent on geomorphology, anthropogenic factors
such as pollution, development, and tourism activities, and natural factors such as the
frequency of flooding, tidal inundation, salinity, and the intertidal gradient, which have a
big role in determining the microbial diversity in the mangrove forest [47,48]. The extent
to which mangrove microbes are regarded as potential bioindicators of environmental
changes, with their quick growth rate and delicate response to the bioavailability of nutri-
ents and environmental properties [49] such as pH, salinity, and temperature is shown in
Table 2. Total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), total sulfur
(TS), and total carbon (TC) recorded in mangrove forests are listed in Table S1.

Helfer and Hassenruck (2021) [50] highlighted that the microbial community in sedi-
ments is determined by soil grain size, pH levels, redox conditions, detrital organic matter,
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organic carbon, and water content. Leaf age and root type may affect the type of microbes
on the host (above-ground), the pH, and the C: N ratio can enable the prediction of fungal to
bacterial dominance. In this manuscript we try to investigate the extent that environmental
parameters, with a focus on pH, temperature, and salinity, can affect microbial patterns
across well-preserved, restored, and disturbed mangrove forests.

3.1. Physicochemical Parameters in Well-Preserved Mangroves

The mixing effect of terrestrial freshwater and tidal marine seawater in mangrove
ecosystems creates a physiochemically distinct brackish environment of salinity that varies
between <5 ppt and 30 ppt, thus offering an exclusive zone of sediment which houses a
large number of microbes with distinct functions and metabolisms. Compared to other
physical parameters, it was reported that salinity greatly influences the microbial diversity
of mangrove sediment [51–53].

A total of 12 articles are listed in Table 2 (information on sampling coordinates are
provided in the Supplementary Materials) showing pH, temperature, and salinity values in
well-preserved mangrove soil. The ecosystems are mainly alkaline and the salinity changes
according to the geolocation of tidal flat elevations relative to the sea. Salinity affects the
changes in vegetation type which is the main driver in mangrove zonation [54] and may
influence the diversity and structure of its corresponding microbes. The pH levels within
mangrove sediments are relatively uniform with a range reported of 5 to 8.09 depending on
the zonation, tidal zones [55–57], and seasons [58,59]. Seasonal precipitations and riverine
discharge are the main factors of salinity fluctuation [54,60]. High salinity values (33 to
64 ppt) are found in New Caledonia due to its oceanic mangrove environment. A study
by Luis et al. (2019) [60] found that salinity is higher in the environment Avicennia spp.
populate compared to Rhizophora spp. and the zonation between mangrove tree species
might directly and indirectly impact the plant’s associated microbial communities. High
salinity suppressed and constrained microbial differentiation. Reports show that the
diversity and species richness was highest when in intermediate salinity which indicated
that the optimum salinity range for coastal sediment ammonia-oxidizing bacteria (AOB)
was around 10 to 30 ppt of salinity [61–63].

Meanwhile, an investigation by Feng et al. (2019) [64] on stratified layers of mangrove
sediment revealed that pH levels had a positive relationship to depth, where the average
pH value increased to around eight as the depth increases, thus becoming more alkaline.
Additionally, pH serves as a crucial regulator for the microbial community especially in
sediment, limiting the biogeochemical metabolism activities, and it is the second driver of
microbial structure after salinity [52].

Table 2. Levels of pH, temperature, and salinity of well-preserved, restored and disturbed mangrove soil.

Sampling Site pH Temp. (◦C) Salinity ppt References

Well-preserved Mangrove
Wenlock River, Far North Queensland, Australia 7.1 to 7.5 25.5 to 26.1 21.9 to 23.8 [65]

Tanjung Piai, Johor, Malaysia 5.2 to 7.0 - 7.1 to 8.2
[66]7.2 to 7.4 - 5.8 to 6.9

Kalash Island, Sundarbans, India 7.6 to 7.8 22 to 31 22 to 27 [67]

Saint Vincent Bay, New Caledonia, Overseas France 6.64 to 7.04 - 44 to 64 [60]6.46 to 6.67 - 48 to 62
Paranaguá Bay, Brazil 5.3 to 7.6 - 5 to 30 [52]

Virgin Jungle Forest, Matang, Perak, Malaysia 7.6 28.5 20 [68]
Ferney, Mauritius 7.90 to 8.09 27.9 to 29.1 32.4 to 35.4 [69]

Boguaçú River, Guaratuba bay, Paraná, Brazil 6.5 to 6.6 - - [70]
Estuary of Cananéia, São Paulo, Brazil 5.4 to 6.7 12.5 to 13.7 0.2 to 1.3 [71]

Restinga da Marambaia, Rio de Janeiro, Brazil - 28 to 33 - [72]
Ilha do Cardoso, Sao Paulo, Brazil 5.9 to 6.4 - - [73]
Florida Coastal Everglades, USA - - 8.4 to 42.6 [74]
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Table 2. Cont.

Sampling Site pH Temp. (◦C) Salinity ppt References

Restored Mangrove
Quanzhou bay, Fujian, China 6.60 to 7.88 - 9.6 to 33 [75]

Leizhou Nature Reserve, China 6.45 to 7.28 - 1.43 to 1.50 [76]
Quanzhou bay, Fujian, China 6.75 to 7.63 - 12 to 24 [58]

Leizhou Nature Reserve, China 6.76 to 7.28 22 to 23 1.28 to 1.71 [77]
Hanjiang River Estuary, Guangdong, China 6.5 to 7.8 22.8 to 26.3 3.8 to 11.9 [78]

Hailing Island National Mangrove Wetland Park, China 5.99 to 7.78 29.03 to 32.28 3.41 to 13.27 [55]
Xiatanwei mangrove wetland park, Xiamen, China 6.35 to 7.32 13.7 to 14.6 - [79]

Sungai Haji Dorani, Selangor, Malaysia 6.59 to 7.72 26.9 - [34]
Cardoso Island State Park, Brazil 6.33 - - [80]

Productive Zone, Matang, Perak, Malaysia 7.6 30 21 [68]

Disturbed Mangrove
Haimen Island and Haicang Bay Xiamen, Fujian, China 6.19 to 8.25 - - [81]
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China 4 to 6.9 21.2 to 38.1 - [82]

National Shankou Natural Reserve, Guangxi, China 6.69 to 7.03 - 28.6 to 29.6 [59]
Seven Coastal Region Mangroves of China 4.79 to 6.35 12.7 to 24.4 18 to 31.95 [83]

Sahakorn Canal, Bangkok, Thailand 7.48 to 7.62 32 to 35 31 to 33 [84]
Valle de Los Cangrejos, La Guajira, Colombia 7.47 to 7.56 - - [85]

Serinhaém Estuary, Brazil 7.45 to 7.80 25.0 to 29.3 13.3 to 15.1 [86]
Quanzhou bay, Fujian, China 6.92 to 7.66 - - [87]

Futian Mangrove Nature Reserve, Guangdong, China 6.81 to 6.83 - - [37]
Mangalavanam, India 7.2 to 7.4 28.77 to 30.5 22.6 to 25.8 [56]

Kakdwip, Sundarban, India - - 11.9 to 27.5 [88]
Haikou and Sanya, Hainan, China 7.25 to 8.20 25.4 to 29.5 17.10 to 35.1 [89]

Shanyutan Wetland, Minjiang River Estuary, Fujian, China 5.82 to 5.89 - - [90]
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China 7.27 - 18 [91]
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China 6.83 to 7.34 - 9.27 to 14.53 [92]

Six Coastal Region Mangroves of China 6.32 to 8.63 - 24.5 to 55.0 [93]
Coastal Zones of China 8.18 to 5.17 - 0.5 to 4.17 [94]

Bhitarkanika mangrove, India 5.56 to 7.14 - 0.33 to 2.46 [36]
Bertioga, Sao Paulo State, Brazil 6.93 to 6.20 - 4 to 7 [95]

Restinga da Marambaia, Rio de Janeiro, Brazil 6 to 8 27 5 to 20 [96]
La Guajira, Colombia 7.3 to 7.94 - - [97]

Mai Po Wetland, Hong Kong, China 6.61 to 7.48 - - [98]
Daya Bay, Guangdong, China 7.5 to 8.1 20.6 to 22.6 26.7 to 31.9 [99]

Ribandar, Mandovi Estuary, Goa, India 6.5 to 6.7 35 - [100]
Sahakorn Canal, Bangkok, Thailand 7.3 33 33 [101]

Dongzhai Bay, Hainan, China 3.19 to 7.1 - - [102]
Mai Po Wetland, Hong Kong, China 5.82 to 8.17 - - [103]

Rantau Abang, Terengganu, Malaysia 5.1 - - [31]
Ar-Rayis and Yanbu, Saudi Arabia 8.4 to 8.5 31.7 to 33.4 15.9 to 19.2 [104]

Darwin Harbour, Australia - 25.5 to 31.7 18.4 to 39.2 [105]
Yellow River Delta, Shandong, China 7.5 to 8.7 11.7 to 12.6 0.4~3.4 [106]

Coastal Zones of Singapore 6.37 to 8.61 27.1 to 28.3 - [107]
Mai Po Wetland, Hong Kong, China 6.8 to 5.8 - 27.7to 35 [108]

Bertioga, Sao Paulo State, Brazil 6.4 to 7.1 - 55.6 to 88.4 [109]
Netidhopani Island, Sundarban, India 8.1 - 7.22 [110]

Todos os Santos Bay, Bahia, Brazil 3.6 to 7.5 - - [111]

-: no data provided. Publications are sorted according to published year.

The effect of environmental parameters can be observed among the AOB which is an
important component of the nitrogen cycle within the mangrove ecosystem. It has been
documented that their diversity decreased with the increase in salinity. Some studies show
that freshwater sediment bacteria when exposed to a saline environment may influence
the species richness (an increase of Chao1 index) of specific bacteria [62,63]. Salinity is
theorized to constrain functional changes such as mineralization rates, reproduction rates,
and cell physiology while facilitating a more diverse bacterial colonization and limiting the
domination of certain lineages [112].

3.2. Physicochemical Parameters in Restored Mangroves

Restored mangrove sites have a similar alkaline pH to well-preserved mangroves as
highlighted in the literary materials compiled in Table 2 (sampling coordinates are listed in
Table S3). The physiochemical parameters in restored mangroves of 10 published articles
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shows that restored mangroves were mostly studied at riverine landscapes and deltas
where the salinity was mostly brackish and the soil temperature fluctuated depending on
the locations of sampling. Some reports noted that the concentration of ammonia (NH3)
significantly correlated with the bioavailability of diazotrophs [113]. The effects of pH were
observed in the report by Zhang et al. (2012) [114], where AOB abundance was documented
to be low when the soil sediment was acidic, while the abundance of ammonia-oxidizing
archaea (AOA) was higher. Thus, demonstrating AOA might have a more significant role
in autotrophic nitrification processes in a more acidic ecosystem [114,115].

It was found that AOB such as genera Vibrio and Methylophaga had a more profound
proposition in a lower tidal mudflat of artificial restored mangrove wetland, remedying
the coastal area by removing N from the eutrophicated and polluted surroundings into
nutrients for the mangrove trees [79]. Studies in the Matang Mangrove Forest Reserve
(MMFR) showed that mangroves managed by a rotating thinning process for commercial
use are found to have a similar pH value compared to well-preserved mangroves [68]. The
model in the MMFR showed that managed logging may change nutrient input to the soil
sediments and to physiochemical parameters but that the mangrove sediment microbial
structures were relatively similar, providing a sustainable model of managing a productive
mangrove forest.

3.3. Physicochemical Parameters in Disturbed Mangroves

In our context, mangrove forests exposed to anthropogenic pressure, the presence of
invasive species, and pollution, which includes oil, wastewater, heavy metals, microplastics,
and Bisphenol A (BPA) contamination, are classified as disturbed mangrove environments.
The discharge of anthropogenic fertilizer contributes to increased phosphorus (P) levels,
for instance, which promotes eutrophication in marine and transitional ecosystems such as
mangroves [116–118]. As eutrophication and anaerobic conditions are caused by mainly
agriculture runoff, the dynamics of mangrove nutrient cycles are distorted by the increasing
rate of algae blooms which degenerate the water quality.

Furthermore, the balance of organic and inorganic matter will be distorted when both
domestic and industrial pollutants are introduced into the environment [117,119]. Aquacul-
ture and human industrial activities lead to the dispersal of pollutants adjacent mangrove
to the area, thus influencing the functional framework of microbes in the sediment. While
most mangrove forests are slightly alkaline, the literature shows that a disturbed mangrove
environment, such as in Table 2 (sampling coordinates are provided in Supplementary
Materials) has a lower pH value and is relatively more acidic than a well-preserved man-
grove (Table 2), thus pH was suggested as an indicator for the spatial variation of microbial
distributions [120].

Since pH has such a significant impact on the soil microbial community, and the
tendency of acidification of the marine environment with global warming and ocean
acidification due to CO2 increases [121], research on the influence of pH on ammonia-
oxidizing prokaryotes (AOP) such as the phylums Proteobacteria, Chloroflexi, Nitro-
spira, and Cyanobacteria for the bacteria domain [122] and Crenarchaeota [123] and
Thaumarchaeota [114] for Archaea, is essential.

Zhang et al. (2022) [124] reported that the calcium content within sediment samples
has a significant contribution to the microbial communities in high-urban-human activity
Jiulong river mangrove patches and calcium ions are needed to maintain basic metabolisms
such as cell division and control the permeability of cell membranes [124]. Therefore, the
high content of calcium discharged from urban areas served as a nutrient for the microbes
in the sediment. These microbial communities played positive roles in accommodating
contaminated intertidal ecosystems overseeing the nutrient input caused by wastewater
and industrial contaminants.

PAHs (polycyclic aromatic hydrocarbons) and hydrocarbon incubation mangrove
sediment studies show Gram-negative bacteria have potential key roles in the degrada-
tion of PAH and hydrocarbons. Anaerolineaceae of Choloflexi have a high tolerance to a
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range of phenanthrene (a colorless and low molecular weight PAH) concentrations (150 to
1200 mg kg−1 sediment). These microbial community serve as an important component in
oil-contaminated mangrove sediment [84].

Gram-negative bacteria were able to use phenanthrene and other hydrocarbons as
their carbon source. Seasonal comparisons of sediment hydrocarbon incubation showed
that wet season mangrove sediment accommodates a more diverse biodegrading bacterial
capacity mainly constituted of Gram-negative bacteria that might have a higher hydrocar-
bon degradation rate. This is caused by the higher diversity of bacteria that are adept to
utilized the differential of hydrocarbon within the environment [84].

Microplastic contamination is profound on a global scale and polycondensing resin
has been widely employed in countless industrial uses. Ye et al. (2021) [125] demonstrated
that it induces microbial dysbiosis and dysfunction in mangrove sediment contaminated
with microplastic, and the huge amount of microsized polymer products pose a threat to
the balance of the ecological environment and its subordinate biota. The physical weather-
ing of mangrove sediment and tidal inundation results in flaked microplastics being the
most recovered microplastic in a study by Chen et al. (2022) [126], their study also shows
that the physical and chemical properties of soil were altered by the microplastic contam-
ination, causing microscopic changes to the biota nutrient cycles and ecosystem. While
the chemotrophic selectivity colonization of mangrove rhizosphere microorganisms was
mainly formed by Gammaproteobacteria and Deltaproteobacteria in different microplas-
tics, it shows various biodegradation rates of microplastic which effected the surrounding
mangrove ecosystem health, thus suggesting mangrove sediment microbes as a plausible
candidate for industrial plastic-degradation processes and related applications [127].

In a conclusion, upon reviewing all 69 articles, there is no clear pattern that the physical
parameters control the diversity and structural composition of microbes in disturbed
mangrove sediments, but few studies show a variety of explanations in justifying the main
factors shaping the sediment microbial structure.

4. Microbial Communities in Different Types of Mangrove Forests

The main microbial element cycles in mangrove ecosystems include carbon, sulfur, and
nitrogen cycles, the distinct element cycles are strongly interconnected and their relative
contribution to nutrient dynamics varies depending on the environmental conditions. Mi-
crobial communities in mangrove sediments are characterized by environmental gradients
and bioavailability of nutrients. We acknowledge that the advancement of metagenomic
diversity studies of bacteria and other biotics yield different results due to the dissimilarity
of primers, sequencing methods such as 454 pyrosequencing [128,129], Illumina tagged
16S rRNA gene sequencing [95,108], and targeted groups of studies in each study. How-
ever, metagenomics studies are culture-independent and diverse at a taxonomic resolution
compared to traditional isolation and cultivation of microorganisms.

4.1. The Trends in Microbial Communities across Mangrove Forest Types

In terms of microbial diversity, similar to well-preserved and restored mangrove
forests, Proteobacteria dominated, with random reports of Firmicutes and Chloroflexi
as the dominating phyla and archaea present in all reported articles. Indeed, the class
Gammaproteobacterial dominated (56% of all published articles with mentioned class
abundance), meanwhile there seemed to be a fair share of presence in Alpha- (12%) and
Deltaproteobacteria (26%) as well. The phylum Chloroflexi was represented by Anaerolineae
while the Firmicutes were represented by Clostridium and Bacilli. Interestingly, several
reports show Firmicutes as the most dominant phyla [85,130,131]. All reports of Firmicutes
as the most dominant phyla were from South America and further investigation is needed
to define its spatial and temporal relationship. One way or another, it is almost certain that
the proportion of Proteobacteria will be followed as the second most dominant bacteria
phyla with minute differences in percentage to Firmicutes.
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The taxonomic class level shows that most Proteobacteria were reported to come from
Gammaproteobacterial followed by Deltaproteobacteria and Alphaproteobacteria. The
diverse function and the phylogenic variation of Gammaproteobacteria which consisted of
orders such as Alteromonadales [104,107,131] and Vibrionales [76,127] are found in marine
and coastal regions and are high in abundance in mangrove sediments functioning as
nutrient recyclers. Members of Deltaproteobacteria found in mangrove soil are mostly
sulfur-related, consisting of Desulfobacterales, Desulfuromonadales, Desulfovibrionales, and
Desulfarculales among others.

On the other hand, archaea represent a lesser amount compared to the bacterial
domain. Reports from Luis et al. (2019) [60] and Zhang et al. (2022) [81] show that as
high as 20% to 40% of sediment 16S rDNA genes were affiliated with archaea in stratified
sediment layers, while other results show a much lower composition with roughly 2% to
12% [102,131,132] in the surface samples. The main archaea phylum was mostly annotated
to either Euryarchaeota or Crenarachaeota. Euryarchaeota is a methanogen-related archaea
with some members reported to have halophilic properties which help them survive in
the highly fluctuating salinity of mangrove sedimentation and they are reported to have
integral roles in phosphorus cycles [133]. Crenarchaeota were also vastly reported in the
reviewed database, they tend to have a higher abundance when there is higher sulfur
content, indicating their sulfur-dependent role in the mangrove sediment environment and
other extreme environments including hot springs [134]. The taxonomy of archaea is still
constantly changing and evolving thus the classifications of taxonomic names have been
reported differently across publications. This indicates that the research on archaea diversity
and its relationship to environment and metabolism needs a more in-depth investigation.

Figure 5 and Table 3 show that the diverse parameters influencing the structure
dynamics and diversity of microbes in mangrove sediment are conducive to the nature
where the adaptability and resilience of microbial communities within well-preserved
and pristine mangrove environments is high due to long-term succession, and subtle
changes in the diversity and community structure of mangrove tree stands, where an
equilibrium between the nutrient from mangrove trees and microbial communities was
achieved. Hence a much lower diversity in both tree counts, and prokaryotes communities
was observed [86,111,130,135].
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Table 3. Comparison of reported bacterial diversity indices and sampling criteria of disturbed and
well-preserved mangrove sediments.

Well-Preserved Disturbed Sampling Criteria

References
Shannon Chao1 Shannon Chao1 Cores Collected

per Plot Total Cores Sediment Sample
Depth

- 16,439.80 - 12,172.76 3 6 2 cm [113]
5.83 - 5.69 - 3 18 10 to 30 cm [110]
2.9 - 2.85 - 3 12 30 cm [108]

5.81 7645.06 7.58 11,710.45 - - - [130]
10.8 8905.00 11.1 10,662.00 3 45 15 cm [115]
7.4 - 9.9 - 3 18 10 cm [99]

394.4 326.20 417.53 223.27 2 10 10 cm [124]
- - - - 2 39 - [132]
- - - - 3 15 15 cm [117]

-: no data provided.

A larger amount of Acidobacteria and Gemmatimonadetes were observed in relatively
well-preserved mangrove sediment [38,100]. Strains of Acidobacteria are linked with carbon
and nitrogen consumption in the decomposition of deadwood [136] and are reported in
other various soil sediments. The distribution of Gemmatimonadetes is present in a range
of natural habitats and are more abundant in high nutrient input habitats including aquatic
and agricultural soil habitats [137].

Mangrove restoration work has been performed in small patches around the world
and has been mainly concentrated in Asia [138]. While mangrove restoration often em-
phasizes forest coverage and seedling numbers while leaving out biodiversity and stand
structures as the main focal point, and monospecies replantation approaches have been
used to ease plantation and produce a uniform harvest for timber [139], multiple studies
have been completed to elevate mangrove restoration success and environmental impact
ratios [140,141]. Many studies have pointed out that through mangrove restoration of
native species, the microbial structure composition could increase the microbial structure
of native, mature, mangrove forests [58,75]. The selection of mangrove restoration species
have an effect on both the nutrients and microbial diversity caused by the enrichment of
organic matter and induced biogeochemical cycles [77]. Restored mangroves have been
found to have accelerated rates of carbon acquisition and ultimately higher sequestration
rates compare to matured mangroves, while at the same time having a higher emission
of methane [78], thus providing a clue to increase mangrove restoration as an alternative
solution to increase carbon sequestration rates in coastal regions.

Restored mangrove forests have a similar prokaryote composition compared to well-
preserved mangrove areas but have different diazotroph structures when the restored
mangrove was planted in a previously invasive species vegetation, the differences in
vegetation type shape the nutrient availability and prokaryotes succession [75]. Feedback
adjustments of microorganisms are highly sensitive to the surrounding nutrients and the
restoration of mangroves.

Gammaproteobacteria and Deltaproteobacteria have a higher proportion in disturbed
environments compared to those found in well-protected mangrove sediments [102]
and replace Anaerolineae in microcosm hydrocarbon incubation conducted by Taketani
(2010) [111]. Sulfur-dependent prokaryotes of Gammaproteobacteria and Deltaproteobac-
teria are abundant in both before and after pollutants such as hydrocarbon but orders
such as Alteromonadales were reported to have increased in amount as a response to oil
contamination [72]. A significant upsurge in the diversity of bacteria has been detected in
contaminated mangrove sediment which was attributed to the dispersed nutrient avail-
ability artificially introduced into the environment. Spatiotemporal factors such as salinity,
nutrients, and metabolism inhibitor obstruction lower the productivity of the mangrove
ecosystem and its dependent communities [135,142].
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The diversity of bacteria in disturbed mangroves are reported to be higher than in
well-preserved mangroves, as shown in Table 3. Studies comparing mangroves in different
conservation states show that bacterial composition in disturbed mangrove sediment alters
its structure leading to a functional equilibrium, where the dynamics of chemicals in
mangrove soils lead to the remodeling of its microbial structure [95,97,130]. Mangrove soil
bacteria variation found in different mangrove conditions are shown in Table S2.

In contrast, only Haldar et al. (2018) [100] report that mangrove sediments from the
Mandovi river which is heavily influenced by raw sewage and anthropogenic activities
have a lower diversity and taxonomical richness compared to sediment samples from the
Zuari river which are deemed to have less human interventions. Thus, the evaluation and
comparison of bacterial diversity and its surrounding conditions is much needed to parse
into the feedback controls of bacterial diversity towards long-term environmental changes.

A Venn diagram was used to illustrate the differences of unique taxon orders found
in the three mangrove conditions (well-preserved, restored, and disturbed), as shown
in Figure 6. Well-preserved mangroves had similar counts of unique taxon orders com-
pared to restored mangroves, with 33 and 38 taxon orders, respectively. Members from
Desulfobacterales and Chromatiales were the most abundant taxon. Only a minute number
of bacterial taxon orders were distinctively found in well-preserved mangrove conditions
(seven taxon orders) and a large portion of taxon orders were found in restored and dis-
turbed mangrove conditions. This may indicate that the unique taxon order found in
well-preserved mangroves served as the core component of mangrove microbes. External
nutrient input indirectly induced and promoted microbial diversity causing disturbed man-
groves to have a higher unique order reported due to the imbalance in nutrient recycling
causing niched nutrients for a variety of microbes to thrive and survive.
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The Venn diagram in Figure 6 shows the unique taxon order found in three different
mangrove conditions. Well-preserved mangrove condition has the least unique taxon order
with 33 taxonomic orders quantified, followed by restored with 38, while the disturbed
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mangrove condition has the most number of microbial taxonomic orders totaled at 70.
The diverse nutrients in the disturbed mangrove area induced the variations of microbial
diversity in disturbed mangroves, with high unique taxon orders of 35 found solely in
disturbed mangrove condition.

To summarize, we observed a diverse and high abundance of microbial taxon in
mangrove sediments regardless of the mangrove type. Well-preserved mangroves shared a
similar bacteria taxon order count with restored mangroves, while disturbed mangrove
exhibited a more diverse microbial diversity. We acknowledge that the current dataset
does not allow us to suggest the criteria to select suitable species considering the effects of
microbial diversity on reforestation and for restoration of mangrove ecosystems. Generally,
the tree species for planting would be selected considering its natural habitat in the focal
region. The present study result, however, suggested that the diversity of soil microbes can
differ depending on human disturbance. The interactions among planted mangrove species,
environmental settings, and soil microbes have not been fully studied yet, and further
studies on the interactions among them and their impacts on the mangrove ecosystem
functions are necessary.

4.2. Specific Roles of Mangrove Associated Microbes

The circulation and storage of “Blue Carbon” in mangroves are the largest by service
value according to the calculations by Macreadie et al. [143]. Carbon sequestration is one
of the main functions of mangroves and prokaryotes such as bacteria and archaea supply
the nutrients, and regulate the carbon flux by removing inorganic carbon such as CO2
from the atmosphere and from the mangrove sediment while emitting methane and other
greenhouse gases (GHGs) as a byproduct of their distinct metabolisms [144–146]. Bacteria
serve as the fundamental decomposer controlling the transformation of organic carbon to
inorganic carbon and vice versa [13,147]. Meng et al. (2022) [148], using the functional gene
correlation method, found that mangrove bacteria have the highest correlation in carbon
cycles which includes carbon fixation, degradation, and methanogenesis.

Aerobic methanotrophs including Methylacidiphilum and Methylacidimicrobium from
Verrucomicrobia are some of the rare members of methane oxidizers outside the Proteobac-
teria lineage [149]. The grouping of aerobic methanotrophs is phylogenetically separated
into two divisions, namely, Type I constitute members of Gammaproteobacteria, where
they combine oxygen and methane as part of their carbon assimilation pathway, and Type
II including the genus Methylosinus and genus Methylocystis methanotrophic Alphapro-
teobacterium [150] and, according to Yang and colleagues, the cell carbon largely originates
from CO2 [151]. The absence of oxygen in mangrove sediment provides a suitable envi-
ronment, meeting the needs of several groups of anaerobic prokaryotes which include
methanogens [152]. It is acknowledged that recent studies show methanotrophs survive
under both conditions either with or without the presence of free-flowing oxygen [153].
The distinct metabolism of methanogens provides a degradation solution for a complex
carbon-borne substrate such as polycyclic aromatic hydrocarbons (PAH) thus linking it as
part of the carbon cycle.

Nitrogen is an integral nutrient component in mangrove growth limitations [154,155].
Nitrogen cycles in the mangrove ecosystem largely depend on the microbial community in
the recycling of N, which includes nitrification, N-fixation, and denitrification. Diazotrophs
are a community of organisms that fixes atmospheric nitrogen gas into bioavailable or-
ganic molecules such as ammonium (NH4+). They play an integral role in rhizosphere
nutrient cycles [156], diazotroph communities acting as an intermediaries for free-flowing
nitrogen gases, and useful ammonium as a nutrient for plants [109,157]. The bacterial
symbiotic fixation of nitrogen (N2) is reported to affiliate with various plants [158]. The
isolations of diazotrophs genera such as Oceanomonas, Marinobacterium, and Pseudomonas,
have been described to have crucial roles in maintaining the soil–plant nitrogen cycle in the
mangrove ecosystem.
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On the other hand, nutrient parameters in Tables 4 and S2 show that the percentages
of sulfur account for a minute amount representing less than 0.5% of soil content. In
contrast to the amount reported in mangrove soil sediment, there have been a large number
of S-cycle involvers such as members of the order Desulfobacterales, Desulfuromonadales,
Desulfovibrionales and Desulfarculales reported as part of dominant bacterial orders in man-
grove sediments [75,102,108]. These major groups of bacteria utilized sulfur as the primary
resource for sulfur cycles in the environment using a variety of assimilation methods [159].

Table 4. Total sulfur content of sampled mangrove soil.

Sampling Site Condition Categorized TS References

Mai Po Wetland, Hong Kong, China Disturbed 0.59% to 0.86% [98]
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China Disturbed 4.27 g/kg [91]

Coastal Zones of China Disturbed 0.19% to 1.33% [94]
Mangalavanam, India Disturbed 0.26% to 0.04% [56]

Rantau Abang, Terengganu, Malaysia Disturbed 1.374 g/kg [31]
Valle de Los Cangrejos, La Guajira, Colombia Disturbed 0.523 to 0.849 g/kg [85]

La Guajira, Colombia Disturbed 0.803 to 0.324 g/kg [97]
Bertioga, Sao Paulo State, Brazil Disturbed 0.17% to 0.34% [95]
Bertioga, Sao Paulo State, Brazil Disturbed 0.13% to 0.45% [109]

Quanzhou bay, Fujian, China Restored 1.59 to 4.09 g/kg [75]
Quanzhou bay, Fujian, China Restored 1.59 to 6.08 g/kg [58]

Matang Virgin Jungle Forest, Perak, Malaysia Well Preserved 3.64 to 3.84 g/kg [68]
Saint Vincent Bay, New Caledonia Well Preserved 0.72% to 0.99% [60]
Saint Vincent Bay, New Caledonia Well Preserved 0.21% to 0.23% [60]

[73]Ilha do Cardoso, Sao Paulo, Brazil Well Preserved 0.14% to 0.19%
Estuary of Cananéia, São Paulo, Brazil Well Preserved 0.1% to 0.2% [71]

TS: Total Sulfur.

While there is a considerable number of research efforts focusing on microbial com-
munities in different mangrove conditions and their corresponding environmental factors
and element cycles shaping the microbiome groups, we strongly support more research
into the role and distribution of these microbial communities on a global scale and the
establishment of standardized mangrove microbiome research in a broader scope as the
foundation for a more diverse and transdisciplinary perspective.

5. Suggestions for Future Mangrove Microbial Diversity Research

Despite many research advancements in mangrove sediment bacterial metagenomics
diversity in various conditions over the past few years, bridging the research gap and
expanding our knowledge towards the relationship between microbes mainly constituted
of bacteria and its nutrient cycles in the mangrove sediment and direct and indirect impacts
on mangrove growth and stand-structures as coastal barriers and other ecological service
providers. Thus, based on our systematic review, here we suggest sampling improvements
and a fundamental environmental index for future reference.

1. Southeast Asian nations (ASEAN) have high mangrove coverage and tree diversity,
and are the epicenter of most mangrove deforestation [160,161] and small patch
mangrove restoration efforts [138]. We suggest for an increase mangrove sediment
bacterial diversity studies in these rapidly changing and developing areas. The
increment of studies will provide a clearer insight to understand the ecological and
social values of mangroves and their subordinates in different succession stages.
Furthermore, there is a need to explore the polluted sediments of different species
of mangroves and their interaction and impact on microbial diversity, thus finding
suitable and highly adaptive mangrove species for quick remediation of contaminated
mangrove areas and coastal protection.

2. We recommend increased research and development of the biogeochemical behaviors
of coastal mangrove sediment microbes and the main drivers to cultivate a “fertilizer”
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to enhance a higher rate of success in mangrove restoration and conservation. Man-
grove forests are subject to high salinity and constant inundation, hence the “fertilizer”
developed must premeditate the hydrodynamics, bioavailability, and feedback adjust-
ment of sediment microbes and their reciprocal mangrove trees. The accomplishment
of mangrove restoration can reduce the rate of climate change and help nations to
realize sustainable development goals (SDG) [162]. We suggest public, private, and
governmental organizations join hands and promote mangrove restoration in coastal
regions around land–sea margins for sustainable development and to benefit ethically
from the ecosystem.

3. Further, we should deepen the current understanding of the relationship between
geolocation and mangrove species and their microbial diversity. Microbes in man-
grove sediments have a symbiotic relationship with their corresponding mangrove
environment. While studies have shown that mangrove tree species contribute to the
ecosystem by controlling the supply and demand of vital resources, the nutrient trans-
formation from different mangrove tree species also alters microbial diversities and
structures in a phenomenon where the microbial community selection force is driven
by mangrove plant species [163]. Here we suggest adding mangrove tree species and
their growth status such as diameter at breast height (DBH) and estimated tree height
as part of the criteria and factors affecting and controlling the diversity of the microbial
community. The differential of mangrove tree age [58,75] and species [78,90] have
proven to induce vital changes in controlling the microbiota structure compositions.

4. We recommend unified physio-chemical indices units for better regional and ulti-
mately global-scale comparison. We acknowledge the constraints of methodological
differences in research equipment and objectives, here suggestions are made to encour-
age the universalization and protocol of units such as TC, TN, TS, and TP. These indices
are important for environmental nutrient factors dictating the directive changes of
microbial communities. Such developments and unification of standard units will
benefit all sediment microbes research and have significant value in constructing a
conducive comparison meanwhile further bridging research gaps and encouraging
research development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13122160/s1, Table S1: Bacteria Taxon Order Classifications;
Table S2: Mangrove Condition nutrient Parameters; Table S3: Detailed Publications and Sampling
Coordinates; Table S4: Mangrove Condition Unique Taxon Order.
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