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Abstract: The global change scenarios highlight the urgency of clarifying the mechanisms driving
the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation
between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one
of the most important mechanical xylem qualities. However, the molecular mechanisms triggering
the transition between the production of cells with the typical features of EW to the LW are still
far from being completely elucidated. The increasing availability of omics resources for conifers,
e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation
dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce
the importance of wood formation dynamics and xylem traits of conifers in a changing environment.
Then, an up-to-date overview of the omics resources available for conifers was reported, focusing
on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics
approaches was conducted, with the aim of elucidating the main metabolic pathways involved in
EW and LW determination. Finally, the future perspectives and the urgent needs on this research
topic were highlighted.

Keywords: genomic resources; gymnosperms; transcriptome; wood density; xylogenesis

1. Introduction
1.1. Xylogenesis, Ring Width, Xylem Traits, and Global Warming: What Is the Matter?

The predicted increase in air temperature at the global scale will rise from 1.7 to
4.8 ◦C by 2100 [1], with the warming more pronounced at the high latitude of the northern
hemisphere [2,3]. The increase in temperature will affect the water cycle at the local scale
and an increase in precipitation is expected in cold temperate and boreal regions because
of higher water vapor concentration in the troposphere. On the contrary, a decrease in
precipitation is assumed in arid and semi-arid regions, with an increased likelihood of
extreme events [4]. In this scenario, the woody species located at high latitude should
benefit from the lengthening of the growing season caused by climate changes, while tree
radial growth in the southern regions might be negatively affected by high temperatures
and drought [5]. A rapid warming of cold environments can generate a shift in tree
phenology that is thought to determine, in the short term, an acclimation/adaptive response
to cope with the changing environment, while in the long term, an increase in species
competition, altering the composition of forest communities [6].

The dependence of wood formation (i.e., xylogenesis) to the temperature is widely
demonstrated, even if the long-term effect of warming on woody traits remains to be
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clarified. Recent findings have highlighted that in conifers, the lengthening of the growing
season would induce a decrease in wood-specific gravity [7], because of higher production
of earlywood (EW)-like cells, in response to an earlier cambium resumption in spring and a
longer duration of cambium activity [8]. The specific gravity (dry mass to volume ratio) is
considered the main trait to evaluate the wood technological properties [9], and in conifers,
it is determined by the EW–latewood (LW) proportion within each ring [10,11]. In conifers,
the EW portion is negatively correlated to the specific gravity, whilst the LW portion has a
positive correlation [12], but a general trend between the proportion between EW and LW
within each ring has never been found. In addition, the size and proportion of tracheids in
EW and LW within a woody ring is affected by cambial age [13] and changes significantly
along tree axial height [14,15]. Results obtained through manipulative experiments in
conifers have shown that temperature increase during dormancy could drive the increase
in EW/LW ratio [16–18], whilst an enrichment of LW-like cells can be induced by a decrease
in stem temperature during EW formation [19]. On the contrary, an increase of 5 ◦C in stem
temperature from the rest to the maximum cambium activity induced LW-like cell formation
and reduced the stem growth [20], showing a crucial role in the interaction between chilling
and forcing temperature, rather than a temperature threshold in the duration and timing
of EW formation [21,22]. However, LW formation appeared more sensitive to climate
variables than that of EW, as shown in Corsican pine [23]. The EW–LW proportion within a
ring has a direct effect on the xylem hydraulic conductance, defined as the flux for a specific
driving force [24]. As the volumetric flow through a conduit is proportional to the fourth
power of conduit radius, as given by the Hagen–Poiseuille equation [25], the higher EW
tracheid lumen area could support most of the total sap flow in the stem. Indeed, EW has
about 11-times the specific conductivity (ks) of LW, supporting over 90% of the total stem
flux in Douglas fir, and besides, LW features caused a higher vulnerability to cavitation
at high trunk water potentials than those of EW [26]. This apparent contradiction can be
explained through a higher control of the xylem conductivity by the end wall, tracheid
length, and pit membrane size, rather than lumen diameter alone [27].

These contrasting results point out the need to increase the research on wood formation
and the mechanisms regulating the phenological shift of cambium physiology and the
effect on EW–LW proportion, to predict the forest productivity and related ecosystem
services, in view of global warming. Indeed, while the EW portion is fairly constant in
the xylogenesis process, LW production is more influenced by environmental factors. The
evaluation of clonal differences in the timing of LW formation in Japanese larch highlighted
small variations in EW to LW transition timing, but higher fluctuations in the duration of
LW formation and, thus, in wood density [28]. Therefore, between the others, one of the
most recurrent questions in tree physiology and forestry is: how will the expected shift
in cambium phenology affect woody traits, specific gravity, and hydraulic architecture
because of a longer growing season?

1.2. Earlywood vs. Latewood Traits in Conifers: The Control of the Environmental Cues
over Phenophases?

The woody traits are a sum of two biological processes: the mitotic activity of cambium,
determining the number of cells/tracheids within each ring, and the differentiation in the
derivative cambial cells undergoing to expansion, secondary wall deposition, programmed
death, and lignification, by which woody cells assume their final geometry and function
within the xylem [29,30]. Schematically, after the resumption of cambium activity in spring,
the high mitotic activity is associated with a higher turgor pressure, a rapid cell expansion,
and a low lignification rate, which determine the formation of wide tracheids with thin cell
walls, large lumen area, and low density, named EW. Summer solstice is often reported as
the maximum of cambium growth rate, and the reduction in cambium activity in summer
is associated with a lower cell turgor, a reduction in cell expansion, and an increase in
lignification rate, resulting in small tracheids with thick cell walls, restricted lumen area,
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and high density, named LW [31]. Examples of the anatomical features of EW and LW are
reported in the anatomical observations of a Monterey pine xylem cross section in Figure 1.
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Figure 1. Earlywood and latewood portions along two annual woody rings are shown in stem
tangential sections of Pinus sylvestris. Stem cross section was prepared by a rotary microtome (Leica
RM 2245, Wetzlar, Germany), stained with Lugol solution (Merck KGaA, Darmstadt, Germany), and
the image was acquired using a light microscope (Nikon Eclipse 800E, Tokyo, Japan).

The cell wall components significantly differ between EW and LW in conifers. Alto-
gether, EW contains significantly more lignin than LW, whilst hemicellulose and pectins
show the opposite trend [32]. The differences in lignin composition between LW and EW
were mainly determined by the modulation of monolignols biosynthesis and dehydrogena-
tive polymerization, which determine the final enrichment in G or S-H units [33]. Although
the cellulose content is similar, the intrinsic crystallinity increases from EW to LW, being
negatively correlated to the growth rate [34].

Under normal climatic conditions, the transition between EW and LW production
is regulated by a developmental control, rather than determined by the environmental
parameters [35]. EW and LW formation results from the interaction between genetic
features and plant hormones, as well as external stressors [36]. Indeed, a recent model [37]
proposed that auxin regulates the cell enlargement rate, while a different signal controls
the cell division and auxin polar transport, e.g., cytokinin, tracheary element differentiation
inhibitory factors, and/or the mechanical pressure exerted by the bark. The differences in
the contrasting cell morphology between EW and LW could, therefore, be driven by the
amplitude of a morphogenetic hormonal gradient in the cambial region, mainly induced by
the auxin indole-3-acetic acid (IAA) concentration. According to the auxin gradient theory,
the cambial zone width is determined by a high concentration of IAA while the acquisition
of xylem cell identity, i.e., the xylogenesis, occurs along an IAA decreasing concentration
gradient [38,39]. Thus, the transition between EW and LW cell morphology would be
explained through the rate and duration of the differentiating process occurring along the
IAA gradient within the cambial region, as shown in Japanese [40] and Scots [38] pines.
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The tissue hormone concentrations are supposed to be strongly affected by environmental
conditions. High temperature induced an increase in auxin concentration and hypocotyl
elongation in Arabidopsis thaliana [41] and the IAA level in the cambium was very sensitive
to frost hardiness, as shown in balsam fir [42]. Besides the IAA fluctuations, carbon
metabolism and the related sugar-metabolizing enzymes are strongly involved in the EW
to LW transition in conifers as well [38,43]. Indeed, carbohydrate content in the maturing
xylem of Norway spruce has been shown to be modulated by cellulose metabolism during
the EW formation and by starch metabolism during the cambium dormancy [44], and
similar results have been reported in Scots pine [45]. Multiple environmental factors are
known to control cellulose biosynthesis, considered a temperature-sensitive process [46], as
well as the lignin metabolism [47]. In this frame, the investigation on the role of hormones
and carbon metabolism in the EW to LW transition would have a crucial importance to
assess future changes in woody traits under global warming. So far, to the best of our
knowledges, we are not yet able to fully understand the main mechanisms driving the
cambium physiology and the cambial cell derivatives’ fate, and many efforts should be
made to fill this gap by linking the competences of several disciplines, including wood
anatomy, physiology, and genomics.

1.3. How Could Genomics Help to Disentangle the Physiological Processes Related to the
Early-to-Latewood Transition?

Along with anatomical, phenological, and physiological observations and models,
the genomic data are fundamental to describe the general wood formation process and
more specific issues, such as EW to LW transition. Recent technological advances, e.g., the
Next Generation Sequencing (NGS) techniques, along with the implementation of new
bioinformatic approaches and tools, have deeply impacted omics studies, as well as in the
plant sector, enabling a fast accumulation of genomes, transcriptomes, Single Nucleotide
Polymorphisms (SNPs)-based population genomic surveys, Genome Wide Association
Studies (GWAS), etc. These new methods may represent significant breakthroughs in
research on conifers, considering the difficulties in using forward and reverse genetics for
functional genomics, due, among other factors, to long life cycles, large genomes, high het-
erozygosity, difficulties in propagation, genetic transformation, and generation of mutant
collections [48,49]. Indeed, the identification of the molecular mechanisms controlling the
xylem density could highlight targets to be engineered or selected in breeding programs
to face the ongoing climate change conditions [50]. Moreover, the growing availability
of complete or draft genomes and transcriptomes opens the possibility to perform com-
parative whole-genome phylogenomic studies, comparing evolutionary distant species to
investigate the origin and evolution of genes and metabolic pathways, leading to specific
traits. SNP data can be more easily obtained at the genomic scale to implement GWAS [51],
along with high-throughput phenotyping scanning [52] and references therein [53].

To facilitate and increase the accuracy and potency of functional studies, it is desirable
or necessary to have a strong integration of different omics data, with a special emphasis
on gene expression, the complex process leading from DNA gene sequence to protein
synthesis, even if, erroneously, the term is now often used to indicate RNA accumulation
studies (e.g., RNAseq). Differential (m)RNA accumulation studies, under a plethora of
stressors/developmental stages/organs/cells, including the wood formation process, have
been extensively conducted for plant species and, to a lesser extent, in conifers. Thus, an
overview of the currently available genomic resources for conifers is reported within the
Section 2. Later, an up-to-date discussion about the molecular players involved in the
EW to LW transition in conifers, identified through omics studied, will be presented in
Section 3.
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2. Genomic Resources for Conifer Wood Formation Studies
2.1. Available Conifer Genomes

To date, 759 reference genomes for Magnoliopsida have been reported, among which,
broadleaf forest tree species are well represented, with 17 Populus spp., 28 representative
Fagales, and 34 Eucalyptus spp. genomes deposited at NCBI, just as an example. More-
over, large genome-sequencing projects, such as the 10KP (10,000 Plants) [54] and Earth
Biogenome Project [55], have recently been launched. However, despite being keystone
species in many temperate forest ecosystems, and regardless of being often economically
relevant, conifers have a smaller available dataset of omics resources because of the huge
genome dimension (17–35 Gb) and redundancy, mainly related to the accumulation of trans-
posable elements that can account for up to 80% of the total genome [56,57]. Indeed, the first
conifer-released genome belonging to Norway spruce is one-hundred-times larger than that
of Arabidopsis, even if it contains a similar number of predicted genes [58]. The technical
challenges posed by the size and complexity of coniferous genomes have only been partially
answered by the development of long-read single molecule sequencing technology, such
as Pacbio (https://www.pacb.com) and Oxford Nonopore (https://nanoporetech.com)
that can be used in combination with Hi-C libraries [59], or BioNano optical maps [60],
for scaffolding short reads. Table 1 reports the representative coniferous nuclear genomes
deposited in the NCBI genome assembly database. It is evident how genomics has changed
pace in conifers only in recent years, considering that the first Arabidopsis genome was re-
leased back in 2000 (the Arabidopsis Genome Initiative [61]) and that of black cottonwood,
the first available forest tree genome, was published in 2006 [62]. Genome sequences can
allow for the implementation of genome-editing tools, such as CRISPR/Cas9 [63–65], as
their application requires precise knowledge of the target sequence. Thus, the availability
of new omics resources would increase the research in this sector, partially avoiding some
limitations that have hampered research, breeding, and propagation of conifers, especially
regarding the genetic manipulation (mutant libraries, production of transgenic plants, EST
banks, etc.).

For the present excursus, only members of the division Pinophyta, commonly referred
to as “conifers”, are considered; this taxonomic group includes 13 out of 14 representative
Acrogymnospermae nuclear genomes deposited in the NCBI (Table 1). Genomes are also
available for two species belonging to the Gnetophyta class, the last Acrogymnospermae
reference genome, i.e., Gnetum montanum, a relevant species for evolutionary studies that
shows peculiar wood anatomy features [77], and Welwitschia mirabilis [78], whose genome
is not, however, scored as reference.

Unfortunately, despite having reached a “chromosome scale” status, many gym-
nosperm genomes are still poorly assembled and annotated, partially hampering com-
parative genomics and functional studies. A high-quality chromosome-level genome has
recently been released for the Chinese pine [79], deposited in the NCBI under the BioProject
(PRJNA784915), and in the CNSA of the China National GeneBank Database (CNP0001649).
Moreover, the genome of Taxus yunnanensis has been presented [80] and deposited in
the CNGBdb (https://db.cngb.org/search/assembly/CNA0020892/). It is important to
remember that in some cases, resequencing efforts and population genomic projects are
ongoing, so more than one genome for the same species might be available.

Extending the overview for the non-representative or uncomplete genomes, a draft
sequence is available for silver fir [81] (sequences available at https://treegenesdb.org/
FTP/Genomes/Abal/). A draft genome for Western red cedar is deposited in the Joint
Genome Initiative database JGI (phytozome-next.jgi.doe.gov/info/Tplicata_v3_1) [82].
Low-coverage draft sequences are also available for European and Japanese larches [83].

Complete chloroplast and mitochondrial genome sequences are also represented, with
185 plastomes [84–86], but only a few mitogenomes [87–90], including those coming from
whole genome sequencing projects.

https://www.pacb.com
https://nanoporetech.com
https://db.cngb.org/search/assembly/CNA0020892/
https://treegenesdb.org/FTP/Genomes/Abal/
https://treegenesdb.org/FTP/Genomes/Abal/
phytozome-next.jgi.doe.gov/info/Tplicata_v3_1
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Table 1. List of 13 complete and representative coniferous nuclear genomes as reported to date
by NCBI.

Species Assembly Status Year of First
Publication/Release Reference(s) Genbank Assembly

Database
Genbank Accession
Number

Larix kaempferi
(Japanese larch) Contig 2020 - ASM1317126v2 GCA_013171265.2

Larix sibirica
(Siberian larch) Scaffold 2019 [66] LarixSibirica0.1 GCA_004151065.1

Picea abies
(Norway spruce) Scaffold 2013 [58] Pabies01 GCA_900067695.1

Picea engelmannii
(Engelmann’s spruce) Scaffold 2020 - Se404-851_v1 GCA_009831015.1

Picea glauca
(white spruce) Contig 2013 [67,68] PG29_v5 GCA_000411955.6

Picea sitchensis
(Sitka spruce) Contig 2020 - SNQJ01 GCA_010110895.1

Pinus lambertiana
(sugar pine) Scaffold 2016 [69] Sugar pine JHU

assembly GCA_001447015.2

Pinus taeda
(loblolly pine) Scaffold 2014 [70,71] Ptaeda2.0 GCA_000404065.3

Pseudotsuga menziesii
(Douglas-fir) Scaffold 2017 [72] DougFir1.0 GCA_001517045.1

Sequoia sempervirens
(Coast redwood) Scaffold 2022 [73] SESE.2.2 GCA_007258455.2

Sequoiadendron giganteum
(Giant sequoia) Chromosome 2020 [74] SEGI.2.0 GCA_007115665.2

Taxus chinensis
(Chinese yew) Chromosome 2021 [75] Ta-2021 GCA_019776745.2

Taxus wallichiana var.
yunnanensis
(Himalayan yew)

Chromosome 2021 [76] ASM1834077v1 GCA_018340775.1

Genome sequences must be deposited in publicly accessible databases, in addition
to well-known molecular biology portals, including GenBank, EMBL-EBI, CNGBdb, Phy-
tozome. Genome sequencing initiatives often build and maintain a dedicated database,
usually containing gene annotations, sequence homology search, and comparative genomic
tools (Table 2).

2.2. Transcriptomic Resources and Functional Genomic Studies

For fully sequenced genomes, reference transcriptomes are, in general, also available,
as this step is usually needed to perform the gene prediction. This task is also particularly
difficult for conifers because of the typical long introns of their genes [68] and, therefore,
strongly benefits from a reference transcriptome. Given that mRNA accumulation is in-
trinsically transient, a reference transcriptome must contain data from different datasets
(stressors/developmental stages/organs/cell types) to maximize the possibility of cap-
turing all potential mRNAs, including splicing variants. The generation of genome-level
transcriptomes started before the advent of NGS technologies, with the development of
expression sequence tag (EST). EST techniques provided valuable data for coniferous ge-
nomics and, since timber is the main product of conifers, many studies focused on wood
formation processes [92–95]. Nevertheless, ESTs had several technical disadvantages: they
implied the construction of costly cloned cDNA libraries that were labor demanding to
build and maintain and had to be screened and individually sequenced using the Sanger
technique. A main pitfall was, nevertheless, in their incapacity to adequately represent the
transcriptome, as the number was limited and, in general, did not allow for the study of
rare transcripts and splicing variants.
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Table 2. List of databases containing genomic raw data, assemblies, and annotations in addition to
the NCBI. Many of the databases reported in the table also store other types of data, such as SNPs
and gene expression results. The same genome sequences and other omics data can be accessible
form different databases as a result of platform integration and multiple submissions.

Database Name Content Link

TreeGenes database

Genomic assemblies and raw sequences and
annotation for:

• Pseudotsuga menziesii
• Sequoia sempervirens
• Abies alba
• Picea abies
• Picea glauca
• Pinus lambertiana
• Pinus taeda
Blast searches
Comparative genomic tools

https://treegenesdb.org
[91]

Norway spruce genome
project—Congenie

Genomic assemblies and raw sequences and
annotation for Picea abies
Blast searches
Comparative genomic tools

https://congenie.org/

Spruce-Up Project and SMarTForests Genomic assemblies and raw sequences for
Picea glauca

https://spruce-up.ca/
https://www.smartforests.ca

Phytozome
Genomic assemblies and raw data for
Thuja plicata
Plant comparative genomics portal

https://phytozome-next.jgi.doe.gov

China National GeneBank Database

Genomic assemblies and raw sequences and
annotation for:

• Taxus chinensis (Chinese yew)
• Pinus tabuliformis (Chinese pine)

Blast searches

https://db.cngb.org

PLAZA Comparative genomic data for several conifers https://bioinformatics.psb.ugent.be/
plaza/

European nucleotide archive Genomic assemblies and raw sequences and
annotation for Larix decidua and L. kaempferi https://www.ebi.ac.uk/ena

Earth Biogenome projects About 300 coniferous ongoing genomes with
links to raw data and sequencing projects https://www.earthbiogenome.org

10KP: 10,000 Plant Genomes Project About 80 coniferous ongoing genomes with links
to raw data and sequencing projects https://db.cngb.org/10kp/

EST libraries were also used as probes to spot first-generation commercial or custom
microarrays, before the advent of synthetic oligonucleotide chips; a main limitation of such
early custom-made cDNA microarrays was that the probes were cloned and physically
preserved and then spotted on the slide surface, which was time consuming and costly,
as well as that the analysis of transcriptomes was limited by the representativity of EST
collection used to print the array. Nevertheless, cDNA microarray technology represented
a major benchmark in transcriptomics studies before the rise of NGS approaches, and
enabled the measurement of differential RNA accumulation simultaneously, for thousands
of genes. Microarrays, even if their use is decreasing, were and still are widely used in
coniferous transcriptome analyses, even if suffering from a lack of sensitivity compared
to RNAseq [96]. On the contrary, the sensitivity and accuracy of RNAseq is related to the
quantity of generated sequences (depth) and by the initial representativity, as a reference of
the samples analyzed. The advent of commercially manufactured oligonucleotide arrays,
usually guaranteeing greater accuracy, enabled a more representative coverage of the

https://treegenesdb.org
https://congenie.org/
https://spruce-up.ca/
https://www.smartforests.ca
https://phytozome-next.jgi.doe.gov
https://db.cngb.org
https://bioinformatics.psb.ugent.be/plaza/
https://bioinformatics.psb.ugent.be/plaza/
https://www.ebi.ac.uk/ena
https://www.earthbiogenome.org
https://db.cngb.org/10kp/
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transcriptome, using data from genome sequencing and larger databases, and allowed for
analyses on different species; for example, the wound xylem formation in Canary Island
pine has been studied using a loblolly-pine-developed oligonucleotide array, containing
more than 180,000 probes (GEO platform GPL21977) [97].

Even if cDNA microarrays’ use is declining in favor of NGS transcriptome sequencing
for RNA accumulation studies, spotted arrays are still widely used for genotyping in GWAS
studies, both in hardwood and conifers. SNP arrays have some limitations, such as the
presence of SNPs close to or within coding regions that may potentially produce biased
data, but they are still the technology of choice to obtain reproducible and reliable data
that are straightforward to process and analyze [98]. Moreover, SNPs’ arrays are important
for population genomics studies, especially for conifers, as the re-sequencing costs and
bioinformatic processing is still prohibitive. For example, Bernhardsson and coworkers [99]
used a whole genome resequencing (WGS) approach in Norway spruce to develop a 50K
SNPs array to implement GWAS and genomic selection (GS) studies. SNP microarrays can
be also developed with mixed approaches, involving candidate gene sequencing, RNAseq
data, and whole-genome-level data. A Douglas fir array based on transcriptome data,
containing more than 55K potential SNPs, is available [100], and a mixed transcriptome
and candidate gene sequencing technique has been used to produce a nearly 50K SNP
array for different pine species [101]. Similar mixed approaches have been used to design
SNP arrays for maritime pine [102], black spruce [103], white spruce [104], and employed
for wood formation studies as well [105]. Recently, a nearly 50K array, specific for Scots
pine, has been designed [106].

Regardless of the technology used, all transcriptomics data are deposited in databases:
two main repositories are the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/) and EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/arrayexpress). GEO
contains, to date, 145 datasets (that may contain many samples) of RNA accumulation
studies for Acrogymnospermae, using different technologies and starting from a plethora
of biological questions, including wood-formation-related studies. EMBL-EBI ArrayEx-
press currently reports 38 and 36 transcriptomic experiments (microarrays and RNAseq)
for Picea spp. and Pinus spp., respectively. ArrayExpress also embeds an Expression
Atlas tool, designed to study the mRNA accumulation patterns of genes across differ-
ent species, biological conditions, or even for single cell experiments, but no conifer
model species has yet been included (https://www.ebi.ac.uk/gxa/home) [107]. More
specific databases and analysis tools have also been developed, often in concomitance with
genome sequencing initiatives; for example, Norwood [108] is now implemented in the
Congenie database (https://congenie.org/exnet), enabling the analysis of wood forma-
tion gene-related RNA accumulation patterns in Norway spruce. Notably, the 1K plant
transcriptomes initiative has produced transcriptomes for more than 1300 Viridiplantae
species, including 84 Acrogymnospermae [109,110] (raw data available in the bioproject
PRJEB4922 of NCBI Sequence Read Archive and in the China Nation al GenBank database
at https://db.cngb.org/datamart/plant/DATApla4/); this initiative has provided a very
useful platform for comparative studies, even if the data were obtained from a limited
number of tissues and/or conditions and only in a few cases are immediately usable for
wood-formation studies.

2.3. Proteomic Resources

Along with utility, as a guide for genome annotations, or as a reference to map-
sequenced reads in RNA-Seq experiments, transcriptomes may be useful to generate virtual
proteomes, but to date, just one reference conifer proteome is available in the Universal
Protein Resource (UniProt) database (http://www.uniprot.org/), i.e., the white spruce
proteome (UP000242691).

Unfortunately, mainly due to technical and interpretation difficulties, experimentally
generated proteomic data have not increased at the same pace compared to other omics
resources in the last two decades. This lack represents a key limitation in building strong

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/gxa/home
https://congenie.org/exnet
https://db.cngb.org/datamart/plant/DATApla4/
http://www.uniprot.org/
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transcriptome–phenotype associations, as transcript abundance is not always a perfect
predictor of the active protein pool. To date, only proteomic studies based on 2-dimensional
polyacrylamide gel electrophoresis (2-DE) and mass spectrometer techniques are available
in the literature and only a few analyze wood formation in conifers, with most works
related to embryogenesis or abiotic and biotic stress response; early studies focused mainly
on maritime pine [111–113]. Proteome has also been studied in white spruce [114] and
Monterey pine [115,116]. With few exceptions, e.g., for Douglas fir [117] and loblolly
pine [118], the preponderance of metabolomic studies in conifer is not centered on wood
formation or wood phenotyping, but rather related to organogenesis and development
and, more recently, to plant–pathogen interaction, with a strong focus on VOCs metabolic
profiling, which may be implemented as a high-throughput technique in phenotyping [119].

In general, it is, therefore, important to underline, highlighting also a very important
target for future research, that a strong association between genomics and transcriptomics
resources and proteomic and phenotypic data (including metabolic profiling) is still largely
lacking; this implies that a reliable functional annotation specific to conifers is still missing.
A major pitfall is that annotations remain mainly based on sequence homology and are usu-
ally just “electronically inferred”, without, or with limited, human supervision. Thus, a reli-
able and experimentally supported reference annotation is really needed. Indeed, no KEGG
(Kyoto Encyclopedia of Genes and Genomes, https://www.genome.jp/kegg/) -specific
metabolic pathways have been reported for conifer trees, while more than 110 non-conifer
plant species’ specific pathway maps are available, including those for 8 forest tree species.
Likewise, no PlantCyc-specific database (https://plantcyc.org) has been implemented for
any Acrogymnospermae species [120].

3. Disentangling the Molecular Mechanisms Underlying the Early-to-Latewood
Transition in the Omics Era

The increasing availability of omics resources for conifers is allowing researchers to
shed light on some molecular pathways involved in wood-formation steps, such as in the
EW to LW transition. However, most of the more targeted works are still based on microar-
ray analyses, while omics approaches are still used principally for more general works.
Some metabolic pathways that seem to be stronger determinants in EW and LW traits have
been highlighted in different conifer species. As an example, functional studies, using
microarray analyses on white spruce [121], highlighted that the genes included in metabolic
pathways related to basic cellular activities, such as the metabolism of lipid/carbohydrate
reserves and secondary products, were more transcribed in EW than in LW, supporting
the hypothesis that EW production is a developmental-determined process, while genes
related to the stress responses were representative of the LW transcriptome, supporting
that variations in wood density will occur in a changing environment.

Following a recent model based on ecophysiology and wood phenology, EW forma-
tion is related to a low amount of available soluble sugars in cambium, allowing a longer
cell expansion phase, while in late summer, a high level of soluble sugars determines the
production of thicker xylem cell walls, resulting in LW formation [122]. Thus, a possible
signal triggering the EW to LW transition could be the concentration of available free
sugars. Indeed, in loblolly pine, in two different studies using microarrays, several genes
were found to be more transcribed in LW than in EW, many of which were for enzymes
involved in cell wall biosynthesis, such as a cellulose synthase (CesA) and a sucrose syn-
thase (Sus), as well in monolignol biosynthesis and lignin polymerization [123,124]. Similar
results were found by comparing transcripts in the juvenile wood of Monterey pine, with
high and low density [125], confirming a dependence of transcriptome on the cell wall
thickness of newly formed cells. In Monterey pine, the study of transcriptome differences
between juvenile and mature wood confirmed that primary-cell-formation-related genes
are more transcribed in juvenile xylem [126], as also found in EW in a precedent study [127],
while genes more transcribed in mature xylem were related to the secondary wall produc-
tion [126], as also found in LW [127]. Analyses through real-time PCR in Norway spruce

https://www.genome.jp/kegg/
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also highlighted a high transcription of CesA and Sus genes [38], as well as of genes related
to lignin biosynthesis [128] during LW production. The two gene families, CesA and Sus,
were also found up-regulated in the xylem of a Japanese larch clone, with higher wood
density, when compared with a clone with low-wood density [129]. In the same species,
the genes related to sugar metabolism, carbohydrate transport, and intracellular trafficking
were also up-regulated in EW, supporting the control of wood formation through carbohy-
drate concentration at the beginning of the growing season, while β-tubulin and several
transcription factors were up-regulated in LW [130]. Indeed, different transcription factors
likely have a key role in the shift between EW-to-LW transcriptomes and should be a focus
for future research, as omics resources are accumulating. As an example, in white spruce,
the transcription factor NAC7 has been shown to have a positive correlation with the EW
genes, while a negative correlation with the LW genes [113], whereas the transcription
factor NAC8 has a positive association with the EW traits [114]. In Norway spruce, the
RNA-dependent RNA polymerase (RDR), a post-transcriptional gene silencer [130], has
been found to be involved in large-scale transcriptome reprogramming during cambial
growth shift to LW formation. Moreover, arabinogalactan protein transcripts, AGPs, are
usually present in transcriptome variations between EW and LW in pine species [127].
These differences in expression during the transition between EW and LW were, in general,
less marked in Japanese cedar, in which most genes involved in carbohydrate metabolism
or lignin biosynthesis were induced from April until the end of the growing season, maybe
because of belonging to a different lineage than Pinaceae [131]. Variations at genome level
can also have a fundamental role in shaping the differences observed in the EW to LW
transition process, both between different coniferous species and different populations;
comparative genomics and association studies can help in identifying genes involved in
this step of wood production. In Norway spruce, GWAS highlighted that the EW/LW ratio
had a significant association with ten SNPs, identifying three putative candidate genes that
might be crucial in this step of wood formation, i.e., DNA-3-methyladenine glycosylase
II enzyme, phytochrome kinase substrate 1, and glycosyltransferase [132]. Further GWAS
data identified regulatory regions of transcription factors involved in EW (i.e., NF-YA7) or
transition wood (i.e., ICE2) proprieties, as well as highlighted a general involvement of
auxin pathways [51]. Studies on genetic association in loblolly pine using SNPs and wood
traits highlighted the possibility to reveal associations between, as an example, the cad SNP
M28 with EW-specific gravity, or between the 4cl SNP M7 with LW percentage [133].

The increasing availability of genomic resources will further clarify the metabolic
pathways involved in EW to LW transition, increasing the possibility of guided breeding or
genome-editing approaches aimed at engineering the coniferous wood density traits.

4. Conclusions and Future Perspectives

The growing interest in the study of the mechanisms controlling the EW to LW transi-
tion is driven by the necessity of understanding the processes involved in the definition
of xylem morphology, which would be extremely important in predicting future wood
quality, as well as the resilience of forests, from the perspective of global changes. As a
main determinant of wood density, the EW/LW ratio represents a powerful proxy of the
acclimation/adaptation of trees to environmental constrains and one of the main traits to
consider for future breeding strategies. Although the metabolic pathways related to the
cell wall synthesis have been deeply investigated in the last decades, future efforts must
focus on the characterization of genes involved in the cambium phenology and response
to temperature and photoperiod. In the higher latitudes of the northern hemisphere, the
increasing temperature and the relatively long photoperiod in the early fall would induce
delayed dormancy, but in the lower latitudes, the short photoperiod could limit the length
of the growing season, even if the temperatures are favorable for growth. Thus, the char-
acterization of genes related to photoperiod and involved in cambium activation and cell
wall synthesis could be useful to disentangle the role of the length of the day over the
xylem traits.
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Even if information is accumulating on coniferous genomes and transcriptomes,
deeper investigations, also with classical forward genetic approaches, must be conducted to
obtain the functional annotation of many genes and to clarify the relations existing between
genomes and phenomes. This last step can benefit from GWAS experiments, conducted
with high-throughput phenotyping strategies [134,135], including metabolomics [136].
A deep integration of omics data is, indeed, still lacking, as well as, probably more im-
portantly, a fine-scale experimental verification of predicted gene/metabolic pathways’
actual function.

Our excursus on representative genes of EW and LW highlights the involvement of
cellulose and lignin metabolic pathways in LW features, but a specific target for LW deter-
mination must still to be identified. However, the greater ease of using omics techniques on
conifers and the availability of new genetic engineer methods, such as CRISPR/Cas9, can
help in the identification of key genes in EW and LW features, through pointed mutagene-
sis. Indeed, CRISPR/Cas9-mediated targeted mutagenesis have been recently successfully
used in Japanese cedar [137] and Monterey pine [65]. These new techniques offer promis-
ing opportunities for both the creation of edited lines and to drive breeding programs
for reforestation.

Thus, the climate change scenario seems to remark the urgency to implement target
experiments to elucidate gene function and regulation. The huge amount of data obtained
with high-throughput omics techniques can help to guide forward genetic approaches
and/or gene editing, when in association with powerful, and so far only partially available,
in silico analysis tools, able to mine robust genotype–phenotype associations and/or robust
regulatory networks to target.

Considering the quality of available genomics and transcriptomics resources, the
xylem features’ representativity, and their importance as timber/wood-related products
sources, Norway spruce and loblolly pine are potentially the most suitable species to be
used as model species for the investigation of the molecular mechanisms underlying the
EW to LW transition. Among the emerging model species, Chinese pine also deserves to be
mentioned for the availability of high-quality genomic resources.
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