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Abstract: Tree species recognition is important for remote–sensing mapping and dynamic monitoring
of forest resource. However, the complex phenological cycle poses a challenge to remote–sensing
recognition of deciduous tree species in mountainous areas, and the selection of temporal phase
is particularly important to improve recognition accuracy. Multispectral images of Ziyuan–1 02C
(ZY–1 02C) and Ziyuan–3 (ZY–3) at three phenological phases of spring, autumn and winter (12 May,
29 September and 7 December, recorded as T5–12, T9–29 and T12–7) are selected to optimize sensi-
tive spectral indices. Support vector machine (SVM) and maximum likelihood model (MLE) are
constructed to explore the optimum phase of recognizing on Quercus acutissima (O. acutissima ) and
Robinia pseudoacacia (R. pseudoacacia) in Mount Tai. The results showed the average spectral reflection
intensity of O. acutissima was higher than that of R. pseudoacacia Compared to other phenological
periods, the most significant spectral differences between O. acutissima and R. pseudoacacia were found
in the spring (12 May), which was identified as the optimum phenological phase. Band 4 is the
most sensitive band in all the three phases for the tree species recognition. Moreover, the overall
recognition accuracy of deciduous tree species on 12 May reached 89.25%, which was significantly
higher than the other two phases. On 12 May, the recognition accuracies of SVM based on sensitive
spectral indices of up to 93.59% for O. acutissima and 85.44% for R. pseudoacacia, were higher overall
than that of the MLE. Sensitive spectral indices introduced were shown to significantly improve the
recognition accuracy for tree species over a single sensitive band. The study is expected to facilitate
the precise recognition and forestry management on Mount Tai.

Keywords: phenological phases; deciduous species; remote–sensing recognition; support vector
machine; Mount Tai

1. Introduction

Mount Tai, located in the North China Plain, is the highest mountain in Shandong. It
is a famous scenic tourist area in China and a national key cultural relics protection unit,
and has the title of World Geopark as a dual heritage of culture and nature in the world.
Mount Tai is a typical warm temperate deciduous broad–leaved forest area. The rich plant
resources make it a special mountainous area with the most diverse vegetation and the
largest number of endemic plant species in Shandong Province [1]. The rapid and precise
recognition of deciduous tree species on Mount Tai is an extremely necessary component
for efficient forest management, and the selection of the optimal phenological phase is
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the foundation for improving the accuracy of vegetation recognition [2]. Traditional field
investigation and aerial photography interpretation methods are extremely difficult to use
for identifying the Mount Tai tree species, especially in a short time, due to the complicated
terrain and inconvenient traffic. Multispectral remote sensing has advantageous features
such as macroscopical, short period and repeatable, which can accurately recognize on
surface forest features by image spectral and texture data [3]. Widely used multispectral
remote sensing provides technical support for tree species identification on Mount Tai [4–6].

The optimum phenological phase is the one that is optimally selected to have the most
relevant and distinctive spectral features for recognizing the target vegetation by attenuat-
ing the interference of other feature information [7]. Optimal phenological phase selection
has been studied by scientists for the recognition of various vegetation species [8,9]. For
example, estimation of optimal phase for three major crops (rice, corn and soybean) was
established by Owen Ho et al. [10], based on the NDVI time series data from China HJ–1
satellite CCD images and smoothed by wavelet transform filter. The seasonally variable
spectral characteristics of the canopies of nine major tree species in the Xiaoxing’anling in
the visible and near–infrared bands were analyzed by Xu Guangcai et al. [11], collected
by the ASD FieldSpec portable spectrometer, while the optimal band and period patterns
for tree species identification were explored. It was found that the spectral characteristics
of deciduous trees changed with seasonal regularity, while those of evergreen trees did
not change significantly during the year. Reflectance of Landsat 8 image at optimal tem-
poral were combined with NDVI time series by rough set method to classify cotton, the
classification accuracy was greatly improved compared to the unoptimized NDVI time
series [12].

Support vector machines, maximum likelihood estimation, decision trees, and neural
networks are some of the most widely used methods for remote–sensing recognition of tree
species and have achieved some recognition results [13–16]. Among the methods, decision
tree is often used for high spatial resolution airborne multispectral image classification,
such as single urban tree species with longitudinal profiles, and six major tree species
(maple, ash, birch, oak, spruce, and pine) campus trees at the University of York were
successfully recognized with an accuracy of over 80% [5]. Maximum likelihood, neural
network, mahalanobis distance and support vector machine methods were separately used
to recognize four major cultivar fruit trees (walnut, jujube, pear and apple) in southern
Xinjiang basin, China, based on spectral and texture data from high–resolution remote–
sensing images. Support vector machine was found to be the best classification method
for the four fruit tree species with the highest recognition accuracy of 69.71% [17]. Support
vector machines were also successfully applied to the species identification of Myrtle Beech,
a dominant tree species in Australian cold temperate rainforests, and its neighboring
species using LiDAR scan data, with the overall accuracy of 92.8% showing the significant
advantage of support vector machines over other classification methods [18]. The spectral
feature data from Landsat–8 OLITIRS were input into the support vector machine to
identify forest types in Wangqing natural forest area, Jilin Province, and it was found that
the support vector machine with radial basis kernel function had the best classification
accuracy, and the overall classification accuracy exceeded 80%, but only achieved rough
classification of broadleaf, coniferous, and mixed coniferous–broadleaf forests and lacked
classification of deciduous interspecies [19]. In general, the previous researches showed that
the support vector machine has a better recognition effect for tree species by remote–sensing
technology. However, only a rough classification of forest types was carried out, while the
classification accuracy of specific tree species still needs to be improved. Bands reflectance
was widely and directly used to recognize on tree species in existing researches with the
multi–spectral remote sensing. However, the spectral indices are expected to enlarge the
slight difference between the spectrum and improve the recognition accuracy [20].

Quercus acutissima (O. acutissima) and Robinia pseudoacacia (R. pseudoacacia), as the
most representative tree species of deciduous broad–leaf forest in warm temperate zone,
having similar phenological periods and the largest distribution area on Mount Tai, are
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selected as recognition tree species [21,22]. Multispectral images of Ziyuan–1 02C (ZY–1
02C) and Ziyuan–3 (ZY–3) at three phenological phases of spring, autumn and winter
(12 May, 29 September and 7 December, recorded as T5–12, T9–29 and T12–7) were selected
to optimize sensitive spectral indices. The support vector machine (SVM) and maximum
likelihood model (MLE) were constructed to explore the optimum phenological phase of
recognizing on O. acutissima and R. pseudoacacia on Mount Tai.

2. Data and Methods
2.1. Study Area

Our study area is located on Mount Tai (116◦50′~117◦12′ E, 36◦11′~36◦31′ N), central
location of Shandong Province, China (Figure 1). Mount Tai has the highest altitude of
1545 m, and the total area of 11,732.96 hm2. The area belongs to the warm temperate
continental monsoon climate zone. The vertical zonal character leads to the difference in
annual average temperature between the mountain summit and base, at 5.3 ◦C and 12.8 ◦C,
respectively. The mean annual precipitation is 1124.6 mm, mainly occurs from June to
August, and the annual relative humidity is 63%.
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Mount Tai is a huge ecological barrier and an important germplasm resource bank
because of the abundant plant resources. The vegetation coverage rate is over 90%, in
which the woodland reaches 81.5% and nearly 10,000 hm2. The deciduous vegetation
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changes significantly with the four distinct seasons. O. acutissima stand has a long growth
cycle, most of which is nearly mature generation forest. R. pseudoacacia was introduced to
Mount Tai in the 1920s, and has now gradually evolved into naturally–regenerated coppice
plantations. The two tree species are mainly distributed along an altitudinal gradient about
from 400 to 1000 m above sea level in Mount Tai.

2.2. Phenologic Characteristics of Tree Species

O. acutissima and R. pseudoacacia have typical phenological characteristics of deciduous
species, which are prominently displayed on Mount Tai where the seasons are distinct.
The selection of the phenological period of two tree species directly contributes to the
effect of remote–sensing recognition. The phenological characteristics of O. acutissima
and R. pseudoacacia throughout the year are shown in Table 1 [23]. In general, the fruit
ripening and defoliating periods of O. acutissima is one to two months later than those of
R. pseudoacacia, and the two species show near–synchrony in other phenological periods.
In particular, both species are in the flowering period in May, in the significant leaf color
change in late September, and in the differential defoliation period in mid–December.
In these three phenological phases, the phenological characteristics of O. acutissima and
R. pseudoacacia show distinguishability and differences, and have the advantage of being
selected for remote–sensing identification.

Table 1. Key phenological period of O. acutissima and R. pseudoacacia throughout a year.

Tree Species Germinating Leaf Expansion Flowering Fruit Ripening Leaf Color
Changing Defoliating

O. acutissima Mid to late March The end of March
to early April

Late March to
early May

September to
October of the

next year

Late September to
mid October

Late November to
the end

of December

R. pseudoacacia Late February to
early April

Early to
mid April

Mid April to
mid May

Mid July to
September of the

next year

Late September to
early October

Mid October to
late November

2.3. Multispectral Data

Considering the topographic features of the study area, the phenological characteristics
of O. acutissima and R. pseudoacacia, and the accessibility and applicability of remote–sensing
data, a total of three scenes of multispectral remote–sensing images on September 29 and
December 7 of Ziyuan–3 (ZY–3) and May 12 of Ziyuan–1 02C (ZY–1 02C) in 2014 were
selected for this classification identification. Although the ZY–1 02C multispectral image
has three bands, one less than ZY–3, the two images have identical band ranges in green,
red, and near–infrared bands (Table 2), so ZY–1 02C was selected to compensate for the
lack of the May 2014 image from the ZY–3 remote–sensing satellite. In addition, the spatial
resolution of ZY–1 02C image is 10 m, which is slightly lower than that of ZY–3, and the
comparative differences in classification effects will be further discussed in the study results.
The pretreatment of atmospheric conditioning, geometrical correction, and geometric fine–
prediction had been performed on the remote–sensing images before the species recognition.
Topographic radiometric correction was particularly performed with multiple validations
to reduce the influence of the complex topography of Mount Tai on the recognition results.
For the spectral characterization, we consider that the spectral differences are significant in
some cases when analyzing the spectral reflectance differences between bands or between
different tree species. Between two bands, the band with the larger mean reflectance is more
than one times larger than the band with the smaller mean reflectance, which is considered
a significant spectral difference between the bands. Between the two tree species, the
difference in average reflectance of a band is 20% larger than that of the tree species with
smaller average reflectance, which is considered a significant spectral difference between
the tree species.
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Table 2. Image parameters.

B1 (Blue)/µm B2 (Green)/µm B3 (Red)/µm B4 (Near
Infrared)/µm

Spatial
Resolution/m

Multispectral image ZY–3 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89 5.8
ZY–1 02C —- 0.52–0.59 0.63–0.69 0.77–0.89 10

Note: ZY–1 02C bands are numbered as 2, 3, 4 bands to facilitate the comparison.

2.4. Sample Selection

Vegetation surveys were conducted in 2014, consistent with the year of remote–sensing
recognition images. The setup of each plot in the plant–species investigation was based on
the principle of distribution uniformity and tree species typicality. For further systematic
and rational sampling, the range of altitude was divided into 200 m bands. The sample
areas of each tree species were selected in three elevation bands with latitudes of 400–600 m,
600–800 m, and 800–1000 m, respectively. Considering the altitudinal distribution char-
acteristics of O. acutissima and R. pseudoacacia in Mount Tai, the number of sample areas
in these three altitude zones was selected in the ratio of 1:3:2. The sampling sites were
representative of typical tree types in each altitudinal band and away from clough and slope
crest, large stream gullies and rocky outcrops. A total of 119 sample areas of O. acutissima
and 88 sample areas of R. pseudoacacia were finally selected, all of which were rectangular
in shape, as shown in Figure 1. Regarding the sample area of O. acutissima, the smallest
is 25.82 m2, the largest is 3593.88 m2, the total area of all O. acutissima sample areas is
118,798.77 m2, the average area is 998.31 m2; Regarding the sample area of R. pseudoacacia,
the smallest is 114.43 m2, the largest is 3596.80 m2, the total area of all R. pseudoacacia
sample areas is 77,175.19 m2, the average area is 876.99 m2. Based on the classification
advantages of remote–sensing multispectral image data, pixel points were chosen as the
base unit for the experiment. There were 2550 pixels in O. acutissima sample area, and
1635 pixels in R. pseudoacacia sample area. According to the difference of the spectral index
of each species, equidistant sampling was applied to select 2/3 pixels as modeling samples
(1700 of O. acutissima, 1090 of R. pseudoacacia) and 1/3 pixels as validation samples (850 of
O. acutissima, 545 of R. pseudoacacia) to construct the SVM and MLE models, respectively.
The sample area groups of O. acutissima and R. pseudoacacia located on the northern shady
slope and southern sunny slope of Mount Tai, respectively, were enlarged to clearly show
the distribution of the sample areas. Both tree species sample areas are dominated by
typical pure forest areas in each altitudinal band and away from clough and slope crest,
large stream gullies and rocky outcrops, as shown in Figure 1a.

2.5. Recognition Algorithm

The support vector machine algorithm (SVM), first proposed by Vapnik in 1995 [24], is
a pattern recognition method based on statistical learning theory that enables classification
and regression analysis through data training. SVM has the advantage of eliminating
overfitting and is robust to noise [25,26], and is particularly suitable for classification
applications on multidimensional and high–dimensional data [26–29]. The key of SVM
classification lies in the kernel function, which maps the sample data from the original
feature space to the high–dimensional feature space and finds the optimal hyperplane in the
feature space to maximize the classification interval, thus achieving accurate classification
of sample data [24]. The kernel functions of SVM classification include Linear Kernel,
Polynomial Kernel, Radial Basis Function (RBF), Sigmoid Kernel [30]. The SVM classifier
constructed by RBF was studied and proved to have better classification advantages, and
was used in this study [31].

Maximum likelihood estimation (MLE) is a classification method that uses a maximum
likelihood function to estimate the parameters of a hypothetical probability distribution
given training data. MLE is the most traditional and commonly used method for statistical
classification due to its intuitive and flexible advantages of statistical logic. The MLE model
was constructed in this study as a control to validate the SVM recognition results [32].
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2.6. Sensitive Spectral Indices

Mathematical calculation methods were used to construct spectral indices based on
the spectral reflectance extracted from the image–sample areas, and the corresponding
formulations are shown in Table 3. The total number of spectral indices constructed for each
phenological phase is 90 for T5–12, 166 for T9–29, and 166 for T12–7. The spectral indices were
analyzed and screened to construct support vector machines and maximum likelihood
models for the recognition of O. acutissima and R. pseudoacacia Firstly, a multi–categorical
logistic regression model was used to analyze the correlation between spectral indices
and tree species types, where spectral indices were quantitative independent variables
and tree species types were qualitative dependent variables. The 10 spectral indices with
the highest correlation coefficients were determined to be sensitive spectral indices. Then,
these 10 sensitive spectral indices were used separately to construct a one–dimensional
model, on the one hand, and combined to construct a 10–dimensional model, on the other
hand. Finally, the three spectral indices with the highest recognition accuracy among the
10 one–dimensional models were selected as the best sensitive spectral indices, which
were further used to construct the three–dimensional models. The recognition accuracies
of different models on O. acutissima and R. pseudoacacia in different time phases were
compared and analyzed to select the optimum phenological phase. It should be noted
that in order to reduce the effect of altitude on vegetation phenology on Mount Tai, the
spectral data of the three phenological zones were extracted separately to construct spectral
indices and applied to classification models, and the mean value of recognition accuracy of
the three phenological zones for each tree species was calculated as the final accuracy of
the species.

Table 3. Construction formulations of spectral indices.

Single Band Multi–Band

Bi
2 Bi

1/3 Bi ± Bj lnBi/(Bi ± Bj) (BiBj)/(Bi + Bj)
Bi

3 eBi BiBj (Bi ± Bj)/eBi (Bi − Bj)/(Bi + Bj)
Bi

0.5 lnBi Bi/Bj (Bi/Bj)/(Bi ± Bj) (Bi − Bj)/(BiBj)
Note: Bi, Bj (i, j = 1, 2, 3, 4): Reflectance of image band.

3. Results
3.1. Spectral Characteristics

Box–and–whisker plots were plotted to represent statistical features such as minimum,
maximum, quartile, and mean values of spectral reflectance, as shown in Figure 2. The
data features of standard deviation and mean values were used as the focus for analyzing
the spectral characteristics of each phenological phase. The reflectance values of the three
temporal phases of O. acutissima and R. pseudoacacia showed different characteristics, as
shown in Figure 2. The overall reflectance values of T5–12 were higher than those of the
other two temporal phases, and the differences in reflectance between bands were obvious,
such as B4 was significantly higher than B2 and B3. Similarly, the B4 reflectivity of T9–29 is
significantly higher than the other three bands. The reflectance values of the four bands of
T12–7 were less different, and the average reflectance was between 0.04 and 0.1. Among the
two species, the average reflectance of O. acutissima was higher than that of R. pseudoacacia,
especially in B4.

The differences in the spectral reflectance of O. acutissima and R. pseudoacacia indicated
that the largest difference in reflectance between the two species was at T5–12 B4 (X = 0.0958),
although it has a little higher standard deviation (σQ.A. = 0.0278, σR.P. = 0.0425). Sec-
ondly, the reflectance of the two species also had a clearly distinguishable difference in
T5–12 B3 (X = 0.0242), and the B3 reflectance data set had less dispersion (σQ.A. = 0.0067,
σR.P. = 0.0145), and it can be found that T5–12 B3 and B4 showed better identification

potential for O. acutissima and R. pseudoacacia The spectral reflectance of the two species
in the T9–29 temporal phase did not show significant differences in the other three bands
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(XB1 = −0.0038, XB2 = −0.0033, XB3 = −0.0040), except for B4 (X = 0.0202). However,
the spectral reflectance data set of B4 had excessive dispersion (σQ.A. = 0.0206, σR.P. = 0.0305),
which could easily cause confusion in the tree species identification process. Similar
to T9–29, the differences of spectral reflectance between the two tree species in the T12–7
temporal phase were not significant in B1, B2 and B3 (XB1 = −0.0017, XB2 = −0.0025,
XB3 = −0.0080), but showed significant differences in B4 (X = 0.0237), and the dispersion
of the B4 reflectance data set was relatively small (σQ.A. = 0.0169, σR.P. = 0.0135). Thus,
it appears that T12–7 B4 is second only to T5–12 B3 and B4 in terms of suitability for the
identification of O. acutissima and R. pseudoacacia.
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Figure 2. Spectral reflectance of each band at different phenological phases.

3.2. Sensitive Band and Sensitive Spectral Index

The correlations between spectral indices and tree species types were analyzed and
the 10 sensitive spectral indices with the highest correlation coefficients were identified
as in Table 4. We further analyzed the obtained correlation coefficients by referring to the
range of correlation coefficients (rounded to two decimal places) proposed in the relevant
literature into eight categories, i.e., 0.00 to ±0.30, ±0.30 to ±0.50, ±0.50 to ±0.80, and
±0.80 to ±1.00 indicating slight, real, significant, and high positive or negative correlations,
respectively, [33,34].

Table 4. Sensitive spectral indices of recognition for O. acutissima and R. pseudoacacia.

T5–12 T9–29 T12–7

X1 (B2 − B3)/(B2B3) B2 − B4 B4/B3
X2 (B3 − B4) × (B3 + B4) (B1 − B4)/(B1B4) (B4/B3)/(B4 − B3)
X3 eB4 (B4 − B2)/(eB4) lnB3/(B3 − B4)
X4 lnB4 (B3 − B4)/(B3B4) B3/B4
X5 B4

1/3 (B2/B4)/(B2 − B4) lnB4/(B4 − B3)
X6 B4

0.5 (B2/B4)/(B2 + B4) B4 − B3
X7 B2 − B4 (B3/B4)/(B3 + B4) B3 − B4
X8 B3 − B4 B2/B4 (B3 − B4)/(eB3)
X9 (B3 − B4)/(eB3) B4/B1 (B4 − B3)/(eB4)
X10 B4/B3 B4/B3 (B3/B4)/(B3 − B4)

Note: Bi (i = 1, 2, 3, 4) represents the band reflectance of images.

The correlation coefficients between different bands and tree species for each phe-
nological phase can be found, as shown in Figure 3, that T5–12 B4 showed the highest
correlation among all bands with highly negative correlation, followed by T5–12 B3 with a
significant positive correlation, and T9–29 B4 and T12–7 B4 with a significant negative correla-
tion. B4 was therefore considered the most sensitive band for recognizing O. acutissima and
R. pseudoacacia, especially in T5–12, which was initially considered the best phenological
phase. Thus, the results of the sensitivity analysis of the bands were found to be consistent
to some extent with the conclusions of the analysis of spectral characteristics in Section 3.1.
The correlation coefficients between the sensitive spectral indices and tree species indicate
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that the overall correlation among the three phenological phases was T5–12 > T12–7 > T9–29.
T5–12 showed an extraordinarily high correlation with the highest coefficient of 0.82. T12–7
followed with the highest correlation coefficient of 0.75. T9–29 showed a poorer correlation
with the highest coefficient of 0.52.
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The band composition of the sensitive spectral indices was found to contain all sensi-
tive bands (Table 4). Specifically, among the three phenological phases, seven (X4–X10) of
the ten sensitive spectral indices of T5–12 had higher correlation coefficients than the most
sensitive band (B4). Eight (X3–X10) of the ten sensitive spectral indices of T9–29 had higher
correlation coefficients than the most sensitive band (B4). The correlation coefficients of ten
sensitive spectral indices (X1–X10) of T12–7 are all higher than the most sensitive band B4.
This indicates that the construction of sensitive spectral indices improved the correlation of
spectral information with tree species.

3.3. Recognition Accuracy

To ensure the comparability of the recognition results, the construction parameters
of both the one–dimensional and multi–dimensional SVM models were kept consistent,
as shown in Table 5. The radial kernel function was selected to construct the SVM model
throughout because of its recognized discriminative advantages. The recognition accuracies
of SVM and MLE models constructed with sensitive band and sensitive spectral indexes,
respectively, for O. acutissima and R. pseudoacacia are shown in Figure 4. We compared
and analyzed the recognition accuracy results of SVM models, including 10–dimensional
SVM models constructed by both sensitive bands and sensitive spectral indicators, and
3–dimensional SVM models constructed by the best sensitive spectral indicators. The
recognition accuracy is calculated by inputting the validation pixel values as variables into
the classification model constructed by modeling pixel values, that is, the testing accuracy,
as shown in Figure 4. At the same time, in order to compare the differences in recognition
results between bands and spectral indices, different phenological phases, and different
models straightforwardly, the recognition accuracies of O. acutissima and R. pseudoacacia
under the same conditions were averaged and described as the overall recognition accuracy
of the two species. MLE model was constructed by the spectrum data of T5–12, which
was more evidentially proven to be the best recognition phase, for use as the comparison
and validation of the SVM recognition results. The recognition accuracy of the univariate
sensitive spectral indices constructed by the one–dimensional SVM model was analyzed to
yield the best sensitive spectral indices for the three temporal phases of X5, X8 and X9 on
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T5–12; X5, X7 and X8 on T9–29; X3, X5 and X10 on T12–7, respectively, (Table 4). The validation
accuracy and modeling accuracy are found generally consistent (Figure 4).

Table 5. Model parameters of SVM.

Tree Species Degree Gamma Coef0 Epsilon C Nu Shrinking P

O. acutissima 3 0.5 0.001 0.001 1 0.5 1 1
R. pseudoacacia 3 0.5 0.001 0.001 1 0.5 1 1
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Figure 4. Recognition accuracy of SVM and MLE for O. acutissima and R. pseudoacacia in different
phenological phases. (a) SVM with sensitive band; (b) SVM with sensitive spectral indices. SVM3

and SVM10 represent three and ten dimensional SVM models constructed by three best sensitive
spectral indices and ten sensitive spectral indices, respectively; (c) MLE with sensitive band; (d) MLE
with sensitive spectral indices. MLE3 and MLE10 represent three and ten dimensional MLE models
constructed by three best sensitive spectral indices and ten sensitive spectral indices, respectively.

The recognition accuracy was analyzed and it was found that the model constructed
with sensitive spectral indices outperformed that with sensitive bands, both for O. acutissima
and R. pseudoacacia Firstly, for O. acutissima, the 3–dimensional SVM model (SVM3) had the
highest accuracies on all three phases. SVM3 on T5–12 was 93.59%, higher than B3 (90.53%)
3.06% and higher than B4 (93.12%) 0.46%; SVM3 on T12–7 was 85.94%, higher than the B4
(83.82%) 2.12%; SVM3 on T9–29 was 82.12%, higher than B4 (80.24%) 1.88%. Secondly, for
R. pseudoacacia, the 10–dimensional SVM model (SVM10) had the highest accuracy on T5–12
and T9–29, and the SVM3 had the highest accuracies on T12–7. SVM10 on T5–12 was 85.44%,
higher than B3 (80.12%) 5.32% and higher than B4 (81.77%) 3.67%; SVM10 on T9–29 was
57.37%, higher than B4 (41.47%) 15.90%; SVM3 on T12–7 was 83.78%, higher than B4 (68.26%)
15.52%, as shown in Figure 4a,b. The overall recognition accuracy of B4 for O. acutissima
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and R. pseudoacacia on T5–12 was higher than that of B3. The B4 of T5–12 was confirmed to be
the most sensitive band in this phenological phase (T5–12), the same for T9–29 and T12–7.

The recognition efficiency of O. acutissima was found to be apparently higher than
that of R. pseudoacacia As example with the SVM model constructed by sensitive spectral
indices, the maximum recognition accuracy of O. acutissima was 93.59 %, derived from the
SVM3 constructed by T5–12 spectral indices; the minimum was 80.82% derived from the
SVM10 constructed by T9–29 spectral indices. However, the maximum recognition accuracy
of R. pseudoacacia was 85.44 %, derived from SVM10 constructed by T5–12 spectral indices;
and the minimum was 51.50 %, derived from SVM3 constructed by T9–29 spectral indices.
The overall recognition accuracy of SVM3 (84.79%) was higher than that of SVM10 on T12–7
(78.45%), but similar on T5–12 and T9–29. The recognition models constructed by spectral
information obtained from the three phenological phases were compared and it was found
that the recognition accuracy of 12 May under all model construction conditions showed
a predominantly high level, and was determined as the optimum phenological phase for
the recognition of O. acutissima and R. pseudoacacia The maximum likelihood estimation
model was constructed based on the sensitivity band and the sensitive spectral indices of
T5–12 for comparison with SVM, as shown in Figure 4c,d. The recognition accuracy of the
MLE for both O. acutissima and R. pseudoacacia on T5–12 was lower than that of the SVM
under the same model construction conditions. For example, the overall accuracy of the
MLE (76.11% and 78.16%) based on B3 and B4 from T5–12 was 9.18% and 9.30% lower than
that of the SVM (85.29% and 87.46%), respectively. The overall accuracy of the MLE10
(79.57%) and MLE3 (81.06%) on T5–12 were 9.02% and 8.19% lower than that of the SVM10
(88.59%) and SVM3 (89.25%), respectively. The application of the MLE model contributively
demonstrated that B4 was the most sensitive band and the introduced sensitive spectral
indices have a competitive improvement in recognition accuracy for O. acutissima and
R. pseudoacacia compared to the sensitive band.

4. Discussion

Mean spectral reflectance was selected to recognize O. acutissima and R. pseudoacacia in
this study. The effect of elevation on vegetation phenology could not be ignored. Therefore,
we tried to reduce the influence of elevation on tree species recognition results in three
aspects: vegetation selection, sample area delineation and data modeling. We compared in
detail the recognition results for O. acutissima and R. pseudoacacia within each elevation band
and found that the two species could be identified by the spectral differences between the
two species within the same elevation band, while the average reflectance of the combined
multiple elevation bands amplified the spectral differences between the two species to
some extent. The explanation for the spectral differences between the two species being
amplified by the integration of spectral variations from multiple elevation bands has not
been clearly revealed, but the delineation at finer elevation band scales will be a promising
research direction for future tree species recognition based on remote–sensing techniques.

The conclusion that spring T5–12 is recommended as the best phenological period for
identifying O. acutissima and R. pseudoacacia in this study is derived with evidence, while
there is a degree of uncertainty as the image data used were based on different satellites.
Specifically, the spring T5–12 image data were obtained from ZY–1 02C, and the autumn
T9–29 and winter T12–7 image data were obtained from ZY–3. The spatial resolution of
T5–12 is 10 m, which is lower than ZY–3′s 5.8 m, and the multispectral bands are three,
one less than ZY–3, although the three available bands have exactly the same spectrum,
as shown Table 2. The relatively lower spatial resolution and fewer bands compared to
ZY–3 may potentially reduce the remote–sensing recognition competence of the spring
T5–12 multispectral image, yielding a lower recognition accuracy for O. acutissima and
R. pseudoacacia Nevertheless, ZY–1 02C image in T5–12 phenology phase was found to have
higher recognition accuracy than ZY–3 on O. acutissima and R. pseudoacacia in the obtained
results, even with the potentially reduced recognition capability. This is a conclusive and
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substantial confirmation that T5–12 is the best phenological phase for the recognition of
O. acutissima and R. pseudoacacia among the three phases.

Spring is identified as the best recognition phase presumably due to the large canopy
morphology differences in leaves and flowers between O. acutissima and R. pseudoacacia,
especially the flowering morphology, as shown in Table 1. The leaf morphology of
O. acutissima is lanceolate and clustered, with the single leaf is 8–19 cm long and 2–6 cm
wide [35]; the leaf morphology of R. pseudoacacia is ovate, dichotomous alternate or op-
posite, with the single leaf measuring 2–5 cm long and 1.5–2.2 cm wide, and the pinnate
compound leaf measuring 10–25 cm long. Both species had finished the leaf unfolding on
12 May, and the differences in single leaf size and morphology, as well as the differences in
leaves compound structure between the two species were displayed amply. In addition,
the flowers of O. acutissima have already faded in the middle and early May, while the
flowers of R. pseudoacacia are in full bloom. The morphological appearance of R. pseudoacacia
flowers is characterized by the distinguishable white papilionaceous corolla, racemes and
axillary inflorescences [36]. Therefore, both the leaves and flowers may be the dominant
morphological traits recognized by remote–sensing methods.

The differences in crown width and tree height may also be one of the explanations
for the spectral differences between the two species of O. acutissima and R. pseudoacacia
However, differences in crown width and height are more determined by the elevation
zone, slope direction, and age of the tree species. For example, under similar environ-
mental conditions, the older the tree the greater the canopy width and height. Therefore,
differences in tree height and canopy width are not sufficiently accounted for by the differ-
ences in spectral variation among tree species when the environmental conditions such as
growing location and age are not negligible. Consequently, when the structural features of
crown width and height are specifically designed to extract spectral variation for accurate
classification of broad–leaved tree species, further investigation of background conditions
such as age and elevation zone of the target tree species is a necessary prerequisite.

Compared with sensitive bands, the SVM constructed by sensitive spectral indices
improved the recognition accuracy of R. pseudoacacia more than that of O. acutissima, which
may imply that the recognizability of tree morphological traits potentially implicates
higher remote–sensing recognition accuracy. For example, R. pseudoacacia improved the
recognition accuracy more than O. acutissima in the May 12 phase (Figure 4a,b), probably
because R. pseudoacacia was in full bloom at this phase, while the flowers of O. acutissima
had already fallen, as shown in Table 1 [23,36]. In addition, the few numbers of tree species,
O. acutissima and R. pseudoacacia, may result in limited generalizability of the recognition
results, the selection of the optimum phenological phase for deciduous broad–leaved trees
should include more species in the future studies.

5. Conclusions

Phenological phases are particularly important for remote–sensing recognition of
deciduous tree species in mountainous areas. Multispectral images at three phenological
phases of spring, autumn and winter are selected to optimize sensitive spectral indices
and construct SVM and MLE recognition models. The optimum phase for recognizing
main deciduous tree species on Mount Tai are explored in this study. We showed the
average spectral reflection intensity of O. acutissima was higher than that of R. pseudoacacia
Compared to other phenological periods, the most significant spectral differences between
O. acutissima and R. pseudoacacia were found in the spring (12 May), which was identified as
the optimum phenological phase. Moreover, the overall recognition accuracy of deciduous
tree species on 12 May reached 89.25%, which was significantly higher than the other
two phases. Band 4, followed by band 3, are the most sensitive bands in all the three
phases for tree species recognition. On 12 May, the recognition accuracies of SVM based on
sensitive spectral indices of up to 93.59% for O. acutissima and 85.44% for R. pseudoacacia,
overall higher than that of the MLE. Sensitive spectral indices introduced were shown to
significantly improve the recognition accuracy for tree species over a single sensitive band.
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The study is expected to facilitate the precise recognition and forestry management on
Mount Tai.
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