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Abstract: The objective of this study was to verify the accuracy of tree species identification using
deep learning with leaf images of broadleaf and coniferous trees in outdoor photographs. For each
of 12 broadleaf and eight coniferous tree species, we acquired 300 photographs of leaves and used
those to produce 72,000 256 × 256-pixel images. We used Caffe as the deep learning framework
and AlexNet and GoogLeNet as the deep learning algorithms. We constructed four learning models
that combined two learning patterns: one for individual classification of 20 species and the other
for two-group classification (broadleaf vs. coniferous trees), with and without data augmentation,
respectively. The performance of the proposed model was evaluated according to the MCC and
F-score. Both classification models exhibited very high accuracy for all learning patterns; the highest
MCC was 0.997 for GoogLeNet with data augmentation. The classification accuracy was higher
for broadleaf trees when the model was trained using broadleaf only; for coniferous trees, the
classification accuracy was higher when the model was trained using both tree types simultaneously
than when it was trained using coniferous trees only.

Keywords: AlexNet; broadleaf trees; Caffe; coniferous trees; deep learning; F-score; GoogLeNet;
MCC; tree species identification

1. Introduction

We developed an auto-tree-identification system based on leaf images for mobile
terminals [1–6]. In previous studies, we focused mainly on woody plant species and
investigated whether tree species could be identified from leaf images. In tree species
identification using leaf images, images are captured in a manner such that only a single
leaf is included. Pre-processing (e.g., image processing) is then performed. Various infor-
mation from the images is used as identification criteria; this information includes shape
features [7–11], texture [12,13] and leaf venation [14–16]. Supervised learning with machine
learning methods [17], such as neural networks and decision trees, is used to discriminate
among candidate species [18]. Minowa et al. [1] did not achieve high classification accuracy
when they applied machine learning to shape features. Minowa et al. [2] demonstrated
that classification accuracy could be improved by combining shape and leaf venation infor-
mation. However, while classification accuracy was high for training data, performance
was poor for test data. Several of our subsequent studies [4–6] demonstrated that deep
learning can be applied to tree species identification with high classification accuracy, even
for test data.

Deep learning refers to a neural network model that consists of multiple layers, such
as convolutional neural networks (CNNs); such models have recently achieved excellent
results with respect to image recognition. Prior to the emergence of deep learning, most
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image recognition methods generally used pre-extracted image features. The accuracy of
image recognition is affected by the type of features used. However, image features are
difficult to specify because they vary among objects. Thus, the extraction of image features
is greatly influenced by researcher and developer experience [19]. Deep learning does
not require users to define image features in advance. The user inputs a large amount of
training data into the computer, which then extracts image features from the training data
to perform recognition. Most deep learning applications are easy to use, publicly available
and free of charge, which facilitates their use by researchers in various fields; thus, people
in fields other than machine learning can conduct research using deep learning. With
regard to tree species identification using leaf images, deep learning enables the omission
of complicated image processing performed on the leaves for analysis. Accordingly, the
analyst is not required to process numerous leaf images using image analysis software to
extract shape features and venation information from a single leaf image.

State-of-the-art deep learning algorithms have been proposed at large-scale interna-
tional competitions for fields related to image recognition. These include ILSVRC [20],
COCO Challenge [21], ImageCLEF/LifeCLEF [22] and Places2 Challenge [23]. Among these
competitions, LifeCLEF includes a sub-competition called PlantCLEF, in which participants
strive to achieve high classification accuracy for various types of plant datasets [17]. In the
2015 PlantCLEF competition, plants were divided into seven parts (branch, entire plant,
leaf [photographic image], leaf [scan or scan-like image], flower, fruit and stem) to show
competitive classification accuracy. The 2015 PlantCLEF competition included 113,205 im-
ages of 1000 species of herbs, trees and ferns, mostly from France. The GoogLeNet model
had the highest overall classification accuracy, but its mean reciprocal rank was only 0.667
(i.e., not high). Ghazi et al. [17] applied transfer learning [24] and other techniques to the
AlexNet, GoogLeNet and VGGNet deep learning models, using the same dataset as the
2015 PlantCLEF competition; they achieved high classification accuracies with leaf scans
and scan-like images but lower classification accuracies with leaf photographs. Because
ImageCLEF and PlantCLEF focus on competition with deep learning algorithms, they do
not extensively explore the tendency to misclassify targets. We speculated that the low
classification accuracy of the 2015 PlantCLEF was partly related to the large number of plant
species used for identification. Deep learning has been used to assess the extent of plant
diseases [25,26], identify tree species based on Lidar and drone-acquired images [27–29]
and to distinguish broadleaf and conifer species [30–34]. Most such studies use scanned
images of single leaves rather than multiple leaves or images from databases such as Plant-
CLEF2012 [35] or the Swedish leaf dataset [36], whereas few studies have directly used
images of multiple leaves.

In our previous studies, tree species were broadly classified into broadleaf [5] and
coniferous [6] leaf images; deep learning was applied to tree species identification. The
main objective of those studies was to determine whether deep learning could be used to
identify tree species based on photographs of multiple leaves that were acquired outdoors.
First, we conducted tree species identification for broadleaf trees using machine learning [5].
Second, we conducted tree species identification for coniferous trees based on the results of
broadleaf tree analyses [6]. Therefore, our constructed deep learning model could not be
applied to datasets that contain both broadleaf and coniferous trees. However, on the basis
of tree species identification using machine learning and deep learning, we aim to develop
a system that can perform tree species identification for numerous users using various
mobile terminals in the future. For users who are familiar with tree species identification, it
is appropriate to construct a tree species identification system that is adjusted for broadleaf
and coniferous trees in advance. For users who are unfamiliar with tree species, the species
of a tree should be automatically identified by simply acquiring a photograph of its leaves.

The objective of this study was to verify the accuracy of tree species identification
using deep learning with broadleaf and coniferous leaf images acquired in the field (except
for instances in which broadleaf and coniferous images are simultaneously reflected in a
single image). We used 12 broadleaf and eight coniferous trees. Thus, we calculated the
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accuracy of tree species identification when 20 species were divided into two groups: all
12 broadleaf trees were in the “broadleaf group” and all eight coniferous trees were in the
“coniferous group”. We then compared the initial accuracy with the accuracy of tree species
identification when only broadleaf trees [5] and only coniferous trees [6] were used. Some
deep learning models, such as pipelined and linked models, have functions that allow
multiple deep learning models to be connected and regarded as a single model [37,38]. The
size (capacity) of a learning model is especially important when the model is implemented
in a mobile terminal, but the above functions enable construction of a model that is much
smaller than conventional models. Moreover, if separately trained models can be combined,
broadleaf and coniferous trees can be classified in advance and then identified using their
respectively trained models. Overall, we focused on determining the accuracy of tree
species identification when all tree species are classified simultaneously (i.e., without
distinguishing between broadleaf and coniferous trees), compared to the accuracy when
two groups of trees are classified separately.

2. Materials and Methods
2.1. Study Sites

Leaf images of 12 broadleaf tree species [5] and 8 coniferous tree species [6] were
used for analysis at the Kyoto Prefectural University campus and Kyoto Botanical Gardens
(Figure 1). All broadleaf tree species had simple leaves but were classified into three different
categories: simple leaves with smooth margins, simple leaves with toothed margins and
lobed leaves. We photographed 300 leaves from each tree. Previous studies of broadleaf
trees [2–5] used these same leaf shapes, which facilitated comparison with our results.

Figure 1. Focal species and classification based on broadleaf and coniferous trees.
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2.2. Photographic Methods

Because broadleaf and coniferous trees were photographed by different photographers
on different dates, a NICON COOLPIX A900 [39] was used for broadleaf trees and a Galaxy
S9 was used for coniferous trees [40]. Photographs were acquired from September 2020 to
November 2020. When possible, photographs were acquired on sunny days under calm
conditions to ensure consistent image color tone. The distance between the subject and
the camera was approximately 0.3–1.0 m. All images were in color. We did not process
additional (i.e., non-leaf) elements, such as the sky, ground or buildings, which were present
in the background of some photographs. We acquired photographs from various angles
to avoid capturing the same leaf when possible; to ensure that the leaves were generally
centered, we did not enlarge images. In deep learning, background objects are important.
Since the distance between the subject and the camera was approximately 0.3–1.0 m, in
many cases the background is barely visible in the image in this study. If the background
objects are reflected in the image, we acquired leaf images that were taken at various angles
so that the background of the leaf image would be various background images, such as the
sky, ground (soil, concrete), buildings and other structures.

2.3. Image Processing and Data Augmentation

We processed the photographs using ImageJ 1.50 open-source image processing soft-
ware [41]. Image sizes were 256 × 256 pixels. The following procedure was used for data
augmentation of the training and test data. Data augmentation is a method for efficiently
increasing the amount of learning data in deep learning. While deep learning does not re-
quire the definition of features, it requires the preparation of large volumes of training data.
Because this is laborious, several methods have been proposed for efficient deep learning
with less data. Typical methods include data augmentation and transfer learning [19,24,42].

First, we obtained three leaf images from each photograph by slightly varying the
cropping window (Process 1 in Figure 2). Next, we rotated each cropped image clockwise
by 90, 180 or 270 degrees (Process 2 in Figure 2). These procedures yielded 12 images per
photograph and 3600 images per species; the final dataset comprised 72,000 images.

Figure 2. Methods for creating leaf images from photographs.
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2.4. CNN Algorithms

Of the available CNN algorithms, we chose AlexNet and GoogLeNet, which are
representative algorithms from previous studies [5,6]. AlexNet, which won the ILSVRC
2012 competition, is a deep learning model that consists of five convolutional layers, three
max-pooling layers, and three fully connected layers; it thus comprises 11 layers [43].
GoogLeNet, which won the ILSVRC 2014 competition, consists of 22 layers of stacked
modules with nine inception modules that include multiple convolution and pooling
layers [44]. The characteristics of GoogLeNet are similar to the characteristics of the network-
in-network algorithm [45], which (a) incorporates a micro-network with fully connected
feature maps, instead of the activation function; (b) has a network structure that exhibits
depth and width in both the vertical and horizontal dimensions; and (c) applies the rectified
linear unit activation function to all convolutional layers. Both algorithms use a dropout
regularization method to suppress overfitting in fully connected layers.

2.5. Learning Environment and Models for the CNNs

The learning environment for both CNNs was a computer with a Linux operating
system (Ubuntu 18.04 LTS), Intel Core i5–8400K central processing unit and NVIDIA
GeForce RTX 2080 Super GPU [46]. We used CUDA 11.6 and cuDNN 8.3.2 to support the
GPU with deep learning. We used convolutional architecture for fast feature embedding
(Caffe, ver. 0.17.3) as the learning framework for the NVIDIA deep learning GPU training
system (DIGITS) 6.1.1, which enables web-based learning. Caffe is a leading deep learning
framework; it has hyper-parameter tuning, rapid execution speed and supports numerous
operating systems [47].

2.6. Simulation Conditions and Performance Evaluation

We divided leaf images into 10 equal sets, each of which included all 20 species. We
prepared two patterns of tree species identification methods, using data augmentation and
no augmentation with each pattern. The first pattern identified the 20 tree species indi-
vidually (hereafter referred to as “20-species classification”); the second pattern identified
the 20 tree species in two groups, broadleaf and coniferous trees (hereafter referred to as
“two-group classification”). The results from a previous study [5] suggest that deep learning
avoids some of the challenges associated with human classification; these two methods
were implemented to confirm this suspicion. Specifically, when a human misclassifies a tree
species, the misclassification typically involves a tree species with similar shape features.
For example, if a tree has simple leaves with smooth margins, it is likely to be misclassified
as another species that also has simple leaves and smooth margins. However, deep learning
has not shown such trends [5]. Misclassification might occur because the leaf image used
for deep learning is not a scanned image that consists of a single leaf (used for tree species
identification by machine learning using shape features)—it is a photograph acquired in
the field, in which multiple leaves are reflected. Thus, misclassification is not limited to
features that arise when deep learning is used. The application of deep learning to many
tree species in the future will enable species identification, but there will be limitations
in that coniferous trees may be mistakenly classified as broadleaf (or broadleaf trees may
be mistakenly classified as coniferous). Furthermore, rather than classifying all cases at
the species level in a single instance, it may be possible to classify the trees as broadleaf
or coniferous in advance, then identify the species within each group. If this method
demonstrated high accuracy, it would add to the repertoire of effective methods for tree
species identification models with deep learning.

Here, we devised four learning models. The datasets for all models consisted of
nine sets of training data and one set of test data. Learning Model 1 (LM-1) classified
20 tree species individually without data augmentation. Learning Model 2 (LM-2) classified
20 tree species individually with data augmentation. Learning Model 3 (LM-3) classified
two groups (broadleaf and coniferous trees) without data augmentation. Finally, Learning
Model 4 (LM-4) classified two groups (broadleaf and coniferous trees) with data augmen-
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tation. We conducted 10 model iterations without duplication. LM-2 and LM-4 were
prepared such that the 12 images enhanced by data augmentation were not divided into
separate datasets (training and test); thus, the training and test datasets were independent.
To evaluate the performance of the proposed models, we calculated the F-score, which was
used for the classification accuracy of individual tree species (20 tree species for LM-1 and
LM-2; two groups for LM-3 and LM-4) and the MCC, which was used for overall classifi-
cation accuracy [48–50]. In a classification model that uses contingency tables, both true
positive (TP) and true negative (TN) are correct classifications according to the classifier; TP
is the positive example, while TN is the negative example, for each piece of training data. A
false positive (FP) occurs when the outcome is incorrectly predicted to be “yes” (positive),
although it is actually “no” (negative). A false negative (FN) occurs when the outcome is
incorrectly predicted to be negative, although it is actually positive. The number of cases
predicted to be positive that are actually positive refers to precision, while the number of
cases that were actually correct and predicted to be positive is referred to as recall. Both are
expressed by Equations (1) and (2), respectively.

Precision =
TP

TP + FN
(1)

Recall =
TP

TP + FP
(2)

Both equations are indices to evaluate classification accuracy, but they involve trade-
offs [49,50]. In this study, the F-score (Equation (3)), which is the harmonic mean of the
precision and recall, was used as an overall indicator.

F − score =
2 × Precision × Recall

Precision + Recall
(3)

The MCC is an indicator that shows whether the classification is unbiased. It ranges
from −1 to 1 [48]. The MCC was calculated using Equation (4) for LM-1 and LM-2 (because
they are multi-class classifiers [51]) and Equation (5) for LM-3 and LM-4 (because they are
binary classifiers). The MCC of Equation (4) can be defined by a confusion matrix C for K
classes [51].

MCC =
c × s − ∑K

k pk × tk√(
s2 − ∑K

k p2
k

)
×
(

s2 − ∑K
k t2

k

) (4)

where tk = ∑K
i Cik is the number of times class k actually occurs in the confusion matrix

C of class K; pk = ∑K
i Cki is the number of times class k was predicted in the confusion

matrix C of class K; c = ∑K
k Ckk is the total number of samples correctly predicted; and

s = ∑K
i ∑K

j Cij is the total number of samples [51].

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

We conducted 50, 100 and 200 epochs for all learning models.

3. Results
3.1. Classification Accuracy of Tree Species Identification for Test Data When Simultaneously
Identifying Broadleaf and Coniferous Trees

Table 1 shows F-scores that represent the classification accuracies of tree species for
test data when broadleaf and coniferous tree species were classified simultaneously. The
values in the table are the means of 10 simulation results.
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Table 1. Classification accuracy of tree species identification for test data when simultaneously
classifying broadleaf and coniferous trees.

Categories
Tree

Species

No Data Augmentation Data Augmentation

GoogLeNet AlexNet GoogLeNet AlexNet

50 1 100 1 200 1 50 1 100 1 200 1 50 1 100 1 200 1 501 100 1 200 1

Broadleaf
trees

Smooth margins 2

C.c. 0.912 0.950 0.948 0.899 0.914 0.923 0.966 0.972 0.975 0.949 0.956 0.960
C.j.N 0.881 0.898 0.906 0.802 0.846 0.839 0.959 0.962 0.969 0.916 0.925 0.935
M.t. 0.846 0.917 0.914 0.810 0.859 0.850 0.953 0.964 0.974 0.942 0.944 0.956
S.s. 0.870 0.916 0.929 0.777 0.845 0.844 0.961 0.963 0.977 0.931 0.943 0.947

Toothed margins 3

C.j.Z 0.943 0.946 0.962 0.913 0.939 0.940 0.974 0.975 0.981 0.965 0.966 0.972
L.g. 0.788 0.847 0.872 0.740 0.761 0.766 0.924 0.925 0.940 0.885 0.895 0.904
Q.g. 0.863 0.904 0.908 0.808 0.833 0.834 0.952 0.962 0.969 0.928 0.945 0.947
Q.p. 0.841 0.926 0.928 0.797 0.861 0.885 0.969 0.976 0.985 0.944 0.954 0.958

Lobed 4

A.p. 0.793 0.859 0.868 0.735 0.764 0.777 0.941 0.944 0.954 0.900 0.908 0.910
A.p.ck 0.826 0.908 0.918 0.821 0.849 0.856 0.965 0.966 0.977 0.940 0.959 0.953

G.b. 0.929 0.949 0.968 0.925 0.942 0.941 0.964 0.969 0.972 0.956 0.968 0.963
L.f. 0.774 0.846 0.840 0.687 0.743 0.763 0.923 0.927 0.945 0.899 0.905 0.902

Min. 0.774 0.846 0.840 0.687 0.743 0.763 0.923 0.925 0.940 0.885 0.895 0.902
Max. 0.943 0.950 0.968 0.925 0.942 0.941 0.974 0.976 0.985 0.965 0.968 0.972
Ave. 0.855 0.906 0.914 0.809 0.846 0.852 0.954 0.959 0.968 0.930 0.939 0.942

Coniferous trees

A.f. 0.756 0.792 0.818 0.673 0.729 0.731 0.875 0.857 0.871 0.849 0.861 0.869
C.f. 0.805 0.812 0.847 0.765 0.770 0.776 0.857 0.867 0.873 0.846 0.843 0.833

C.j.D 0.768 0.829 0.861 0.745 0.750 0.758 0.920 0.925 0.930 0.909 0.903 0.904
C.o. 0.826 0.862 0.883 0.696 0.762 0.776 0.929 0.923 0.935 0.880 0.897 0.886
M.g. 0.872 0.912 0.917 0.863 0.881 0.874 0.929 0.918 0.934 0.907 0.911 0.914
P.t. 0.890 0.913 0.929 0.837 0.826 0.845 0.942 0.946 0.954 0.942 0.954 0.944
T.c. 0.751 0.801 0.812 0.619 0.678 0.697 0.842 0.851 0.883 0.812 0.796 0.823
T.s. 0.834 0.888 0.899 0.739 0.784 0.813 0.931 0.942 0.952 0.900 0.903 0.907

Min. 0.751 0.792 0.812 0.619 0.678 0.697 0.842 0.851 0.871 0.812 0.796 0.823
Max. 0.890 0.913 0.929 0.863 0.881 0.874 0.942 0.946 0.954 0.942 0.954 0.944
Ave. 0.813 0.851 0.871 0.742 0.772 0.784 0.903 0.904 0.917 0.880 0.884 0.885

Min. for overall 0.751 0.792 0.812 0.619 0.678 0.697 0.842 0.851 0.871 0.812 0.796 0.823
Max. for overall 0.943 0.950 0.968 0.925 0.942 0.941 0.974 0.976 0.985 0.965 0.968 0.972
Ave. for overall 0.838 0.884 0.896 0.782 0.817 0.824 0.934 0.937 0.947 0.910 0.917 0.919

1 Epochs, 2 Simple leaves with smooth margins, 3 Simple leaves with toothed margins, 4 Lobed leaves.

Without data augmentation, the highest F-score was 0.968 for G.b. (please see abbrevi-
ations list for all species names used in this manuscript) in GoogLeNet after 200 epochs.
The lowest F-score was 0.619 for T.c. in AlexNet after 50 epochs. The highest F-scores of
broadleaf trees in GoogLeNet were obtained for 0.943 for C.j.Z. after 50 epochs, 0950 for C.c.
after 100 epochs and 0.968 for G.b. after 200 epochs; thus, the results differed according
to the number of epochs. In AlexNet, G.b. had the highest F-scores for all epochs (0.925,
0.942 and 0.941 in order of decreasing epoch). The lowest F-scores from the broadleaf tree
category were L.f. for all epochs in both GoogLeNet and AlexNet (0.774, 0.846 and 0.840 in
order of decreasing epochs for GoogLeNet; 0.687, 0.743 and 0.763 for AlexNet). The highest
coniferous tree F-scores in GoogLeNet were P.t. for all epochs (0.890, 0.913 and 0.929 in
order of decreasing epoch); the highest coniferous F-scores in AlexNet were M.g. for all
epochs (0.863, 0.881 and 0.874 in order of decreasing epoch). The lowest coniferous tree
F-scores in GoogLeNet were 0.751 for T.c. after 50 epochs, 0.792 for A.f. after 100 epochs
and 0.812 for T.c. after 200 epochs; the lowest coniferous tree F-scores in AlexNet were T.c.
for all epochs (0.619, 0.678 and 0.697 in order of decreasing epoch).

Comparison of overall F-scores by epoch revealed that minimum, maximum and mean
values were higher for broadleaf trees across all epochs for both GoogLeNet and AlexNet.
Similar to differences among epochs, the F-score tended to increase as epochs increased
for most learning patterns, although some patterns showed slightly lower F-scores (C.c.,
M.t. and L.f. in GoogLeNet after 200 epochs; P.t. in AlexNet after 100 epochs; and C.j.N.,
M.t., S.s., G.b. and M.g. in AlexNet after 200 epochs). Among the learning algorithms used,
GoogLeNet had a higher F-score for all training patterns.

With data augmentation, the highest F-score was 0.985 for Q.p. in GoogLeNet after
200 epochs, while the lowest was 0.796 for T.c. in AlexNet after 100 epochs. With regard to
epoch, the highest broadleaf tree F-scores in GoogLeNet were 0.974 for C.j.Z. after 50 epochs,
0.976 for Q.p. after 100 epochs and 0.985 for Q.p. after 200 epochs; the highest broadleaf
tree F-scores in AlexNet were 0.965 for C.j.Z. after 50 epochs, 0.968 for G.b. after 100 epochs
and 0.972 for C.j.Z. after 200 epochs. The lowest broadleaf tree F-scores in GoogLeNet
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were 0.923 for L.f. after 50 epochs, 0.925 for L.g. after 100 epochs and 0.940 for L.g. after
200 epochs; the lowest broadleaf tree F-scores in AlexNet were 0.885 for L.g. after 50 epochs,
0.895 for L.g. after 100 epochs and 0.902 for L.f. after 200 epochs. The highest coniferous
tree F-scores in GoogLeNet were P.t. for all epochs (0.942, 0.946 and 0.954 in order of
decreasing epoch); the highest coniferous tree F-scores in AlexNet were P.t. for all epochs
(0.942, 0.954 and 0.944 in order of decreasing epoch). The lowest coniferous tree F-scores in
GoogLeNet were 0.842 for T.c. after 50 epochs, 0.851 for R.c. after 100 epochs and 0.871 for
A.f. after 200 epochs; the lowest coniferous tree F-scores in AlexNet were T.c. for all epochs
(0.812, 0.796 and 0.823 in order of decreasing epoch).

Comparison of overall F-scores by epoch revealed that minimum, maximum and mean
values were higher for broadleaf trees across all epochs for both GoogLeNet and AlexNet,
similar to the findings without data augmentation. Similar to differences among epochs,
the F-score tended to increase as epochs increased for most of the learning patterns, but
some of the patterns showed slightly lower F-scores, similar to the findings without data
augmentation (A.f., C.o. and M.g. in GoogLeNet after 100 epochs; C.f., C.j.D. and T.c in
AlexNet after 100 epochs; and A.p.ck, G.b., L.f., Co., C.f. and P.t. in both GoogLeNet and
AlexNet after 200 epochs). Among the learning algorithms used, GoogLeNet had a higher
F-score for many learning patterns; in a few cases, AlexNet had a higher score (A.f. and P.t.
in AlexNet after 100 epochs).

3.2. Classification Accuracy of Tree Species Identification for Test Data When Either Broadleaf or
Coniferous Trees Were Used

Table 2 shows F-scores that represent the classification accuracies of tree species for
test data when classifying between groups of either broadleaf or coniferous trees. The
values in the table are the means of 10 simulation results.

Table 2. F-scores as the classification accuracy of tree species for test data when classifying between
groups of either broadleaf or coniferous trees.

Groups Data Augmentation
GoogLeNet AlexNet

50 1 100 1 200 1 50 1 100 1 200 1

Broadleaf
- 0.9965 0.9967 0.9967 0.9935 0.9953 0.9960

# 2 0.9981 0.9988 0.9982 0.9978 0.9983 0.9981

Coniferous
- 0.9948 0.9950 0.9950 0.9902 0.9929 0.9940

# 2 0.9972 0.9982 0.9974 0.9967 0.9974 0.9972
1 Epochs, 2 Open circles indicate with data augmentation.

The highest F-score was 0.9988 for broadleaf trees with data augmentation in GoogLeNet
after 100 epochs. The lowest F-score was 0.9902 for coniferous trees without data aug-
mentation in AlexNet after 50 epochs. Overall, F-scores were very high for 20-species
classification. F-scores were higher with data augmentation for all epochs. Among the
various epochs, F-scores tended to increase as epochs increased, but the difference was very
small. GoogLeNet after 200 epochs with data augmentation resulted in a slightly lower
F-score than after 100 epochs for both broadleaf and coniferous trees. Comparison of the
highest F-score for each tree species revealed almost identical results for broadleaf and conif-
erous trees: 0.9988 and 0.9982, respectively (both with data augmentation in GoogLeNet
after 100 epochs). The number of errors was 51 of 42,000 images for broadleaf trees and
53 of 28,800 images for coniferous trees; these results indicated very high classification
accuracy for group.

3.3. Classification Accuracy of Tree Species Identification According to Learning Method

Figure 3 shows the classification accuracy of tree species identification according to
learning method for test data, on the basis of MCC. In the legend for Figure 3, “20 species
individually” indicates LM-1 (20-species classification); “only broadleaf” indicates the
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MCC, which was calculated using results from Ref. [5]; “only coniferous” indicates the
MCC, which was calculated using results from Ref. [6]; and “two groups” indicates LM-3
(two-group classification). Figure 3a shows GoogLeNet and Figure 3b shows AlexNet; solid
lines indicate data augmentation and dashed lines indicate no data augmentation.

Figure 3. Classification accuracy of tree species identification for test data, based on MCC.
(a) GoogLeNet; (b) AlexNet.

In Figure 3a (GoogLeNet), the highest MCC was 0.997 for “two groups, data augmen-
tation” after 100 epochs. MCCs for “two groups, data augmentation” were high for all
epochs. The lowest MCC was 0.756 for “only coniferous” after 50 epochs. Comparison of
the results with and without data augmentation revealed that classification accuracy tended
to improve as epochs increased in most cases without data augmentation. The two-group
classifications (“two groups” and “two groups, data augmentation” in Figure 3a) showed a
very high classification accuracy of 0.995 with data augmentation and 0.991 without data
augmentation after 50 epochs; thus, there was almost no improvement in classification
accuracy as epochs increased. With data augmentation, there was no improvement in
classification accuracy as epochs increased; in some cases, there was a slight decrease in
classification accuracy as epochs increased (“only coniferous, data augmentation” after
100 epochs and “two groups, data augmentation” after 200 epochs). In Figure 3b (AlexNet),
the highest MCC was 0.996 for “two groups, data augmentation” after 100 epochs. MCCs
for “two groups, data augmentation” were high for all epochs, similar to the GoogLeNet
results. The lowest MCC was 0.684 for “only coniferous” after 50 epochs. The AlexNet
results with and without data augmentation were similar to the GoogLeNet results. The
classification accuracy in AlexNet was almost identical to the classification accuracy in
GoogLeNet for “two groups, data augmentation”; however, the accuracy of the other
groups tended to be lower overall, especially concerning MCCs without data augmentation
(which were lower with the exception of “two groups”).

3.4. Comparison between Simultaneous and Individual Identification

As indicated in Section 3.3, the two-group classification had the highest accuracy,
followed by only broadleaf trees, 20-species classification individually and coniferous trees
only. Therefore, the accuracy of tree species identification was higher for broadleaf trees
when only broadleaf trees were used; it was higher for coniferous trees when both broadleaf
and coniferous trees were identified simultaneously. However, because the above MCC is
calculated for the entire classification, the MCC when both broadleaf and coniferous trees
were classified simultaneously may be the result of averaging the classification accuracies of
broadleaf trees only and coniferous trees only. Therefore, from the cases in which broadleaf
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and coniferous trees were classified simultaneously, the respective results for broadleaf
and coniferous trees were extracted and compared with the results from broadleaf only
classification [5] and coniferous only classification [6], respectively (Table 3).

Table 3. Comparison between simultaneous identification of broadleaf and coniferous trees and
individual identification of broadleaf and coniferous trees.

Pattern Data Augmentation
GoogLeNet AlexNet

50 1 100 1 200 1 50 1 100 1 200 1

SB 2 - −31 −24 −84 35 20 −6
# 4 −399 −275 −76 −470 −150 −212

SC 3 - 65 39 16 49 14 30
# 4 772 945 900 462 536 294

1 Epochs, 2 Total value of TP according to tree group when classified simultaneously minus the TP value of
broadleaf trees only, 3 Total value of TP according to tree group when classified simultaneously minus the TP
value of coniferous trees only, 4 Open circles indicate with data augmentation.

Notably, the number of misclassified tree species differed for each training model;
comparisons using MCCs and F-scores were thus inappropriate. We compared the total
TPs, which represent the correct classification of the positive examples, according to tree
group. The values in Table 3 show the total TP value according to tree group when classified
simultaneously minus the TP value of broadleaf or coniferous only, respectively. Positive
(+) values indicate a higher accuracy in the classification of broadleaf and coniferous trees
simultaneously, while negative (−) values indicate a higher accuracy when only broadleaf
trees or only coniferous trees are classified. For broadleaf trees in GoogLeNet, all epochs
with and without data augmentation showed negative values. Therefore, we presumed that
the accuracy of tree species identification would be higher when learning only broadleaf
trees than when learning the classification of broadleaf and coniferous trees simultaneously.
Without data augmentation, the classification accuracy was lower after 100 epochs than
after 50 epochs, but the overall trend was that the classification accuracy increased as
epochs increased. With data augmentation, the classification accuracy tended to decrease
as epochs increased. For broadleaf trees in AlexNet, the results after 50 and 100 epochs
without data augmentation indicated increased classification accuracy when trees were
classified simultaneously. However, classification accuracy tended to increase as epochs
increased when broadleaf trees only were used for training. For coniferous trees in both
GoogLeNet and AlexNet, all epochs with and without data augmentation showed positive
values. Therefore, we presumed that the accuracy of tree species identification would be
higher when learning the classification of broadleaf and coniferous trees simultaneously
than when learning coniferous trees only. GoogLeNet showed a trend toward higher
classification accuracy for coniferous trees only without data augmentation and for data
augmentation with simultaneous classification as epochs increased.

3.5. Misclassification Patterns According to Tree Species

Figures 4 and 5 show misclassification patterns according to tree species. The figures
comprise heatmaps that were created based on the classification results obtained from the
contingency table, using the seaborn module in Python. Figure values show classification
according to each training model; they represent the sum of the results of 10 simulations.
Based on the results in Table 3, the results with the lowest and highest MCCs are shown
in Figures 4 and 5, respectively. Training class represents each tree species in the training
cases; test class represents where the training model classified each tree species (i.e., how
the training model classified each tree species used in the training cases). The figure shows
that the correct classification was made only when the training class and the test class had
the same tree species. To clarify the misclassification, broadleaf and coniferous trees are
indicated along with three groups of broadleaf trees based on leaf shape, which are divided
and clearly indicated using solid lines.
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Figure 4. Misclassification patterns according to tree species in AlexNet after 50 epochs without
data augmentation. 1 Simple leaves with smooth margins, 2 Simple leaves with toothed margins,
3 Lobed leaves.

In Figure 4, the highest TP was G.b. and the lowest TP was T.c. Overall, there were few
misclassifications of broadleaf trees as coniferous trees or coniferous trees as broadleaf trees.
Both broadleaf and coniferous trees were frequently misclassified within each category;
broadleaf trees were misclassified within three categories. The four species of broadleaf
trees that were not misidentified as coniferous trees were M.t., C.j.N., Q.g. and A.p.ck.
There were no cases in which coniferous trees were misidentified as broadleaf trees among
any of the tree species. Except for T.c., seven coniferous trees had no misclassification of
broadleaf trees as a category of simple leaves with toothed margins. Comparison of the four
categories (three broadleaf categories and one coniferous) revealed that the categories with
the highest total number of misclassifications for each category were the misclassification
of simple leaves with smooth margins as simple leaves with toothed margins (99 total
misclassifications), simple leaves with toothed margins as simple leaves with smooth
margins (130), lobed leaves as coniferous leaves (119) and coniferous leaves as lobed
leaves (568).

In Figure 5, the highest TP was S.s. and the lowest TP was A.f. Similar to Figure 4,
there were few cases of misclassification of broadleaf trees as coniferous trees or coniferous
trees as broadleaf trees. Both broadleaf and coniferous trees were frequently misclassified
within each category; broadleaf trees were misclassified within three categories. The five
species for which broadleaf trees were not misidentified as coniferous trees were M.t., C.j.N.,
Q.g., Q.p. and A.p.ck. The three species for which coniferous trees were not misidentified
as broadleaf trees were C.o., M.g. and T.c. There were no misclassifications for simple
leaves with toothed margins and lobed leaves on A.f. and P.t. or for simple leaves with
smooth leaves and lobed leaves on C.f. Comparison of the four categories of broadleaf
and three categories of coniferous trees revealed that the categories with the highest total
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number of misclassifications for each category were the misclassification of simple leaves
with smooth margins as simple leaves with toothed margins (186), simple leaves with
toothed margins as simple leaves with toothed margins (168), lobed leaves as simple leaves
with smooth margins (245) and coniferous leaves as lobed leaves (2339).

Figure 5. Misclassification patterns according to tree species in GoogLeNet after 200 epochs with
data augmentation. 1 Simple leaves with smooth margins, 2 Simple leaves with toothed margins,
3 Lobed leaves.

4. Discussion

In this study, when 12 broadleaf and eight coniferous trees were classified simulta-
neously, the highest MCC was 0.8914 without data augmentation and 0.9447 with data
augmentation. While the model with the highest MCC for only 12 broadleaf trees had a
classification accuracy of 0.9309 without data augmentation and 0.9670 with data augmen-
tation [5], only eight coniferous trees had a classification accuracy of 0.8465 without data
augmentation and 0.8695 with data augmentation [6]. Considering the results in Table 3,
the classification accuracy was higher for broadleaf trees when the model was trained using
broadleaf only, whereas the classification accuracy of coniferous trees was higher when
the model was trained using both tree categories simultaneously than when it was trained
with coniferous trees only. These findings should be verified in additional studies because
of the difference in the number of broadleaf and coniferous trees; moreover, the leaf images
were acquired from only a few trees of each species.

With respect to epochs, many models showed a trend toward improved classification
accuracy as epochs increased. Especially without data augmentation, there was substan-
tial improvement in classification accuracy as epochs increased. While high classification
accuracy was achieved after 50 epochs (the number of epochs used as the fewest number
of training sessions), there was minimal improvement in classification accuracy as epochs
increased thereafter; there were a few cases in which classification accuracy slightly de-
creased. In most types of machine learning, including deep learning, the use of excessive
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learning iterations (i.e., epochs in deep learning) can lead to low classification accuracy
of test data because the training data are overfitted to the training cases; this is known as
“overfitting” [52]. In the present study, overfitting presumably occurred in the two-group
classification as epochs increased because these models achieved sufficient classification
accuracy with a small number of epochs.

With respect to learning algorithms, GoogLeNet tended to have higher classification
accuracy than AlexNet for most of the models. Because of the similar results in tree species
identification in 2015 PlantCLEF and Ghazi et al. [17] mentioned above, GoogLeNet is
regarded as one of the most effective deep learning algorithms with high classification
accuracy. A possible reason for GoogLeNet to exhibit higher classification accuracy is
that GoogLeNet has more layers than AlexNet. Deep learning tends to improve image
recognition performance as the number of layers increases. However, several challenges
have been identified in the application of deep learning. Constraints on input data (i.e.,
image type and image size) vary among algorithms; moreover, algorithms with many
layers require extensive computation as the number of layers increases, which leads to long
training times or the need for high performance hardware. Therefore, it is preferable to
consider the optimal type of learning model for different problem sets, rather than simply
using a model with many layers.

With respect to data augmentation, the classification accuracy tended to improve
with data augmentation when many objects were identified. There was also sufficient
classification accuracy without data augmentation when identifying both broadleaf and
coniferous trees (two-group classification). This finding is presumably because a large
amount of training data was used for two-group classification: 3600 images for broadleaf
trees and 2400 images for coniferous trees. If high classification accuracy was achieved
without data augmentation, data augmentation led to a slight decrease in classification
accuracy. In general, deep learning requires the preparation of a large amount of training
data for analysis, but there is no specific threshold for analysis target data. Based on
our results, determination of the need for data augmentation should be based on the
classification target and the amount of data. If classification accuracy is high despite a small
amount of training data, data augmentation is unnecessary; in such cases, an unnecessarily
large number of epochs can decrease classification accuracy because of overfitting.

With respect to misclassification patterns, broadleaf trees were often misclassified as
the incorrect broadleaf species and coniferous trees were often misclassified as the incorrect
coniferous species. However, because identification is not 100% correct, there were a few
cases where broadleaf trees were misclassified as coniferous trees or coniferous trees were
misclassified as broadleaf trees; such misclassification is unlikely to occur with human
identification. Although detailed verification was not conducted in this study because it
would been extremely complicated, image recognition using deep learning can output
classification results as rankings, as in the mean reciprocal rank method described earlier,
and in the DIGITS method used in this study, where the classification results are displayed
as probabilities with the top five rankings. Therefore, when constructing a practical tree
species identification system, it is preferable to use a method that can present several
candidates instead of a single tree species. In addition, misidentifications (e.g., confusion
between broadleaf and coniferous trees) can be prevented if candidate tree species are
expressed as probabilities or if images of tree species and textual information about tree
species are presented simultaneously.

Based on the results of this study, we propose the following learning method for
constructing a tree species identification system. First, distinguish between two groups:
broadleaf and coniferous trees. Then, perform classification of broadleaf trees with a learn-
ing model for broadleaf trees only; this will provide higher classification accuracy. For
coniferous trees, use a classification model for broadleaf and coniferous trees simultane-
ously; this will provide higher classification accuracy. Notably, we found distinct trends
in species identification between broadleaf and coniferous trees, but the reasons for these
differences are unclear. The number of tree species used in this study was small; we expect
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that the trend would have differed if more tree species had been used. To examine the
accuracy of tree species identification using deep learning, we investigated deep learning
algorithms, learning patterns, epochs and the amounts of training and test data with and
without data augmentation. To improve the accuracy of tree species classification, there is a
need to improve the classification accuracy of coniferous trees in particular. Considering
that the species classification accuracy is lower for coniferous trees than for broadleaf trees
(although the number of coniferous species is smaller than the number of broadleaf tree
species), learning conditions should be considered along with other conditions (e.g., learn-
ing using leaf images, as well as images of whole trees and stems). Furthermore, we are
exploring the construction of a system that can perform tree species identification by imple-
menting the results of machine and deep learning identification that have been conducted
on mobile terminals. To achieve tree species identification using mobile terminals, machine
and deep learning must be implemented on the mobile terminals. We are conducting tree
species identification using deep learning for mobile terminals such as MobileNetV3 [53]
and GhostNet [54], which are typical deep learning algorithms. Alternatively, rather than
direct implementation on a mobile device, CoreML for iOS [37] and ML Kit for Android [55]
have been proposed for training on non-mobile devices; these softwares allow the results
to subsequently be applied to a mobile device. Empirical studies using these methods will
be important in the future.

5. Conclusions and Future Work

We applied a deep learning technique to identify tree species based on outdoor pho-
tographs of leaves from 12 broadleaf and eight conifer species. We evaluated the accuracy
of our results by classifying broadleaf and conifer trees simultaneously. Outdoor tree
leaf photographs typically include multiple leaves, rather than single leaves. Although
single-leaf images or those adjusted for brightness or saturation are associated with high
tree species classification accuracy [30–34], our results show that multiple-leaf images
acquired in the field could be used to classify tree species with high accuracy. Variation in
classification accuracy and misclassification was observed for both broadleaf and conifer
trees. Further study is required to verify the results of this study using a larger number of
tree species. In this study, we did not examine the effects of the conditions under which
photographs were taken. It is possible that different backgrounds for the same tree species
in various locations may have affected classification accuracy. For example, a previous
study found that leaf segmentation or overlapping strongly influenced the classification
of broadleaf tree images, particularly in images with complex backgrounds, necessitating
labeling for segmentation [32]. We conclude that labeling should also be considered for
coniferous trees, although it would increase the labor required for image processing.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural network
MCC Matthews correlation coefficient
TP true positive
TN true negative
FP false positive
FN false negative
C.c. Cinnamomun camphora (Linn.) Sieb.
C.j.N Cinnamomum japonicum Sieb. ex Nakai
M.t. Maclura tricuspidata (syn. Cudrania tricuspidata)
S.s. Sapium sebiferum (Linn.) Roxb.
C.j.Z Cercidiphyllum japonicum Sieb. et Zucc.
L.g. Lithocarpus glaber Thunb.
Q.g. Quercus glauca Thunb.
Q.p. Quercus philyraeoides A. Gray
A.p. Acer palmatum Thunb.
A.p.ck Acer platanoides cv. crimson king
G.b. Ginkgo biloba Linn.
L.f. Liquidambar formosana Hance.
A.f. Abies firma
C.f. Calocedrus formosana
C.j.D Cryptomeria japonica D. Don
C.o. Chamaecyparis obtusa
M.g. Metasequoia glyptostroboides
P.t. Pinus thunbergii
T.c. Taxus cuspidata
T.s. Tsuga sieboldii
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