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Abstract: Mangroves are one of the most important ecosystems especially due to the services they
provide, but in contrast are one of the most threatened by human activities at a global level. In
Ecuador, mangrove forests are currently fragile and threatened due to the great anthropic pressure,
which has largely reduced the area they occupy. However, there is already evidence that certain
actions are contributing both to their conservation and the recovery of the lost mangrove area. In
this study, we assessed the multitemporal dynamics of changes in mangrove cover in four coastal
provinces of the country over a period of 20 years (1998–2018) based on remote sensing data analyzed
using GIS tools. Our results showed that the area affected by mangrove forest destruction reached its
maximum during the 1998–2010 period, when 4.56% (194.57 km2) of the mangrove forest was lost.
This situation especially affected the provinces of El Oro and Guayas. The main cause for the loss
of mangrove cover was the expansion of shrimp farms, followed by agriculture and construction.
However, a slight recovery of ~2.9% has been observed, although loss remains constant. Mangrove
ecosystem conservation policies, mainly applied to zones within protected areas; the establishment of
use and custody agreements and the halt of shrimp farm expansion; the development of mangrove
forests on areas with sediment deposits; and natural mangrove recovery processes are key factors for
mangrove restoration. These results suggest that it is possible to continue restoring mangrove cover
and thus maintain some of the main ecosystem services they provide for the benefit of humans.

Keywords: land cover change; remote sensing; multitemporal changes; GIS

1. Introduction

Mangrove forests are located at the confluence of land and sea in the world’s subtropi-
cal and tropical regions [1–4]. They possess characteristics that make them structurally and
functionally unique [1]. These forests are hot spots for biodiversity, and provide important
and valuable ecosystem services, including coastal protection and fish production, and
they are also efficient carbon sinks [3,5–7]. Thus, mangroves provide vital climate change
mitigation and adaptation services [2].

Mangroves are among the most productive coastal ecosystems [8,9], contributing to
the subsistence of forest-dependent communities and their livelihoods [10].

However, despite the great importance of these unique coastal ecosystems, their
destruction and loss have intensified worldwide in the last decades [11]. Mangroves have
experienced significant losses, globally declining from 136,798 km2 in 2000 to 135,882 km2

in 2016 [12]. Since then, global mangrove deforestation has remained, although at much
lower rates, between 0.16% and 0.39% per year [13]. Studies suggest that they could have
originally occupied over 200,000 km2 and that considerably more than 50,000 km2, or one
quarter, of the original mangrove cover have been lost because of human activities [14].
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Losses occur especially in developing countries, where more than 90% of the world’s
mangroves are located [14]. In fact, destruction and degradation are reaching alarming
levels in tropical regions, where these ecosystems flourish. Areas where dramatic changes
are taking place include countries in Southeast Asia, such as Indonesia, Bangladesh, India,
Vietnam, Singapore, Philippines, Thailand, and Myanmar; and in Africa, such as Nigeria,
Tanzania, and Guinea-Bissau. Meanwhile, in the Americas, substantial changes are evident
in French Guyana, Brazil, México, Perú, Colombia, Venezuela, and Ecuador [1,12,15,16].

Multiple forces drive global mangrove loss, of which nature and dynamics can vary
dramatically across regional and local contexts [17]. The greatest driver for mangrove forest
loss is the conversion to aquacultural, agricultural, and urban land uses [8]. In Ecuador,
mangroves have been explored for timber, charcoal, and tannins, but the most frequent
impact has been the conversion of mangrove land to aquaculture, salt production, and
agriculture [18].

Mangrove forests in Ecuador are concentrated around river estuaries [18]. The ma-
jor areas are located along the estuaries of rivers Mataje-Santiago-Cayapas, Muisne, Co-
jimíes, Chone, Guayas, and Jubones-Santa Rosa-Arenillas [19]. Based on the monitoring
of mangrove forests carried out by the Centro de Levantamientos Integrados de Recursos
Naturales—CLIRSEN, Instituto Ecuatoriano Forestal y de Áreas Naturales y Vida Silvestre—
INEFAN, and other authors, their area has declined from 2022 km2 in 1969 to 1485 km2 in
1999 [20].

According to the national classification of ecosystems [21], in Ecuador, we found
two vegetation formations: the Chocó Equatorial mangrove (Esmeraldas) and the Jama-
Zapotillo mangrove (Manabí, Guayas, and El Oro). The Chocó Equatorial area has a pluvial
bioclimate with humid ombrotype, while the Jama-Zapotillo area has a xeric bioclimate
with dry ombrotype [21,22]. Mangrove forests are mainly composed of well-known major
mangrove species: Rhizophora mangle L., R. racemose G. Mey, R. × harrisonii Leechm.,
Laguncularia racemosa (L.) C.F. Gaertn. var. racemosa, L. racemosa var. glabriflora (C. Presl)
Stace, and Avicennia germinans (L.) L. [20,23,24]. Rhizophora mangle L. accounts for between
80% and 90% of all mangrove forests, while the remaining 10% consists mainly of Avicennia
germinans (L.) L. and Laguncularia racemose (L.) [25,26].

Due to the relevant role that mangrove forests play in the conservation of biodiversity
and coastal productivity, coastal protection, and in the fight against climate change, it is
essential to understand how the area they cover has changed over time [4]. In this sense,
remote sensing technologies constitute efficient, fast, and reliable tools for its study. Remote
sensing plays an important role in coastal monitoring in many tropical regions, where
detailed estimates of changes in forest cover are still necessary due to the impact of these
changes on sustainable development and on the environment [27,28].

This study aimed to assess the spatiotemporal dynamics of mangroves in Ecuador. We
performed a two-decade assessment using GIS and remote sensing technology. Thus, we de-
tected, identified, mapped, and tracked mangrove conditions and changes [29]. Our results
contribute to a better understanding of the current status of mangroves. Moreover, analyz-
ing changes in land use provides valuable insights about deforestation hotspots. Finally,
these data contribute to the analysis of the effectiveness of mangrove conservation efforts.

2. Materials and Methods
2.1. Defining the Potential Area Occupied by Mangrove Forests

This study focused on mangrove forests along the Ecuadorian Pacific coastline, located
in the provinces of Esmeraldas, Manabí, Guayas, and El Oro. To define the study area,
we used the following criteria: (I) previous mangrove cover (official cartography from
the Ministry of Water, Environment and Ecological Transition—MAATE), (II) topography
(flat coastal plains), (III) distance from coastline (up to 4 km), and (IV) tidal range (up
to 3 m) [25]. We combined these criteria through the map overlay technique in order to
determine suitable areas for potential mangrove growth (Figure 1).
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Figure 1. Potential distribution of mangrove forests along the Ecuadorian coastline.

2.2. Data Sources and Preprocessing

The climatic characteristics of the study area made it difficult to capture clear images
across the whole area, especially by presence of cloud cover. In this context, national
studies carried out by state agencies constitute a good option to provide baseline data
about the previous extent of mangrove forests [30]. Therefore, different data sources were
combined for this study: (i) official cartography, (ii) medium-resolution imagery, and (iii)
high-resolution imagery.

2.2.1. Official Cartography

Some researchers have used maps from official agencies as a reference for mangrove
extent when high quality imagery was not available [30–32]. In Ecuador, the Ministry of
Water, Environment, and Ecological Transition (MAATE) is responsible for generating land
cover and land use maps within the context of the Land Cover/Land Use of Continental
Ecuador Project. Historical land cover maps corresponding to the years of 2000, 2008, and
2016 at a scale of 1:100,000 were obtained from the Interactive Environmental Map web
platform. In the case of the first year of analysis for the province of Guayas, we used this
information from MAATE because no good quality satellite images were found for visual
interpretation.

2.2.2. Medium-Resolution Imagery

For this study, satellite images from Landsat and Sentinel scenes were obtained from
the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/
accessed on 16 January 2018) (Table 1). L1TP products with the lowest possible percentage
of cloud cover (less than 20%) were selected [33]. Visual interpretation was performed
based on RGB composites from these images. RGB composites help distinguish the different

https://earthexplorer.usgs.gov/
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types of land cover and land use. Satellite data with medium spatial resolution, such as
those from Landsat and Sentinel, provide adequate spatial details for mapping mangrove
areas [34] at the national scale [29].

Table 1. Medium-resolution imagery used in this study.

No. Name Province Path-Row Date Resolution

1 LANDSAT 5

Esmeraldas

010-059 8 March 1998 30
2 LANDSAT 5 011-059 3 April 1999 30
3 LANDSAT 5 011-060 19 June 1998 30
4 LANDSAT 7 010-059 4 March 2017 30
5 LANDSAT 7 011-059 22 January 2017 30
6 LANDSAT 7 011-060 22 January 2017 30
7 LANDSAT 5

Manabí

011-060 19 June 1998 30
8 LANDSAT 5 011-061 16 April 1998 30
9 LANDSAT 8 011-060 17 April 2016 30
10 LANDSAT 8 011-061 17 April 2016 30
14 LANDSAT 8

Guayas
010-062 27 February 2018 30

15 LANDSAT 8 011-061 6 May 2017 30
16 LANDSAT 8 011-062 13 October 2017 30
17 LANDSAT 5

El Oro

010-062 20 February 1998 30
18 LANDSAT 5 011-062 3 April 1999 30
19 LANDSAT 5 011-062 6 October 1997 30
20 SENTINEL 2 T17MNS 22 April 2018 20
21 SENTINEL 2 T17MPS 22 April 2018 20

2.2.3. High-Resolution Imagery

From 2010 to 2014, the Ministry of Agriculture developed a Project called SIGTIER-
RAS which generated aerial photograph imagery at a national level. Aerial photographs
from SIGTIERRAS are orthorectified and have a 1 m spatial resolution. These orthopho-
tographs were downloaded from the SIGTIERRAS website (http://www.sigtierras.gob.
ec/descargas/ accessed on 16 January 2018), considering that the aerial photography can
provide suitable information for highly detailed mapping in small and narrow coastal
environments [29,34]. The information for the second year of analysis for all provinces was
obtained from the interpretation of these photographs.

2.3. Classification of Images

The classification strategy applied in this study is an adaptation of the classification
system proposed by MAATE within the Land Use/Land Cover of Continental Ecuador
Project. We employed the first level of this classification system to define general categories
that represented land cover patterns in the study area (Table 2).

Table 2. Classification system with the land use and land cover categories (LULC) applied in
this study.

MAATE
Classification System Adapted Category Description

Forest Mangrove Trees and shrubs in the coastal
intertidal zone

Shrub and grass Natural vegetation Forests and shrubs in flooded zones

Agricultural land Cropland Crops, pastures for livestock, arable
areas, logging

Anthropic areas Built-up area Artificial structures (buildings,
roads, coastal infrastructure)

Shrimp farming Active and inactive shrimp ponds
Water bodies Water Rivers and estuaries
Other lands Bare land Sandy and rocky areas

http://www.sigtierras.gob.ec/descargas/
http://www.sigtierras.gob.ec/descargas/
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The following pictures illustrate the land use and land cover categories in the study
area (Figure 2).
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Figure 2. Representation of land use and land cover categories: (a) water; (b) shrimp farming;
(c) built-up area; (d) cropland; (e) mangrove; (f) natural vegetation; and (g) bare land.

After establishing the classification scheme, we digitized LULC maps for two peri-
ods (1998–2010; 2010–2018). We used a frequently applied method consisting of visual
interpretation followed by on-screen digitizing [29]. This method avoids errors that are
generated when using automatic classification methods. On-screen digitizing is a way to
trace features from images. This is one of the most accurate techniques for characterizing
land cover [35]. For the visual interpretation of satellite images, we created false color
composites. For Landsat imagery, we applied an RGB composite using near infrared (NIR),
shortwave infrared (SWIR), and red bands. For Sentinel 2A imagery, we applied a band
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composite using vegetation red edge, shortwave infrared (SWIR), and red bands (Figure 3).
These composites are capable of distinguishing mangrove forest from the surrounding
objects more clearly [36].
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Figure 3. (a) Landsat RGB image combines the near infrared (NIR), shortwave infrared (SWIR), and
red bands, (b) sentinel 2A RGB image combines the vegetation red edge, shortwave infrared (SWIR),
and red bands. These composites display mangrove forests in a reddish-brown color.

LULC maps of each province were generated for three different periods which were
established according to data availability (Table 3).

Table 3. Years analyzed by province.

Province Year 1 (Y1) Year 2 (Y2) Year 3 (Y3)

Esmeraldas 1998 2010 2017
Manabí 1998 2010 2017
Guayas 2000 2011 2016
El Oro 1997 2011 2018

Based on the map for the first year (Y1), the FAO interdependent classification
method [37] was applied to generate maps for the second and third years (Y2 and Y3). This
approach consists of comparing polygons in the first map with images from subsequent
dates, modifying only those segments where changes are detected [38]. According to
Ramírez and Zubieta [39], interdependent classification is an accurate technique since it
reduces classification and position errors.

2.4. Accuracy Assessment

We compared maps Y1, Y2, and Y3 with imagery hosted by Google Earth Engine and
high-resolution Google Earth (GE) imagery, where available. Some studies have shown that
high-resolution images from GE have an overall positional accuracy close to 1 m, sufficient
for deriving ground truth samples [40]. We determined a minimum sample size of 50 points
for each LUC category, as recommended by Congalton and Green [41] for classifications
with less than 12 categories. A total of 4200 sample points were randomly generated for
the entire area and study periods (Table 4). Accordingly, a confusion matrix technique
was applied to assess the accuracy of the classification. Overall accuracy and the kappa
coefficient were calculated to verify map classification [42].
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Table 4. Details of sample points by province and LUC.

Province Mangrove Shrimp
Farming

Built-Up
Land Cropland Natural

Vegetation Water Bare Land Total

El Oro 50 50 50 50 50 50 50 350
Esmeraldas 50 50 50 50 50 50 50 350

Guayas 50 50 50 50 50 50 50 350
Manabi 50 50 50 50 50 50 50 350

Total 200 200 200 200 200 200 200 1400 *

* Total of sample points generated per year.

2.5. Detection of Changes

Map overlay between any two points in time generates a cross tabulation matrix,
where rows show the categories from an initial time point, columns show the categories
from a subsequent time point, and entries show the size of the area that transitioned from
the initial to the subsequent category during the time interval. Entries on the diagonal
indicate persistence of land categories, while entries off the diagonal show changes in land
use categories [43].

3. Results and Discussion
3.1. Accuracy Assesment

Table 5 summarizes the results from accuracy assessment. For all classifications, the
overall accuracy was above 80%. Kappa coefficient values were above 0.75 for all classified
maps. Rwanga and Ndmbuki [44] classified kappa values of 0.61–0.8 as substantial and
0.81–1 as almost perfect agreement. Thus, the classifications were accurate enough to
perform further analysis.

Table 5. Accuracy assessment and kappa coefficient values.

Province/Year Overall
Accuracy

Kappa
Coefficient

El Oro Y1 83.82 0.76
El Oro Y2 89.77 0.85
El Oro Y3 87.87 0.82

Esmeraldas Y1 84.31 0.81
Esmeraldas Y2 85.98 0.82
Esmeraldas Y3 85.82 0.82

Guayas Y1 81.25 0.76
Guayas Y2 83.07 0.79
Guayas Y3 80.10 0.75
Manabí Y1 84.73 0.80
Manabí Y2 87.05 0.83
Manabí Y3 86.13 0.82

We obtained good results with the visual interpretation method. This method usually
presents less classification errors than automatic classification [38]. However, this approach
has some limitations such as the differences among interpreters’ perceptions and prob-
lems during digitization derived from image quality (atmospheric conditions, brightness,
stereoscopic effects, cast shadows, contrast, mixed pixels, and geometric resolution) [45].
It is important to note that Guayas Y1 map obtained from the MAATE database has an
acceptable accuracy, even though it was generated through automated classification. Re-
gardless of the accuracy, we must point out that classified maps also have uncertainty, thus
the findings we describe in the next sections must be considered as estimates instead of
exact measurements.



Forests 2022, 13, 656 8 of 19

3.2. Changes in Mangrove-Covered Area

We analyzed the quantity of LULC types in all LULC categories for each study period
(Figure 4). Mangrove and shrimp farming were the dominant LULC types in the study
area. These categories represented more than 50% of the total area in each province.
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Figure 4. Percent cover of each LULC type by province during Y1, Y2, and Y3 (see Table 3). LULC
types are: water (W), shrimp farming (S), built-up land (BU), cropland (C), mangrove (M), natural
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Mangroves in Ecuador have been suffering a degradation process since the 1960s [17,46].
According to CLIRSEN [47], in 1987, mangroves covered an area of 1751 km2. The present
results show that the area covered by mangroves in 1998 was 1484 km2, suggesting a loss
of 267 km2. By 2010, this area had slightly increased to 1580.9 km2, which entails the
recovery of at least 96.9 km2 of mangrove. Finally, by 2018, the mangrove-covered area was
1645.2 km2, indicating an increase of 64.3 km2 in mangrove cover. Overall, the analysis
of net changes in mangrove cover showed a slight increase (2.9%) between the initial and
final periods (Table 6).

Table 6. Changes in land cover and use-type cover in the three study years.

Land Cover/Use Type 1998 2010 2018
km2 % km2 % km2 %

Water 557.0 10.0 556.6 10.0 565.6 10.1
Shrimp farming 1301.7 23.3 1662.5 29.8 1594.1 28.5

Built-up area 172.2 3.1 237.5 4.3 250.4 4.5
Cropland 1070.4 19.2 634.1 11.4 595.1 10.7
Mangrove 1484.0 26.6 1580.9 28.3 1645.2 29.5

Natural vegetation 864.6 15.5 853.6 15.3 821.5 14.7
Bare land 136.3 2.4 61.0 1.1 114.0 2.0

In Ecuador, different plans have been implemented since 1949 to allow for the sustain-
able exploitation of mangrove forests, particularly focusing on timber use for shipbuilding,
railways, and exports [48].

Historical mangrove degradation has been mainly linked to the expansion of shrimp
aquaculture [49]. Shrimp farms were established on the tidal flats where mangrove forests
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grow, causing mangrove deforestation [50]. As reported by CLIRSEN [47], the uncontrolled
expansion of the shrimp farming industry in Ecuador within less than 30 years, is the
main cause for mangrove alteration and loss [15,51]. It is worth considering that, despite
the great social, economic, and environmental value of this ecosystem for the population,
shrimp farming is the activity that generates the highest revenue in Ecuador followed by
the oil industry. Shrimp farming reached a total revenue of USD 3823.53 million in 2020,
accounting for 25.53% of the country’s non-oil exports and 18.90% of the total exports of
Ecuador [52].

The present study confirmed that the expansion of shrimp farming has slowed down
in recent years. This result is in line with findings by Hamilton et al. [50] who considered
the following periods: (i) 1970–1990, rapid deforestation; (ii) 1990–2000, stabilization period;
and (iii) 2000–2010, recovery period. The period analyzed in this study matches the two
latter periods proposed by Hamilton et al. [25]; therefore, a positive balance in mangrove
recovery was observed.

Our data suggest that conservation policies implemented 20 years ago have allowed
the recovery of around 161.20 km2 of mangrove forests in Ecuador. On the other hand, it
is worth noting that during the first period, the area covered by shrimp farms increased
by 6.5%, while during the second period, this area started to gradually decrease (−1.3%;
Figure 4 and Table 6). Despite the efforts made to implement sustainable policies for man-
grove management, the development of shrimp farming has led to illegal land concessions,
authorizations for mangrove clearing without meeting the legally established requirements,
and land-buying from local communities [48].

It is also worth pointing out that in all periods, the area covered by water bod-
ies gradually decreased from 557.0 km2 (1998) to 556.6 km2 (2010) and finally, to 565.6
km2 (2018). This suggests that, given the mangroves’ sediment retention dynamics, new
mangrove-covered spaces may have been generated, contributing to the increase in their
cover area [53].

“Natural vegetation” gradually decreased by 0.8% from 1998 (15.5%) to 2018 (14.7%).
This result suggests that anthropogenic activities also affected other type of vegetation
besides mangrove.

A particular case was found in the coastal region of the Esmeraldas province, where
a net 9% increase in mangrove-covered area was observed between 1998 and 2018. The
built-up land cover category showed a 3% increase within the same period. Cropland
was the category with the largest net loss, with almost 10%, while shrimp farming and
natural vegetation have decreased by 1%. An example of these occupation dynamics and
the abandonment of shrimp farms can be found in the Bocana de Limones sector (Figure 5).
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Figure 5. Land occupation and abandonment of shrimp farms in the Bocana de Limones sector, in
the Esmeraldas province. (a) In the 1998 satellite image, shrimp ponds are shown in dark color and
mangroves are shown in reddish-brown; (b) in the 2010 satellite image, some abandoned pools with
recovering mangroves can be observed; (c) finally, in the 2018 satellite image, abandoned shrimp
farms covered by mangroves can be observed on the left and right sides.
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Net change data suggested that conservation policies in Esmeraldas have contributed
to mangrove recovery and to halting the expansion of shrimp farming. This could also be
due to the existence of three protected areas in this region: the Manglares Cayapa Mataje
Ecological Reserve, Manglares del río Muisne, and Manglares del río Esmeraldas Wildlife
Refuges. Moreover, the existence of 18 agreements for the sustainable use of mangroves
by users with ancestral rights has been reported, although only five of them were still in
force by 2019. Similar trends have been observed in mangrove forests within protected
areas in other regions of the world, such as the Saadani National Park in Tanzania [54] or
the Futian Mangrove National Nature Reserve and the Mai Po Marshes Nature Reserve in
China [55,56].

Mangrove forests in El Oro occupied around 234 km2 in 1987. In the same year, shrimp
farms covered 297 km2 [47]. According to our data, in 1997, there were nearly 164 km2 of
mangrove forests and 411 km2 of shrimp ponds. This means that between 1987 and 1997,
El Oro lost approximately 30% of its mangrove cover. Conversely, during the same period,
the area occupied by shrimp farms almost doubled. From 1997 to 2018, our data showed
a slightly increasing trend in both mangrove (1.9%) and shrimp farms (0.7%) (Figure 4).
Thus, it could be suggested that these categories have become stable in El Oro.

In Guayas, the mangrove-covered area barely increased during the first period (0.26%),
while the area covered by shrimp farms experienced a significant growth of 10.4%. (5.5%
(Figure 4). During the second period, the mangrove-covered area increased 1.38%, (8.6%)
while shrimp farms had a minimum decrease of 2.04%. This result appears to be related to
a positive impact of the executive decrees No. 1391 and No. 852, issued by the Government
of Ecuador in 2008 and 2016, respectively. These decrees regulate shrimp enterprises
expansion [51]. In Manabí, a positive balance in mangrove cover was observed for both
periods (with a 2.6% net increase; Figure 4). While only three sustainable use agreements
are in force in this province, it is worth noting the creation of the Islas Corazón y Fragatas
Wildlife Refuge in 2002, mainly aimed at the protection and restoration of the mangrove
ecosystem.

3.3. Interactions between Anthropogenic Activities and Mangroves

In line with previous studies, the net change data showed that land use in the region
under analysis has undergone little change. However, cross-tabulation analysis (Table 7)
revealed that mangrove was the category with the highest values for swap and total change
indicators. This means that approximately 19% of mangrove cover has been subject to
permanent loss and gain processes (swap P1 and swap P2). A similar pattern of results
worldwide was mentioned by De Lacerda et al. [57]. They indicate that despite a slight
reduction in forest loss rates, mangrove clearing and fragmentation continues.

Given the fragility of mangrove forests, constant alterations can negatively impact the
health of the mangrove not only in terms of cover but also of water, soil, and fauna [12].
Therefore, programs should be developed to monitor the restoration process to avoid
changes in land use, considering that mangrove recovery can require at least five years.
Mangroves may recover after storms with minimal or no intervention, as long as elevation
and hydrology have not been deeply affected (for example, due to sediment loss) [58].
In many aspects, mangroves act like weed species and can grow quickly in an intertidal
environment with few competitors. Overall, their natural recovery is often faster than any
other marine ecosystem. Initial recovery can be observed within 3–5 years, when new
generations of mangroves are able to take hold, although the full recovery of an ecologically
functional forest can take longer [59].
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Table 7. Indicators of change in the different land use categories *.
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Water 9.01 7.08 2.26 3.55 1.62 3.74 3.89 7.29 3.24 7.10 0.64 0.19
Shrimp farming 22.54 20.80 2.01 10.97 9.23 9.67 11.24 20.65 4.03 19.34 7.22 1.30
Built-up land 3.03 3.94 0.22 0.53 1.44 0.78 1.66 1.31 0.44 1.06 1.22 0.25
Cropland 9.05 8.91 11.61 3.17 3.02 2.40 14.64 5.57 6.05 4.80 8.59 0.77
Mangrove 24.63 25.15 4.56 4.99 5.51 6.22 10.08 11.21 9.13 9.98 0.95 1.24
Natural vegetation 5.98 7.42 2.47 2.34 3.77 1.76 6.24 4.09 4.94 3.51 1.31 0.58
Bare land 0.31 0.29 2.31 0.88 0.85 1.85 3.16 2.73 1.70 1.76 1.46 0.97
Total 74.54 73.58 25.46 26.42 25.46 26.42 50.91 52.84 29.52 47.54 21.39 5.30

* Values are expressed as percentage of the landscape for each category at the initial time point for each period.
P1: 1998–2010, P2: 2010–2018.

The provinces with the highest degree of mangrove losses during the study peri-
ods were Guayas > El Oro > Esmeraldas > Manabí (Table 8), contrasting with the find-
ings by CLIRSEN [47], which evidenced that the provinces with the greatest loss were
El Oro > Guayas > Manabí > Esmeraldas. Gross losses highlighted the existence of some
areas subject to deforestation. Generally, these areas lack any legal protection or custody.

Table 8. Mangrove gross losses and gains by province *.

Province
Year 1–Year 2 (P1) Year 2–Year 3 (P2)

Loss Gain Loss Gain

El Oro 37.63 49.70 8.73 12.16
Esmeraldas 25.69 95.63 6.22 13.48

Guayas 119.65 120.67 72.23 120.20
Manabí 11.60 17.27 6.34 12.13

* Estimated lost and gained areas in km2 for Periods 1 and 2.

The analysis of mangrove gross losses allowed detection of deforestation hotspots.
The rate of deforestation in these hotspots was higher in Manabí and El Oro during P1. In
P2, we found slower loss rates in all the provinces, except for Guayas (Figure 6).

Although shrimp farming has declined since the 1990s, mangroves face different
anthropic pressures such as wood extraction, oil-palm production, coastal development,
and urban sprawl [17,20,60]. Conversely, our study revealed that other anthropic activities,
although to a smaller degree, have generated major changes in mangrove cover. These
activities consist mainly of the development of human settlements and touristic infrastruc-
ture. Moreover, change indicators warn about continued changes over time, leading to
potentially irreversible transformations of mangrove forests [61].

As shown in Table 7, these categories have contributed to mangrove loss and gain in
the province of Esmeraldas. As for shrimp farming, a pattern of permanent occupation
followed by abandonment of the ponds could be observed in association with natural
mangrove recovery, mainly in the Muisne and Esmeraldas River estuaries. In Esmeraldas,
the Cayapas-Mataje protected area was the location with the greatest mangrove forest
recovery (Figure 7).
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Figure 7. Mangrove losses and gains in the Esmeraldas province between 1998 and 2016.

As for the province of Manabí (Figure 8), gains greatly exceeded losses, mainly in the
Chone river estuary (in the south of the province) and in the Chamanga area (in the north
of the province), where three custody agreements exist. Although recovery in the Chone
estuary has been remarkable, the pressure from shrimp farming continued to gradually
degrade mangroves.
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The same trend could be observed in the province of Guayas (Figure 9), with the
constant occupation and abandonment of areas dedicated to crops and shrimp farming
activities; however, it is also worth noting the recovery of mangrove areas, often related
to conservation and recovery initiatives through the establishment of agreements for the
sustainable use and custody of mangroves (AUSCM). This was the case of the Guayas river
estuary, which comprises a large portion of the Gulf of Guayaquil and Puná Island.

Finally, in the case of El Oro province (Figure 10), the continuous interspersion between
shrimp farming and mangrove recovery areas was much more evident, although the latter
slightly predominated, mostly owing to areas under the protection of AUSCM. This process
was the most notable in the Jambelí archipelago.

Generally, the interactions occurring to the detriment of the mangrove ecosystem and
resulting in a decrease in its area were closely linked mainly to shrimp farming; however,
they have been proven possible to control through the design and enforcement of adequate
conservation and sustainable use policies, as well as with the establishment of protected
areas that include representative sites within these ecosystems.
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The analysis of changes also revealed that other processes were also contributing
to mangrove degradation, although to a smaller extent; for example, anthropic activities
such as crop cultivation (such as African oil palm), urban expansion, and construction of
port and touristic infrastructures. Coastal erosion processes were also evidenced, altering
mangrove vegetation and accelerating water flow on the soil surfaces, in turn resulting in
transport of sediments away from the area. When this situation is sustained over time, it
can lead to loss of mangroves, changes in sediment movement pattern, and loss of land to
sea [62] (Figure 11).



Forests 2022, 13, 656 15 of 19

Forests 2022, 13, x FOR PEER REVIEW 15 of 19 
 

 

Generally, the interactions occurring to the detriment of the mangrove ecosystem and 

resulting in a decrease in its area were closely linked mainly to shrimp farming; however, 

they have been proven possible to control through the design and enforcement of ade-

quate conservation and sustainable use policies, as well as with the establishment of pro-

tected areas that include representative sites within these ecosystems. 

The analysis of changes also revealed that other processes were also contributing to 

mangrove degradation, although to a smaller extent; for example, anthropic activities 

such as crop cultivation (such as African oil palm), urban expansion, and construction of 

port and touristic infrastructures. Coastal erosion processes were also evidenced, altering 

mangrove vegetation and accelerating water flow on the soil surfaces, in turn resulting in 

transport of sediments away from the area. When this situation is sustained over time, it 

can lead to loss of mangroves, changes in sediment movement pattern, and loss of land to 

sea [62] (Figure 11). 

 

Figure 11. Intensity of annual change from mangrove to other cover categories (period 2010–2018), 

represented according to the following equation: Rtin = transition area from i to n during time period 

n/duration of the period area of category i to time 𝑛 × 100. 

Natural vegetation category is the result of changes in areas originally covered by 

mangrove, but which could not be restored and have instead become part of neighboring 

ecosystems, such as brush. In this analysis, low vegetation refers to land with low plant 

cover density, resulting from the transition or lag period from mangrove conversion to 

aquaculture. After mangroves are cut, these areas are often left for a certain period before 

they are turned into ponds. During this lag period, new vegetation such as shrubs, grasses, 

and even bare lands takes over the former mangrove area [63]. Among the actions that 

best represented a contribution to the increase in areas covered by mangroves was the 

establishment of national protected areas within the National System of Protected Areas 

(Sistema Nacional de Á reas Protegidas, SNAP) or of areas under sustainable use and con-

servation agreements, such as the Á reas de Uso Sustentable y Custodia de Manglar 

(AUSCM). 

While mangrove loss has been constant, actions aiming at the protection and resto-

ration of this ecosystem have proven to be efficient to maintain and increase its cover area. 

Figure 11. Intensity of annual change from mangrove to other cover categories (period 2010–2018),
represented according to the following equation: Rtin = transition area from i to n during time period
n/duration of the period area of category i to time n × 100.

Natural vegetation category is the result of changes in areas originally covered by
mangrove, but which could not be restored and have instead become part of neighboring
ecosystems, such as brush. In this analysis, low vegetation refers to land with low plant
cover density, resulting from the transition or lag period from mangrove conversion to
aquaculture. After mangroves are cut, these areas are often left for a certain period before
they are turned into ponds. During this lag period, new vegetation such as shrubs, grasses,
and even bare lands takes over the former mangrove area [63]. Among the actions that
best represented a contribution to the increase in areas covered by mangroves was the
establishment of national protected areas within the National System of Protected Areas
(Sistema Nacional de Áreas Protegidas, SNAP) or of areas under sustainable use and
conservation agreements, such as the Áreas de Uso Sustentable y Custodia de Manglar
(AUSCM).

While mangrove loss has been constant, actions aiming at the protection and restora-
tion of this ecosystem have proven to be efficient to maintain and increase its cover area.
Among these actions, it is worth highlighting the agreements known as AUSCM estab-
lished in the four studied provinces, which by 2018 covered around 592.08 km2 [51,64] out
of the 1618.35 km2 of mangroves in the country, i.e., around 37% of the total mangrove
cover. The situation is different in areas where no protection or sustainable use figures have
been implemented: in these areas located near estuaries, around shrimp pools, or near the
AUSCM, the constant loss of mangrove cover is significant.

Overall, the four main estuaries in the provinces of Manabí (Chone river and Cojimíes)
and Esmeraldas (Mataje and Esmeraldas), in the north of Ecuador, lost around 209.50 km2

of mangrove forests between the arrival of aquaculture and the moment of maximum
deforestation, while 179.80 km2 have been lost between the arrival of aquaculture and the
most recent survey. This amounts to a 37% decrease in mangrove cover until the moment
of maximum mangrove loss. Excluding the Cayapas-Mataje ecological reserve located in
the Mataje estuary, mangrove loss in the three remaining estuaries reached 83% by 2000
and is currently at 69%.
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According to several authors, communities play a major role in mangrove restora-
tion [65,66]. Studies carried out in the south of Thailand also demonstrated that community-
managed protected areas have been more effective for mangrove protection than protected
areas under national management. Moreover, similar cases exist, e.g., in Indonesia, Philip-
pines, and Cambodia, where community management has yielded positive results in terms
of mangrove cover [67,68].

Similarly, the existence of protected areas such as those belonging to the National
System of Protected Areas (SNAP) contributed to the conservation and restoration of
the mangrove ecosystem, since the different conservation areas include extensive man-
grove forests, which in 2012 accounted for 46.5% of mangroves present in the country, i.e.,
approximately 730.71 km2 [51].

4. Conclusions

The spatiotemporal analysis of the evolution of the area covered by mangrove forests
in Ecuador determined that:

1. The highest mangrove destruction rate in the country was reached during the 1998–
2010 period, resulting in a loss of 194.57 km2, which amount to 4.56% of the total
mangrove area. The most affected provinces were El Oro and Guayas, and shrimp
farming activity was the main cause of mangrove loss.

2. Since the 2010–2018 period, a gradual recovery of occupied areas has been observed,
especially in the northern province of Esmeraldas and in the southern province of El
Oro. This recovery is probably related to the regulation of deforestation, mangrove
conservation and restoration initiatives implemented in the Cayapas Mataje ecological
reserve, and the implementation of areas under sustainable use and conservation
agreements (Áreas de Uso Sustentable y Custodia de Manglar, AUSCM), mainly in
the province of El Oro.

3. Infrastructure building, agricultural land use, and construction and maintenance of
shrimp farming infrastructure are currently the main causes related to the destruction
and loss of new mangrove areas; this process is widespread among all the provinces
in the country but has been especially evident in the province of El Oro.

4. The remaining mangrove-covered areas are still subjected to deforestation processes;
however, the rate at which these processes occur has been shown to have slowed
down compared to two decades ago.
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