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Abstract: Drought resistance in plants is controlled by multiple genes. To identify the genes that
mediate drought stress responses and to assess the associated metabolic pathways in the desert shrub
Nitraria tangutorum, we conducted a transcriptome analysis of plants under control (maximum field
capacity) and drought (20% of the maximum field capacity) conditions. We analyzed differentially
expressed genes (DEGs) of N. tangutorum and their enrichment in the KEGG metabolic pathways
database, and explored the molecular biological mechanisms underlying the answer to its drought
tolerance. Between the control and drought groups, 119 classified metabolic pathways annotated
3047 DEGs in the KEGG database. For drought tolerance, nitrate reductase (NR) gene expression
was downregulated, indicating that NR activity was decreased to improve drought tolerance. In am-
monium assimilation, drought stress inhibited glutamine formation. Protochlorophyllide reductase
(1.3.1.33) expression was upregulated to promote chlorophyll a synthesis, whereas divinyl reductase
(1.3.1.75) expression was downregulated to inhibit chlorophyll-ester a synthesis. The expression
of the chlorophyll synthase (2.5.1.62) gene was downregulated, which affected the synthesis of
chlorophyll a and b. Overall, drought stress appeared to improve the ability to convert chlorophyll
b into chlorophyll a. Our data serve as a theoretical foundation for further elucidating the growth
regulatory mechanism of desert xerophytes, thereby facilitating the development and cultivation of
new, drought-resistant genotypes for the purpose of improving desert ecosystems.

Keywords: transcriptome analysis; drought stress; Nitraria tangutorum; metabolic pathways

1. Introduction

China is one of numerous countries worldwide that face severe water resource con-
straints [1,2], and climate change has exacerbated water scarcity and dryland expansion [3].
For a long time, the difficulty of ensuring sustainable water resource use has increased
as global greenhouse gas emissions and population density have increased, resulting in
continuous temperature increases of varying magnitudes in different regions and an un-
even distribution of water resources [4]; this has resulted in increased drought hazards and
water shortages throughout China [5].

Perception of and adaptation to habitat change are primary challenges for the repro-
duction, development, and survival of all living organisms on the planet [6]. Water is one of
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the most important environmental constraints on plant survival [7]. Drought restricts plant
growth at all stages of growth and development and is regarded as one of the most severe
environmental stressors [4,8,9], particularly in arid areas, where plants frequently experi-
ence water scarcity stress, a condition known as drought stress [10]. Additionally, drought
affects respiration and photosynthesis [11,12], affecting plant physiological processes such
as osmotic regulation, protein synthesis, and photosynthate transportation [13–16]. Water
scarcity can eventually have a negative impact on crops’ and trees’ survival, growth, and
productivity [17–19]. According to current research and evaluations of global climate char-
acteristics, the limiting effect of water in desert areas is becoming increasingly difficult [20].
Thus, the mechanisms by which plants in arid and desert areas respond to water stress will
undoubtedly become a focus of botanical research.

Nitraria tangutorum Bobr. (family Zygophyllaceae) is native to China [21], and is a
small, unique, and typical desert sand-fixing shrub distributed in the arid and desert areas
of Inner Mongolia, China [22]. As an important component of desert flora, N. tangutorum is
resistant to multiple stresses, including wind erosion [23], sand burial [24], drought [25],
salt, and alkali stresses [26,27]. Much of this resistance is related to its well-developed root
system, small and fleshy leaves, and easily propagated branches. Therefore, N. tangutorum
plays a key role in preventing wind erosion, fixing sand, optimizing the soil’s physical and
chemical properties, and maintaining vegetation diversity in desert areas. Furthermore,
N. tangutorum is a significant source of economic income for the local population; for
example, their fruits are known as “desert cherry” and are used to produce medicines
and drinks [28], and its litter (e.g., dry branches and fallen leaves) is frequently used as
firewood by residents [29]. However, structural plants in desert areas are being affected in
multiple ways due to environmental damage, rising temperatures, and increasing drought
intensity, in addition to their characteristic poor growth rates, decreased seed-setting rates,
and increased mortality rates. These important wild resources, which are represented by N.
tangutorum, are in danger because of drought.

As a key environmental stressor, water stress triggers diverse plant responses from the
physiological and ecological levels to the molecular biology level [30,31]. Generally, when
plants are threatened by external drought, they guard themselves from the deleterious
stimulus of environmental fluctuations by initiating and regulating the differential expres-
sion of drought tolerance genes [32]. Drought tolerance in plants, on the other hand, is an
extremely complicated process that is controlled by multiple genes at the same time [33,34].
High-throughput RNA sequencing (RNA-seq) provides a new convenient way to study the
theory of plant resistance and has become a powerful tool to reveal drought stress signaling
pathways and predict gene functions [31,35], and the analysis of transcriptome data could
elucidate gene functions to reveal the molecular mechanisms underlying specific biological
processes [36]. Currently, RNA-seq studies indicate that many drought tolerance genes are
in multiple plants, e.g., poplar [37,38], soybean [39,40], and maize [32,41,42]. Unfortunately,
most of the research on the drought tolerance of N. tangutorum in arid areas has focused on
physiological and biochemical processes [43–46], while research on the molecular mecha-
nisms underlying these physiological and biochemical processes is relatively limited; thus,
the elucidation of drought-resistance mechanisms has been hindered. In this study, the
objectives were to provide information on the genes and possible mechanisms regulating
the growth and drought tolerance of sand xerophytes using N. tangutorum as a case study.
The information obtained herein may be useful in the development and cultivation of new
drought-resistant plant varieties.

2. Materials and Methods
2.1. Plant Materials and Experimental Design

N. tangutorum plants in the Ulan Buh desert (Inner Mongolia, China) were selected for
investigation in this study. Seeds were collected from the same wild N. tangutorum plant
that were vigorously growing in the Ulan Buh desert in August 2014 to ensure the genetic
homogeneity of the experimental plants. In mid-March 2015, the seedlings were grown in
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nutrient pots in the Chinese Academy of Forestry’s Desert Forestry Experimental Center
greenhouse (106◦43′ E, 40◦24′ N) and watered with underground water. The soil matrix
was composed of local farmland topsoil and low-salinity, fine sand, which were screened
and mixed in equal amounts (1:1, v/v). In early May 2015, seedlings of relatively uniform
sizes were transplanted into our independently developed PVC material barrels (40 cm
height × 16 cm in diameter), one plant per barrel; then, they were randomly assigned
to the drought treatment (T) and control (CK) groups. The groups were comprised of
6 replicates with 60 plants per replicate. The soil moisture content was maintained at 100%
of the field capacity (FC) (i.e., 20.3%) in the CK group, and at 20–40% of the FC in the T
group. When the treated soil water content was below the experimental level, moderate
watering was carried out with a syringe until it met the experimental level. Meanwhile,
the soil water content was determined by the gravimetric method, weighing once every
morning at 9 o’clock for 60 days. Plant survival was guaranteed in both treatment groups,
and other routine maintenance and management measures for seedlings reflected standard
field management practices.

2.2. Complementary DNA Library Construction and RNA Sequencing

The RNAsimple Total RNA Kit (TIANGEN, Beijing, China) was used to isolate the
total RNA from leaf tissue samples of N. tangutorum (mixed sampling was conducted
after 60 days of drought treatment; each treatment used three biological replicates, and
samples were quickly put into a −80 ◦C refrigerator for later use). A total amount of
1.5 µg RNA per sample was used as input material for the RNA sample preparations.
Sequencing libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for
Illumina® (NEB, Ipswich, MA, USA) following the manufacturer’s recommendations.
Briefly, mRNA was purified from the total RNA using poly-Toligo-attached magnetic beads.
Fragmentation was carried out using divalent cations under an elevated temperature in a
NEBNext First Strand Synthesis Reaction Buffer (5X). First-strand cDNA was synthesized
using a random hexamer primer and M-MuLV Reverse Transcriptase (RNase H−). Second-
strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase
H. The remaining overhangs were converted into blunt ends via exonuclease/polymerase
activities. After adenylation of the 3′ ends of the DNA fragments, a NEBNext Adaptor with
a hairpin loop structure were ligated to prepare for hybridization. In order to select cDNA
fragments of the preferable length of 250~300 bp, the library fragments were purified with
AMPure XP system (Beckman Coulter, Beverly, CA, USA). Then 3 µL USER Enzyme (NEB,
Ipswich, MA, USA) was used with size-selected, adaptor-ligated cDNA at 37 ◦C for 15 min,
followed by 5 min at 95 ◦C before PCR analysis. Then, PCR analysis was performed with
Phusion High-Fidelity DNA polymerase, Universal PCR primers, and an Index (X) Primer.
At last, the PCR products were purified (AMPure XP system), and the library quality
was assessed on the Agilent Bioanalyzer 2100 system. All the above work, including the
construction of the cDNA library and RNA-seq, were completed at Novogene Technology
Co., Ltd. (Beijing, China).

2.3. Enrichment Analysis of Differentially Expressed Genes

DESeq software [47] was used to analyze and screen the differentially expressed genes
(DEGs). The numbers of DEGs between the CK and T groups were statistically analyzed,
including upregulated genes and downregulated genes. The screening thresholds for the
DEGs in the CK group were padj < 0.05 and |log2(FoldChange)| > 1.

GOseq software was used to annotate all the DEGs into the gene ontology (GO)
database, calculate the number of genes annotated to each GO term (biological process,
molecular function, and cell composition), analyze significantly enriched GO terms of N.
tangutorum compared with the whole-genome background, and determine the biological
function of the DEGs. Screening was done by setting a cutoff point of less than or equal to
0.05. GO terms that met this standard were considered to be “significantly rich”.
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All the DEG sequences were annotated to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database using KOBAS 2.0 software [48], and the signal transduction
pathways and major biochemical metabolic pathways involved in the identified DEGs were
then determined. A p-value threshold of ≤0.05 was set for significant enrichment.

2.4. Verification of RNA-Seq Data by Quantitative Real-Time PCR

Ten DEGs of N. tangutorum were randomly selected, and the differences in their
expression levels were verified by quantitative real-time PCR (qRT-PCR). Ten primers
were designed (Table 1). Then, 1.0 µg total RNA of each sample of N. tangutorum was
reverse-transcribed with a GoldenstarTM RT6 cDNA Synthesis Kit (TSINGKE BIOTECH,
Beijing, China); then, cDNA was amplificated using 2 × T5 Fast qPCR Mix (SYBR Green I)
from the same company. Afterward, the relative transcript abundance of gene expression
level was analyzed by a 2–∆∆Ct method for each sample.

Table 1. Information about of ten primers.

Gene ID Forward Primer (5′–3′) Reverse Primer (5′–3′)

Cluster-40906.35332 TTCCTCCCCACGCACTTTTC CCAGTTCCGGCCTGTCATTC
Cluster-40906.11509 AACTCTGAGCAGTAACCAAGCAA ACTCTGAATTAGAATATGCAACCGA
Cluster-40906.56890 ATCCAAGCGACATGGCGAA TTCTGCAGGAAACTTGAAGTCGTAG

Cluster-40906.174397 CCAATGATACCGCATCCAAT ATGATCTCGGAAAAGGTGGAC
Cluster-28726.1 CCATCATCACCACAGAATGTAAAA TCCAGATCGGAGTACAAAATTCAC

Cluster-40906.57689 TTGCTACCCCAAAACTGACTTC CATTTCCTCTTCCGCCTCAC
Cluster-40906.102382 ATTCAACCCAATTCTCACTCTTCTT ATAACGCAGGAGACGCACCA
Cluster-40906.114615 ACATCCTTCTTTCCATCCTCCA GAATGATGTATGACCGACCACC
Cluster-40906.35748 TCCGGGAAATTGAGAGTTGC AAGGGGGTGAGGATGAGAAA

Cluster-40906.176764 AGAAGCTGGGGAAAATGGGTAT GAGTTGGGGGAAGTTGAGGAC
NsActin GGAATCCACGAGACCACCTACA GATTGATCCTCCGATCCAGACA

3. Results
3.1. RNA-Seq Analysis and Transcript Splicing

The data results showed that the RNA-seq of N. tangutorum yielded 48,422,264 (CK-
2) to 64,926,978 (T-3) raw reads per experimental group. The clean reads in each group
accounted for 98.16% (CK-1), 97.54% (CK-2), 98.22% (CK-3), 98.31% (T-1), 98.72% (T-2), and
98.15% (T-3) of the raw reads, respectively; these high proportions guaranteed the splicing
of transcripts. The GC content in each treatment group ranged from 45.62% to 46.24%, and
the error rate was only 0.03% (see Supplementary Data in Table S1).

The Corset hierarchical clustering results showed that the transcript sequences were
combined into 332,420 transcripts and 276,423 unigenes (see Supplementary Data in
Table S2). The transcripts ranged in length from 201 to 26,379 nucleotides, with a mean
length of 966 nucleotides. The minimum transcript length needed to cover 50% of the
genome (N50) was 1554 nucleotides. The unigene length ranged from 201 to 26,379 nu-
cleotides, with a mean length of 1107 nucleotides; the N50 was 1628 nucleotides.

3.2. Gene Function Annotation

Through database comparison and analysis, 32,048 unigenes of N. tangutorum were anno-
tated in the seven databases (Table 2). The comparison results indicated that 25,380 unigenes
were successfully annotated, accounting for 9.18% of the total unigenes; 195,214 unigenes
were successfully annotated by at least one of the databases, accounting for 70.62%; and
29.38% of unigenes failed, possibly indicating the presence of novel genes.
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Table 2. Unigenes of N. tangutorum were compared with seven databases.

Database Name Unigene Numbers Ratio (%)

Nr (NCBI, Non-redundant Protein Sequences Database) 176,393 63.81
Nt (NCBI, Nucleotide Sequences Database) 116,688 42.21

KO (KEGG Orthology) 70,817 25.61
Swiss-Prot (Annotated Protein Sequence Database) 129,949 47.01

PFAM (Family Protein Database) 122,945 44.47
GO (Gene Ontology Database) 122,945 44.47

KOG (euKaryotic Ortholog Groups) 48,287 17.46
All databases 25,380 9.18

At least one database 195,214 70.62
Total unigenes 276,423 100

The E-values and species distributions for the 176,393 genes functionally annotated
in the Nr database (Figure 1) showed the largest distribution of unigenes at 0–1 × 10−100,
accounting for 27.4% of the total. According to the annotation results of species distribution,
the annotated proportion of all unigenes in citrus, sweet orange, kumquat, Quercus sp.,
and cacao accounted for 14.0%, 11.1%, 10.6%, 7.9%, and 2.9% of the total gene number,
respectively.
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3.3. KEGG Functional Classification

Figure 2 shows that 70,817 genes were enriched in 19 metabolic pathways. Among
the enriched genes, 1703 were involved in signal transduction in the physiological and
metabolic processes of N. tangutorum, and 2174 were related to environmental adaptation.
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3.4. DEGs Analysis

Transcriptome data were analyzed to study the regulatory mechanism of N. tangutorum
under drought stress. The DEGs in each treatment group were used to create a volcano
map to reflect the gene expression (Figure 3). There were 10,229 DEGs between the T
and CK treatments, including 4767 upregulated and 5462 downregulated genes. The
DEGs indicated that, when N. tangutorum was subjected to drought stress, the molecular
mechanisms of the drought tolerance genes were activated. In addition, the expression
of some genes was upregulated while that of other genes was inhibited. The significant
difference analysis of gene function between the T group and the CK group showed
that 16 and 14 genes were upregulated and downregulated among the top 30 genes with
significant differentially expressed genes, respectively (Table 3). These genes mainly code
for heme, peroxidase, hydrolase, redox enzymes, dehydrogenases, peptidases, hydrogen
phosphate salt synthases, and transposase, which are related to plant stress reactions, signal
transduction, amino acid metabolism, and oxidation or reduction.
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Table 3. Top 30 genes showing significant differential expression under drought stress.

Gene ID log2 Fold Change p-Value Description

Cluster-40906.113941 −3.5898 7.38 × 10−74 Oxidoreductase activity//chlorophyllide a oxygenase
(overall) activity//2 iron, 2 sulfur cluster binding

Cluster-40906.41614 4.6013 1.57 × 10−72 Unfolded protein binding//ATP binding
Cluster-40906.93310 −2.0399 1.15 × 10−67 Protein binding

Cluster-40906.110044 −5.814 1.43 × 10−66 Calcium ion binding

Cluster-40906.175859 4.7681 1.49 × 10−60 DNA binding//transposase activity//ATP
binding//unfolded protein binding

Cluster-40906.104561 −4.0125 1.19 × 10−53 Transporter activity
Cluster-40906.116353 −2.4038 1.41 × 10−53 Chitinase activity
Cluster-40906.83443 4.8401 9.86 × 10−53 Unfolded protein binding//ATP binding
Cluster-40906.62892 3.2606 7.27 × 10−52 Hypothetical protein CUMW_183970

Cluster-40906.109750 −7.2303 1.29 × 10−51 –
Cluster-40906.123767 1.5802 2.95 × 10−50 DnaJ homolog subfamily B member 7 isoform X2
Cluster-40906.107883 2.056 7.53 × 10−50 Chlorophyll a-b-binding protein CP26, chloroplastic-like
Cluster-40906.175857 5.4749 2.58 × 10−48 Heat shock protein 90-1
Cluster-40906.108887 −2.4863 3.24 × 10−48 Transmembrane transport
Cluster-40906.121414 −4.0105 2.51 × 10−46 Phosphatidylinositol-4-phosphate binding
Cluster-40906.112950 −14.664 1.01 × 10−45 Zinc ion binding
Cluster-40906.115294 5.5761 1.08 × 10−45 Heme binding//peroxidase activity
Cluster-40906.112156 10.614 2.10 × 10−43 Hydrolase activity, hydrolyzing O-glycosyl compounds

Cluster-40906.147611 3.1736 1.04 × 10−42
Catalytic activity//oxidoreductase

activity//3-hydroxyacyl-CoA dehydrogenase
activity//peptidase activity//hydrolyase activity

Cluster-40906.119123 1.4464 4.56 × 10−42 Protein binding

Cluster-40906.111055 −1.3917 2.64 × 10−41 ATP binding//GTP binding//GTPase
activity//cytidylate kinase activity//ATPase activity

Cluster-40906.117956 −7.1941 3.62 × 10−41

Adenyl-nucleotide exchange factor
activity//transcription factor activity, sequence-specific

DNA binding//exodeoxyribonuclease VII
activity//protein homodimerization activity//unfolded
protein binding//chaperone binding//protein binding,

bridging//protein tag//motor activity//structural
molecule activity//acid–amino acid ligase

activity//receptor binding

Cluster-40906.105679 3.2201 1.26 × 10−40 4-Hydroxy-3-methylbut-2-en-1-yl diphosphate synthase
activity

Cluster-40906.35332 3.1073 2.86 × 10−39 Protein binding//catalytic activity

Cluster-40906.111273 −1.6128 7.15 × 10−38 Transcription factor activity, sequence-specific DNA
binding

Cluster-40906.111303 4.1859 1.28 × 10−37 Hypothetical protein B456_006G088300
Cluster-40906.118097 2.0982 4.43 × 10−37 –
Cluster-40906.89392 3.4364 1.82 × 10−36 Protein dimerization activity
Cluster-40906.129546 −4.631 3.31 × 10−36 Alcohol dehydrogenase 1
Cluster-40906.49184 −5.5647 4.42 × 10−36 Structural constituent of ribosome
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3.5. KEGG Enrichment Analysis

In order to identify the main signal transduction and biological metabolic pathways
of N. tangutorum in response to drought stress, the KEGG pathway analysis of DEGs
under drought stress was conducted in this study. In the KEGG database, 3047 DEGs of
119 classified metabolic pathways were annotated, among which 14 pathways showed
significant enrichment (p-value less than 0.05). As shown in Table 4, these pathways were
mainly related to the functions of ribosomes (177 members, 21.5%), and were followed
by protein processing in the endoplasmic reticulum (139 members, 16.9%), spliceosomes
(110 members, 13.4%), plant hormone signal transduction (101 members, 12.3%), and starch
and sucrose metabolism (98 members, 11.9%). The other nine metabolic pathways involved
198 members, accounting for 24.1% of the total.

Table 4. Significant enrichment of metabolic pathways in the KEGG database in the drought stress vs.
control groups comparison.

KEGG Pathway ID DEG Number p-Value

Ribosome ko03010 177 1.26 × 10−7

Plant hormone signal transduction ko04075 101 1.86 × 10−6

Protein processing in endoplasmic reticulum ko04141 139 1.69 × 10−5

Porphyrin and chlorophyll metabolism ko00860 44 0.001141408
Spliceosome ko03040 110 0.001860469

Phenylalanine, tyrosine, and tryptophan biosynthesis ko00400 34 0.005868948
Starch and sucrose metabolism ko00500 98 0.006867847

Anthocyanin biosynthesis ko00942 8 0.011943248
Flavonoid biosynthesis ko00941 17 0.013126286

Alpha-linolenic acid metabolism ko00592 29 0.032232635
Taurine and hypotaurine metabolism ko00430 12 0.034211087

Photosynthesis (antenna proteins) ko00196 26 0.035911307
Limonene and pinene degradation ko00903 14 0.038622556

Stilbenoid, diarylheptanoid, and gingerol biosynthesis ko00945 14 0.046974746

The number of upregulated DEGs in the endoplasmic reticulum protein-processing pro-
cess was 104, which was the largest among all upregulated DEGs, followed by 67 upregulated
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DEGs in the metabolism of starch and sucrose; 59 in spliceosome; 40 in the signal transduc-
tion of plant hormones; and 37 in the carbon sequestration in photosynthetic organisms
(Figure 4). The range of q-values was [0, 1]. The closer the q-value is to zero, the more
significant the enrichment is. The DEGs involved in starch and sucrose metabolism, spliceo-
some, endoplasmic reticulum protein processing, porphyrin and chlorophyll metabolism,
photosynthesis (antenna protein), and flavonoid biosynthesis were all significantly en-
riched. These data indicate that N. tangutorum can resist water deficiency by modulating
and sensitizing the function of the genes involved in these biosynthetic and metabolic
pathways.
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3.6. Nitrogen Metabolism

In the nitrogen metabolism pathway under drought stress (Figure 5), nitrate reductase
(NR; 1.7.1.4 1.7.7.1, 1.7.1.15, 1.7.2.2) is a rate-limiting enzyme, and its activity directly affects
the nitrogen utilization efficiency of plants. As shown in the figure, during the reduction
of nitrate to nitrite, the expression of the NR gene was downregulated. However, during
nitrite formation in the process of ammonia assimilation, NiR gene expression was not
changed, whereas the expression of the glutamine synthetase (GS; 6.3.1.2) gene was down-
regulated. In the glutamate synthetase (GOGAT) pathway, which catalyzes the formation
of glutamate, NADH-GOGAT (1.4.1.13 and 1.4.1.14) expression was downregulated, while
Fd-GOGAT (1.4.7.1) expression was upregulated or downregulated. In the formamide
synthesis pathway, the expression of the formamide enzyme (3.5.1.49) gene was down-
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regulated. During the conversion of carbon dioxide to bicarbonate, the expression of the
carbonic anhydrase gene was either upregulated or downregulated.
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Figure 5. Nitrogen metabolism pathway of N. tangutorum under drought stress: (1) Red boxes
denote the upregulated genes; green boxes denote the downregulated genes; yellow boxes denote
the up/downregulated genes. (2) Black solid arrows denote molecular interactions or relationships;
dotted arrows denote indirect effects; dotted boxes denote other signal pathway maps. (3) Letters and
numbers on a blue background denote genes or enzymes involved in metabolic pathways. NR: nitrate
reductase (NAD(P)H); 1.7.2.1: nitrite reductase (NO-forming); 1.13.12.16: nitronate monooxygenase;
1.7.3.1: nitroalkane oxidase; 1.7.1.4: nitrite reductase (NAD(P)H); 1.7.7.1: ferredoxin-nitrite reductase;
1.7.1.15: nitrite reductase (NADH) large subunit; 1.7.2.2: nitrite reductase (cytochrome c-552); 3.5.1.49:
formamidase; 1.4.1.2: glutamate dehydrogenase; 1.4.1.3: glutamate dehydrogenase (NAD(P)+); 1.4.1.4:
glutamate dehydrogenase (NADP+); 6.3.1.2: glutamine synthetase; 6.3.4.16: carbamoyl-phosphate
synthase (ammonia); 1.4.1.13: glutamate synthase (NADH); 1.4.1.14: glutamate synthase (NADH);
1.4.7.1: glutamate synthase (ferredoxin); 2.7.2.2: carbamate kinase; 4.2.1.104: cyanate lyase; 4.2.1.1:
carbonic anhydrase.

3.7. Metabolism of Porphyrin and Chlorophyll

Table 5 shows that in the alpha-linolenic acid (ALA) synthesis pathway, the expression
of the tRNA synthase gene was downregulated, while the expression of the glutamine tRNA
reductase gene was upregulated, and that of the glutamine-1-hemialdehyde transaminase
gene was mainly downregulated. The expression of the bile pigment synthase, uropor-
phyrin procarboxylase, and protoporphyrinogen oxidase genes and the ferrous heme
synthase and COX15 genes was upregulated. The expression of the ferrochelatase gene
and the magnesium chelatase H subunit gene was upregulated and downregulated. We
also found from Table 5 that the expression of the prochlorophyll reductase, chlorophyll b
reductase, and 7-hydroxychlorophyll a reductase genes was upregulated, but the diethylene
reductase genes’ expression was downregulated. In addition, during the transformation of
chlorophyll a into chlorophyllin a, and chlorophyll b into chlorophyllin b, the expression of
the chlorophyll enzyme and CHIP genes was downregulated. The expression of the PAO
gene was upregulated in magnesium removal and transplant-based reactions.
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Table 5. Effect of drought treatment on relating functional genes of porphyrin and chlorophyll
metabolism in N. tangutorum.

Enzyme Gene Name Gene ID Up/Downregulated

6.1.1.17 Glutamine tRNA synthetase Cluster-40906.71722 Down
Cluster-40906.54653 Down

1.2.1.70 Glutamyl-tNRA reductase Cluster-40906.114395 Up
Cluster-40906.129403 Up

5.4.3.8 Glutamate-1-hemialdehyde transaminase Cluster-40906.192599 Up
Cluster-40906.119289 Down

4.2.1.24 Bile pigment synthase Cluster-40906.85742 Up
Cluster-40906.85733 Up
Cluster-40906.85731 Up

4.2.1.75 Uroporphyrinogen decarboxylase Cluster-40906.104102 Up
1.3.3.4/1.3.3.15 Protoporphyrinogen oxidase Cluster-40906.34049 Up

4.99.1.1/4.99.1.9 Ferrochelatase Cluster-40906.121603 Up
Cluster-40906.121607 Up
Cluster-40906.121031 Up
Cluster-40906.100839 Down
Cluster-40906.93744 Down

Cluster-40906.100841 Down
2.5.1.- Heme O ferric synthetase Cluster-40906.118608 Up

COX15 Cluster-40906.59147 Up
6.6.1.1 Magnesium chelatase H subgroup Cluster-40906.117245 Up

Cluster-40906.137917 Up
Cluster-40906.157365 Up
Cluster-40906.106867 Up
Cluster-40906.93092 Up

Cluster-40906.118198 Up
Cluster-40906.118566 Up
Cluster-40906.110295 Up
Cluster-40906.121612 Down
Cluster-40906.103817 Down
Cluster-40906.106857 Down

1.3.1.75 Divinyl reductase Cluster-40906.109654 Down
1.3.1.33 Prochlorophyll reductase Cluster-40906.168882 Up

Cluster-40906.99070
2.5.1.62 Chlorophyll synthase Cluster-40906.89493 Down

1.1.1.294 Chlorophyll b reductase Cluster-40906.133380 Up
Cluster-40906.59982 Up
Cluster-40906.59985 Down
Cluster-40906.27543 Down

1.17.7.2 7-Hydroxymethyl chlorophyll a reductase Cluster-40906.185694 Up
3.1.1.14 Chlorophyllase Cluster-40906.151688 Down

1.14.1517 PAO Cluster-40906.92868 Up
2.5.1.133 Chlorophyll synthase Cluster-40906.89493 Down
1.3.1.111 CHIP Cluster-40906.113828 Up

Cluster-40906.113825 Down
Cluster-40906.113826 Down

3.8. Transcriptome Data Validation

To validate the exactitude of the RNA-seq data, 10 DEGs of N. tangutorum were
randomly selected for qRT-PCR analysis. As shown in Figure 6, the qRT-PCR test results
were similar to the RNA-seq data except for two genes (Cluster-40906.102382 and Cluster-
40906.114615), and the expression trends of most genes were coincident, thus verifying the
reliability of the RNA-seq test results.
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Figure 6. Comparison of qRT-PCR and RNA-seq results of 10 candidate genes in N. tangutorum.

4. Discussion

As N. tangutorum is one of the primary species in the Ulan Buh desert, explorations
of its molecular responses to the arid environment in the context of a complex desert
climate have significant merit. We discovered that nearly 71% of the concatenated unigene
sequences were successfully annotated in the multiple databases. On querying the concate-
nated unigene sequences to multiple databases (Nr, Nt, KO, KOG, Swiss-Prot, GO, and
PFAM). The inability to annotate the remaining sequences could be due to the following
factors: (1) some ultrashort sequences were not amenable to homology comparisons [49];
(2) a temporary lack of annotation information, resulting in the corresponding functions
being unannotated [50]; (3) some gene sequences lacked conserved regions, or some genes
themselves were non-coding or incomplete sequences [51]. However, the proportion of
unannotated genes for N. tangutorum was lower than in other desert plants, such as Haloxy-
lon ammodendron (41%) [52], Ammopiptanthus mongolicus (62%) [53], Caragana microphylla
(39%) [54], and Hippophae rhamnoides (43%) [55]. As a result, we thought that this result was
due to N. tangutorum possessing unique genetic resources that distinguish it from other
species.

In general, many plants enable a variety of metabolic and physiological mechanisms
to ensure normal life function and protect against the damage caused by drought crises,
including the activation of protein kinases, antioxidants, carotenoid, flavonoid biosynthesis,
and plant hormones (e.g., ABA, JA, IAA, etc.) [32,56–58]. The KEGG pathway enrichment
analysis laid the groundwork for identifying and screening active biological metabolic
pathways in plants, elucidating the metabolic mechanisms activated in response to drought.
The KEGG enrichment analysis revealed that the genes regulating plant hormone synthesis
and signaling transduction are regulated and controlled differently under different drought
conditions, and may also play a critical role in the environmental adaptation of plants (e.g.,
Rosa chinensis) [59]. In the present study, the KEGG analysis revealed that, under drought
stress, the porphyrin and chlorophyll metabolism pathways of N. tangutorum leaves were
significantly enriched. Thus, we hypothesized that the enzymes involved in chlorophyll
metabolism are critical for N. tangutorum growth and development under drought stress.
Additionally, the ribosomes, anthocyanin synthesis, flavonoid biosynthesis, plant hormone
signal transduction, and other physiological reactions were also enriched, implying that
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the genes encoding these pathways were a critical molecular biological pathway for N.
tangutorum to cope with drought stress.

Plant nitrogen metabolism is primarily based on the reduction of NO3
− to NO2

− by
NR; ammonia is generated by nitrite reductase (NiR) [60,61] and assimilated into organic
nitrogen stored in plants via the GS/GOGAT cycle [62,63]. NR is a rate-limiting enzyme
in nitrogen metabolism [64,65], directly regulating the reduction to NO3

− [66,67], and
affects the efficiency of plant nitrogen utilization [68]. Additionally, multiple studies
have demonstrated that, when plants are severely stressed by drought, the NR gene is
significantly downregulated, and NR activity is significantly reduced in plants such as
Triticum aestivum [69], Oryza sativa [67], and Hordeum vulgare [70]. The reduction of NO3

− to
NO2

- in this study resulted in a downregulation of the NR gene of N. tangutorum, which was
consistent with the above-mentioned findings from previous studies. The present study
found no change in the expression of four genes encoding NiR (1.7.1.4, 1.7.7.1, 1.7.1.15, and
1.7.2.2) during the catalytic conversion of NO2 to ammonia. However, some studies have
shown that drought stress inhibits NO3

− absorption, resulting in the downregulation of
the NiR gene expression [71,72], implying that some genes encoding NiR in N. tangutorum
may be unaffected by drought stress. One reason for this could be that N. tangutorum is a
drought-tolerant plant.

The conversion of ammonia (NH4
+) nitrogen to organic nitrogen compounds requires

ammonia assimilation. GS and GOGAT should be combined in this process to produce
glutamine and glutamic acid, which are the precursors to nitrogenous compounds [61,73].
As a result, the GS/GOGAT cycle is critical for nitrogen metabolism. Stress conditions
have been shown to frequently inhibit the GS/GOGAT enzyme activity in plants [72,74].
For example, under drought stress, tea bud GS activity was significantly reduced [75], and
Brassica juncea BjGS gene expression was downregulated under salt stress [76]. The present
study found that the GS gene expression is up- and downregulated during ammonia assim-
ilation, implying that drought stress inhibits the formation of glutamine in N. tangutorum
leaves.

In plants, GOGAT is found in two forms: Fd-GOGAT and NADH-GOGAT [77–79]. In
the present study, both forms were expressed. In the glutamate synthase pathway, which
catalyzes the formation of glutamate, the expression of the NADH-GOGAT gene was down-
regulated; the expression of the Fd-GOGAT gene, which assists other genes in catalyzing
glutamate formation, was upregulated, consistent with the results of previous studies in
Lotus corniculatus [80], Sporobolus stapfianus [81], Triticum aestivum [82] and other species.
In addition, during formamide synthesis from ammonia, the expression of the formamide
enzyme gene was downregulated, carbon dioxide was converted into bicarbonate, and the
expression of the carbonic anhydrase gene was upregulated or downregulated. Hence, in
the nitrogen metabolism pathway, we thought that all the genes that can be differentially
expressed may be sensitive to drought stress and cooperate with each other to help N.
tangutorum to cope with drought conditions.

Under water stress, the stomata of plant leaves close, and the content of the green
pigment is significantly affected [83–85]. The syntheses of ALA, protoporphyrin IX, and
chlorophyll acid ester are the three main regulatory steps of chlorophyll anabolism [86].
Furthermore, ALA synthesis is also a rate-limiting factor in chlorophyll anabolism, directly
affecting the chlorophyll content [87,88]. In the ALA synthesis pathway, we found that the
expression of the glutamyl-tRNA synthase gene was downregulated under drought stress,
but the expression of the glutamyl-tNRA reductase gene was upregulated. Furthermore,
under drought stress, ALA could enhance the drought resistance of wheat chloroplasts
by regulating the photosynthesis and ribosome metabolic pathways [89]. We also found
that the expression of the glutamine-1-hemialdehyde transaminase gene was mainly down-
regulated, indicating that glutamyl-tRNA synthase can regulate downstream chlorophyll
synthesis by regulating gene expression and ensure that N. tangutorum can cope with
drought stress.
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Another significant pathway is the synthesis of protoporphyrin IX; ALA is formed
through a series of six reactions catalyzed by various enzymes [90]. To begin, ALA is
condensed to form biliverdin, which is then deaminated by biliverdin deaminase to form
hydroxymethyl biliary tryptophan. Hydroxymethyl biliary tryptophan is converted to
pro-uroporphyrin I by biliverdin deaminase, and uroporphyrin III is synthesized by uropor-
phyrin III synthase. The carboxyl group of uroporphyrin III is removed and transformed
into coproporphyrinogen III by uroporphyrin III decarboxylase. Coproporphyrinogen III
is oxidized by coproporphyrinogen III oxidase and converted to protoporphyrin IX by
protoporphyrinogen IX oxidase. The present study discovered that the biliverdin synthase
gene expression was upregulated, indicating that drought stress initiated the function of
δ-aminolevulinate dehydratase and regulated the ALA synthesized in the previous step to
affect the biliverdin content under drought stress. This phenomenon was consistent with
previous findings that plants may produce increased amounts of biliverdin in response to
severe drought stress [91]. Following that, the uroporphyrin III synthase gene expression
was upregulated to increase the uroporphyrin III content. Finally, the protoporphyrin
peroxidase gene expression was upregulated to promote protoporphyrin IX synthesis,
while another protoporphyrin peroxidase gene expression was upregulated to enhance
coproporphyrin III synthesis. Changes in the expression of these enzymes worked in
concert to overcome drought stress in N. tangutorum. However, it differs from the creeping
bentgrass study’s findings [92], which may be cultivar-specific.

Additionally, protoporphyrin IX acts as a common precursor in both directions during
the final step of chlorophyll and heme syntheses [93]. The ferrous chelatase gene expres-
sion was up- and downregulated in the direction of heme synthesis, but the upregulated
expression was greater than the downregulated expression. The expression of ferrous
heme synthase and COX15 was upregulated, resulting in increased ferrous heme synthesis.
The feedback inhibition of heme is a regulatory step in chlorophyll synthesis, and both
reducing the rate of heme degradation and inhibiting biliverdin formation mutations can
reduce the formation of chlorophyllide, which is thought to be caused by heme restriction
in ALA synthesis [94]. In other words, the heme may play a role in the transcriptional
regulation of porphyrin biosynthesis genes in plants, allowing them to withstand drought-
induced water stress [95]. Our research discovered that, when numerous genes were
regulated, heme synthesis increased, and ALA synthesis decreased. The specific regulatory
mechanism, on the other hand, must be identified. Magnesium chelatase is the second
critical enzyme in chlorophyll synthesis, and its gene expression has a direct effect on
chlorophyll synthesis [93,96]. Drought stress frequently results in a significant decrease in
the chlorophyll a, chlorophyll b, and the total chlorophyll content of plants, as previously
demonstrated [91,97,98]. The results of this study indicated that, under drought stress, the
magnesium chelatase H subunit gene expression was downregulated more than it was
upregulated, which might have had an effect on chlorophyll a synthesis. The expression of
the downstream original chlorophyllin reductase was upregulated to promote the synthesis
of original chlorophyllin a, but the expression of diethylene reductase was downregulated
to inhibit the synthesis of chlorophyllin a, and the expression of the chlorophyll synthase
gene was downregulated to affect the synthesis of chlorophyll a and chlorophyll b.

In the chlorophyll metabolic pathway, plants regulate themselves to prevent photo-
synthetic damage and degrade the excess chlorophyll into components without inducing
photosynthetic toxicity. Studies have shown that converting chlorophyll b into chloro-
phyll a under the action of chlorophyll b reductase is one of the degradation pathways of
chlorophyll [99]. According to this study, the expression of chlorophyll b reductase and 7-
hydroxychlorophyll a reductase was found to be upregulated to improve the transformation
ability of chlorophyll b into chlorophyll a and to accelerate chlorophyll degradation.

5. Conclusions

We identified 10,229 DEGs from N. tangutorum under drought stress. There were
3047 DEGs annotated to 119 classified metabolic pathways in the KEGG database, which
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were mainly involved in the functions of ribosomes, plant hormone signal transduction,
endoplasmic reticulum protein processing, porphyrin and chlorophyll metabolism, antho-
cyanin biosynthesis, and flavonoid biosynthesis. Nitrate reductase can resist drought stress
by decreasing its activity, and drought stress can inhibit the formation of glutamine. In
the pathway that catalyzes the formation of glutamate, GOGAT can assist other genes in
catalyzing the formation of glutamate. Drought stress was found to decrease the synthesis
of ALA and chlorophyll a and b, but increase the transformation ability of chlorophyll b
into chlorophyll a. The present study provides novel, detailed genetic information and lays
the foundation for better understanding the mechanisms that regulate the growth of sand
xerophytes. This conceptual framework can guide future developments and the cultivation
of new, drought-resistant genotypes. In addition, our findings provide a solid theoretical
foundation for the long-term improvement of desert ecosystems.
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