
Citation: Dong, Z.; Yu, J.; An, S.;

Zhang, J.; Li, J.; Xu, D. Forest Fire

Detection of FY-3D Using Genetic

Algorithm and Brightness

Temperature Change. Forests 2022, 13,

963. https://doi.org/10.3390/

f13060963

Academic Editors: Olga Viedma and

Chunying Ren

Received: 30 March 2022

Accepted: 17 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Forest Fire Detection of FY-3D Using Genetic Algorithm and
Brightness Temperature Change
Zhangyu Dong 1,2,3,*, Jinqiu Yu 1,3, Sen An 1,3, Jin Zhang 1,3, Jinhui Li 1,3 and Daoli Xu 1,3

1 School of Computer and Information, Hefei University of Technology, Hefei 230601, China;
yu_jinqiu@126.com (J.Y.); 2020111017@mail.hfut.edu.cn (S.A.); zhangjin0129@163.com (J.Z.);
ljh13865256714@163.com (J.L.); xudaoli950806@163.com (D.X.)

2 Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei 230009, China
3 Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei 230601, China
* Correspondence: dzyhfut@hfut.edu.cn

Abstract: As one of China’s new generation polar-orbiting meteorological satellites, FengYun-3D
(FY-3D) provides critical data for forest fire detection. Most of the existing related methods identify
fire points by comparing the spatial features and setting thresholds empirically. However, they
ignore temporal features that are associated with forest fires. Besides, they are difficult to generalize
to multiple areas with different environmental characteristics. A novel method based on FY-3D
combining the genetic algorithm and brightness temperature change detection is proposed in this
work to improve these problems. After analyzing the spatial features of the FY-3D data, it adaptively
detects potential fire points based on these features using the genetic algorithm, then filters the
points with contextual information. To address the false alarms resulting from the confusing spectral
characteristics between fire pixels and conventional hotspots, temporal information is introduced and
the “MIR change rate” based on the multitemporal brightness temperature change is further proposed.
In order to evaluate the performance of the proposed algorithm, several fire events occurring in
different areas are used for testing. The Moderate-Resolution Imaging Spectroradiometer (MODIS)
Thermal Anomalies/Fire products (MYD14) is chosen as the validation data to assess the accuracy of
the proposed algorithm. A comparison of results demonstrates that the algorithm can identify fire
points effectively and obtain a higher accuracy than the previous FY-3D algorithm.

Keywords: fire detection; genetic algorithm; change detection; FY-3D

1. Introduction

Forest fires are happening every day on the planet, which has a serious impact on
human society and the ecological environment [1–4]. On average, there are more than
220,000 fires in the world every year, and the burning area exceeds 1.8% of the total global
forest area [5]. Forest fires represent a major factor in soil erosion as well as air pollution,
and also have a severe impact on human life safety [6–8]. Therefore, accurate identification
of fire information is critical.

Forest fire detection is divided into traditional methods and remote sensing methods.
Traditional methods, such as observation stations and ground patrols, have to devote a
large amount of manpower, materials, and funds, and they have difficulty in detecting the
dynamics of fires in time [9]. Satellite data overcome these drawbacks and have become an
important source of information for fire detection [10]. Dozier [11] first used mid-infrared
(MIR) and thermal-infrared (TIR) data of the Advanced Very High-Resolution Radiometer
(AVHRR) for sub-pixel temperature inversion, and then Flass and Ceccato [12] proposed
an algorithm for fire identification based on background information. With the successful
launch of MODIS, the development of fire detection has entered a new stage. Kaufman
et al. [13] used MODIS signals at 4 µm and 11 µm to separate the fire signal from the
background signal. Giglio et al. [14] improved this and proposed an enhanced contextual
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detection algorithm. This method first marks a pixel as a “potential fire point” by a series
of fixed thresholds, and then determines whether the pixel is a “true fire point” based on
comparisons of the candidate hot pixel with the background information. This approach
has now been updated to version 6 and has generated a stable and reliable set of MODIS
fire products [15].

It has been proven that the contextual algorithm of MODIS can support different types
of satellite data [16–23]. Among them, polar-orbiting and geostationary satellites with rich
spectral information have demonstrated excellent capabilities in disaster detection [24,25].
Due to the extremely high temporal resolution of geostationary satellites, a series of fire
monitoring algorithms based on temporal variation and spatial analysis which take into
account both temporal and spatial information have been developed [26–29]. However,
the low spatial resolution of geostationary satellites and the omission of small fires limit
their applications [29]. Compared with geostationary satellites, polar-orbiting satellites
can provide good resolution. At present, researchers have also carried out studies on the
temporal information of polar-orbiting satellites [30–32], but how to integrate the spatial
information still needs further exploration.

The genetic algorithm (GA) is a population-based metaheuristic algorithm that uti-
lizes multiple candidate solutions during the search process, maintaining diversity in the
population and avoiding the solutions from being stuck in local optima [33]. In the field of
remote sensing, GA has been proven to be effective for geological disaster mapping [34–36],
but there is still a lack of research on GA in the field of fire. In this paper, we propose
a fire detection method combining GA and brightness temperature change detection for
China’s second-generation polar-orbiting meteorological satellite FY-3D. The existing fire
detection algorithm based on FY-3D is similar to the contextual algorithm, which analyzes
the MIR value in the whole scene, and selects a fixed difference threshold compared with
the minimum value of MIR to extract potential fire points [23]. However, because of the
temporal and spatial variability of the natural background, the fixed threshold may not
be suitable for all regions. Moreover, the neglect of temporal information is a limitation of
the method. To address these drawbacks, we propose to use GA to evaluate the optimal
threshold of potential fire points to improve the regional adaptability of the algorithm. In
addition, we used the brightness temperature change detection of the images before and
after the fire to reduce the misjudgment caused by conventional hot spots. We evaluated
the accuracy of the proposed algorithm with reference to MODIS fire product MYD14 and
compared the results with those of the previous FY-3D algorithm.

2. Data Sources

Fengyun-3 meteorological satellites are China’s second-generation polar-orbiting mete-
orological satellites, with substantively enhanced functionalities and technical capabilities.
They are designed to enhance China’s three-dimensional atmospheric sounding capability
and global data acquisition capability [37]. FY-3D, as the fourth satellite, was launched
on 15 November 2017. It is jointly networked with FY-3C to improve the accuracy of
atmospheric detection and enhance the capabilities of greenhouse gas monitoring, compre-
hensive space environment detection, and meteorological remote sensing detection [38,39].
The FY-3D L1 level data used in this article can be downloaded from the National Satellite
Meteorological Center (http://satellite.nsmc.org.cn/portalsite/default.aspx (accessed on
27 May 2022)).

Medium Resolution Spectral Imager II (MERSI-II) is one of the core instruments of
FY-3D satellite and has become one of the most advanced wide-range imaging remote
sensing instruments in the world after upgrading and improvement. The sensor integrates
the functions of FY-3C MERSI and Visible and Infra-Red Radiometer (VIRR) sensors.
The spatial resolution of its data includes 250 and 1000 m, with a total of 25 spectral
channels [40]. According to the Wien displacement law [41], the proposed algorithm in
this paper primarily uses the MIR channel 20 and TIR channel 24 to detect fires, and the
visible channels 12 and 15 to eliminate clouds and sun glint in the atmospheric profile. The
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information on the spectral and spatial characteristics of the MERSI-II channels used in the
algorithm is given in Table 1.

Table 1. Spectral characteristics of FY-3D MERSI.

Channel Center Wavelength
(µm)

Spectral Bandwidth
(nm)

SNR or NE∆T
(K) Resolution (m)

1 0.47 50 100 250
2 0.55 50 100 250
3 0.65 50 100 250
12 0.67 20 500 1000
15 0.865 20 500 1000
20 3.8 180 0.25 K 1000
24 10.8 1000 0.4 K 250
25 12.0 1000 0.4 K 250

3. Method

The logical structure of the algorithm in this paper is shown in Figure 1. As the
flowchart indicates, the proposed algorithm has four steps. The first step is data prepro-
cessing, which consists of radiometric calibration and geometric correction. The second
step is fire monitoring. This step inherits the enhanced contextual algorithm of MODIS,
but we use GA to extract potential fire points to improve the automatic adaptability of
the algorithm. The third step is to eliminate misjudgment and filter out some non-fire
pixels whose spectral features are similar to fire points. The final step is the validation of
the results. We choose the MODIS active fire products MYD14 as the reference data and
compare the detection results with those obtained using the previous FY-3D algorithm to
assess the performance of the proposed algorithm.

Forests 2022, 13, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 1. Flowchart of the proposed detection algorithm in this paper. 

3.1. Cloud and Water Masking 

Cloud and water pixels should be excluded before fire detection. The 12, 15, and 25 

channels of MERSI data are used for cloud removal. A cell is defined as a cloud if it meets 

a combination of the following conditions 

Daytime: 

)K300Tand25.0randpixelwater(

or)K285Tand7.0rr(

or)K265T(or)2.1rr(

2515

251512

251512







 

(1) 

Nighttime: 

K265T25   (2) 

The reflectance and the brightness temperature with channel i  are denoted as ir  

and iT , and water pixels are automatically identified using the “Land and Sea Mask” da-

taset provided in the MERSI L1 files. After this step, cloud and water pixels will be ex-

cluded from effective background pixels and will not be used in the subsequent calcula-

tion. 

  

Figure 1. Flowchart of the proposed detection algorithm in this paper.



Forests 2022, 13, 963 4 of 13

3.1. Cloud and Water Masking

Cloud and water pixels should be excluded before fire detection. The 12, 15, and
25 channels of MERSI data are used for cloud removal. A cell is defined as a cloud if it
meets a combination of the following conditions

Daytime:
(r12 + r15 > 1.2) or (T25 < 265 K)or
(r12 + r15 > 0.7 and T25 < 285 K) or

(water pixel and r15 > 0.25 and T25 < 300 K)
(1)

Nighttime:
T25 < 265 K (2)

The reflectance and the brightness temperature with channel i are denoted as ri and
Ti, and water pixels are automatically identified using the “Land and Sea Mask” dataset
provided in the MERSI L1 files. After this step, cloud and water pixels will be excluded
from effective background pixels and will not be used in the subsequent calculation.

3.2. Potential Fire Identification

This process is used to remove obvious non-fire pixels. However, due to the different
environments of each area, the optimal threshold of potential fire points is also different.
Therefore, we choose the genetic algorithm to extract potential fire points automatically
and adaptively.

The genetic algorithm was first proposed by Professor Holland of the United States in
his monograph on the adaptability of nature and artificial systems in 1975 [42]. It is a kind
of random search algorithm based on natural selection and natural genetic mechanisms in
the biological world. In this section, the genetic algorithm is used to segment the image by
maximizing the inter-class variance and minimizing the intra-class variance [43]. The main
process is as follows.

Population initialization is the first step. An individual is equal to a chromosome,
and each chromosome corresponds to a threshold solution to the problem. Each threshold
is defined as a binary bit vector of length L, and each binary bit is called a gene. In this
paper, the brightness temperature value of channel 20 is selected as the pixel value, and the
saturation value of this channel is 350 K. Therefore, the gene length L of each chromosome
is defined as 9.

The second step is an adaptive assessment and ranking. Otsu is selected as the fitness
function here. For different thresholds, the greater the inter-class variance and the smaller
the intra-class variance, the better the segmentation effect [44]:

F(fitness, t) = ω1 ×ω2 × (m0 −m1)
2 (3)

where m0, m1 are the mean of background pixels and object pixels in the segment whose
threshold value is t, and these parameters are given as:

ω0 = ∑t
i=1pi (4)

ω1 = 1−ω0 (5)

m0 =
∑t

i=1 ipi
ω0

(6)

m1 =
∑2L

i=1 ipi
ω1

(7)

The next step is to select chromosomes to create a new population. In this paper,
by using roller wheel, each chromosome is allocated to the roulette with a probability
of 1 according to the proportion of fitness, then the random numbers between 0 and 1
are generated and the chromosomes corresponding to the random numbers are selected
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according to the cumulative probability distribution. This approach makes it easier for
chromosomes with high fitness to be selected.

After that, the selected chromosomes are crossed and mutated, then is repeated from
the second step until the number of iterations is reached, and the threshold solution with
the highest fitness is output.

Therefore, the potential fire point needs to meet the following requirements:

T20 > t (8)

∆T >
[
∆T, 8

]
min (9)

where t is the threshold obtained by genetic algorithm, and ∆T is the mean value of ∆T
(∆T = T20 − T24) after removing cloud and water pixels.

3.3. Fire Point Confirmation
3.3.1. Absolute Threshold Test

Referring to the algorithm proposed by Giglio et al. [14] and considering the saturation
temperature of the MERSI channel, the absolute threshold detection is as follows:

T20 > 350 K(320 K at night) (10)

The potential fire pixels that pass the test are marked as fire points, and the remaining
will be further tested.

3.3.2. Contextual Test

Contextual detection has a better effect on small and low-temperature fires. The test
makes full use of the background information to judge the potential fire pixel according to
the difference between the pixel to be detected and its surrounding pixels. First, a scanning
window is created centered on the potential fire pixel. In this window, pixels that satisfy the
following, (1) are not cloud-contaminated or water-contaminated, (2) are not background
fire pixels (those potential fire pixels generated using the genetic algorithm described in
Section 3.2), are defined as valid. The window starts with a 3 × 3 pixels square ring and
increases to a maximum of 21 × 21 pixels until at least 25% of the pixels within the window
are valid and the number of valid pixels is at least eight. Otherwise, the detection pixel will
be classified as a non-fire point [14]. After the background characterization is successful, a
series of contextual threshold tests will be performed for relative fire detection:

∆T > ∆T + 3.5× δ∆T (11)

∆T > ∆T + 6 (12)

T20 > T20 + 4× δT20 (13)

T24 > T24 + δT24 − 4 (14)

δ′T20
> 5 (15)

where ∆T and δ∆T are the mean and mean absolute deviation of ∆T for the valid pixels, T20
and δT20 are the mean and mean absolute deviation of T20 for the valid pixels, T24 and δT24

are the mean and mean absolute deviation of T24 for the valid pixels, and δ′T20
is the mean

absolute deviation of T20 for the background fire pixels.
A daytime pixel is tentatively classified as a fire pixel if it not only satisfies (11)–(13),

but also one of (14) and (15), while a nighttime pixel only needs to satisfy (11)–(13).

3.4. Sun Glint Rejection

The water and land boundaries and cirrus cloud boundaries in remote sensing images
sometimes reflect sunlight back due to the observation angle of satellite sensors, resulting
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in abnormal brightness temperatures in the MIR band and forming false fires. In order to
improve the accuracy of fire recognition, it is necessary to detect sun glints and eliminate
them. Here, θg is the angle between vectors pointing in the surface-to-satellite and specular
reflection directions:

cos θg = cos θv cos θs − sin θv sin θs cosφ (16)

where θv and θs are the view and solar zenith angles, respectively, and φ is the relative
azimuth angle. The following conditions are then evaluated:

(θg < 10◦ and r12 + r15 > 0.2) (17)

If condition (17) is satisfied, the fire pixel is rejected as sun glint and classified as
non-fire.

3.5. False Alarms Filter

In this paper, change detection is used for false alarm filtering. We use the previous
image without fire to compare with the detection image to determine if a fire pixel has
changed. If not, the fire pixel is excluded as a non-fire pixel. This process effectively
eliminates conventional hot-spots that have been misclassified as fires.

The change detection proposed by Parto et al. [45] sets the threshold dynamically
based on the difference of the average temperature of the MIR channel between the two
images. Considering that there may be outliers in remote sensing images, this paper does
not choose the average value but the median for change detection, because the median is
not affected by the extreme value, but also reflects the intermediate level.

We chose the MIR channel for change detection and calculated the “MIR change rate”,
namely R. In the relevant parameters, Td is the brightness temperature of the 20 channel
of the detection image, Tp is the brightness temperature of the 20 channel of the previous
image. The median Td and median Tp for the pixels are computed and denoted as Md
and Mp:

R =
Td − Tp∣∣Md −Mp

∣∣ (18)

We chose two different types of pixels for comparative analysis, namely fire and non-
fire, where the fire was generated by MYD14. Figure 2 shows the box-plot of R-value. We
can see that R has a good separation ability, and the value of fire point is significantly higher
than that of non-fire point, demonstrating that filtering the false alarm with R is reasonable.
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From Figure 2, we can see that the R of fire points is mainly above 1.5, but there are
also a few outliers with an R-value below 1.5. As commonly known, there is an opposite
relationship between commission error and omission error, but in order to minimize
omissions as much as possible, we choose 1.5 as the detection threshold of R, that is:

R > 1.5 (19)

The fire pixel satisfying condition (19) remains unchanged. On the contrary, it is
determined as a misjudgment of fire point, which is classified as a non-fire point.

4. Results and Discussion

To test the performance of the algorithm, several fire events with a worldwide distri-
bution that occurred in the past three years were selected. The validation work carried out
in this study aims to test the accuracy of the proposed algorithm and to demonstrate its
superiority over the previous FY-3D algorithm. Due to the difficulty in obtaining ground
truth fire data, researchers usually use remote sensing data for validation. The MODIS
active fire products have been used in various scientific studies and practical operations
over the last decade and are recognized as stable data. Therefore, for this validation exercise,
we have chosen to use the MODIS active fire product MYD14 and the results obtained
by the previous FY-3D algorithm to meet the validation goals. All parameters of the pre-
vious algorithm were set according to the method of the original paper. MYD14 can be
downloaded from Level-1 and Atmosphere Archive & Distribution System Distributed
Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 27 May
2022)). Detailed information on accuracy and error rates is shown in Table 2. Because of the
differences between the MODIS and FY-3D MERSI-II, we introduced a 1-pixel buffer in the
calculation of the accuracy and error rates.

Table 2. Detailed statistical results of each fire detection algorithm compared with MYD14.

Area Imaging Data
Accuracy Commission Error Omission Error

Current Previous Current Previous Current Previous

Khabarovsk 2019/4/16 71.09% 70.39% 28.91% 29.06% 5.91% 4.93%
Siberia 2019/8/5 84.68% 76.18% 15.31% 23.81% 20.10% 7.73%

Amazon 2019/8/23 84.12% 70.98% 15.87% 29.01% 17.85% 9.52%
California 2019/10/28 83.33% 80.55% 16.67% 19.44% 7.69% 7.89%

Western Australia 2020/1/1 93.55% 71.74% 6.45% 28.26% 6.66% 6.67%
Sichuan 2020/3/30 67.65% 47.72% 32.35% 52.28% 7.92% 3.65%
Bodrum 2021/8/5 83.54% 65.88% 16.45% 34.11% 14.03% 19.29%

Note: Accuracy indicates the true detection rates of MERSI fire pixels. A MERSI fire pixel within the 1-pixel buffer
of MYD14 was considered as truly detected, otherwise it was considered as a commission error. Omission errors
were defined as MYD14 fire pixels with no coincident pixel in 1-pixel buffer of MERSI fire pixel.

As shown in Table 2, the accuracy of the proposed algorithm exceeds 80% in most
examples. Figures 3 and 4 show the results of the proposed algorithm in Khabarovsk,
Russia, and Bodrum, Turkey. Figures 3a and 4a show the MIR channel images of the
detected areas. The yellow arrows in the figures point to the location of the fire areas. As
can be seen from Figures 3b and 4b, the proposed algorithm can detect the location of the
fire accurately.

By comparing the results of the proposed algorithm and the previous algorithm in
Table 2, we found that the accuracy of the proposed algorithm is significantly higher than
that of the previous algorithm. The previous algorithm was less adaptable to different
regions and had a large variation in detection performance. The proposed algorithm has
been improved in this aspect. However, omission error is also an important indicator of
evaluation. We found that the omission errors are still relatively serious, even up to 20% in
the Amazon and Russia. The main reason for omission errors is the step where the genetic
algorithm extracts potential fire points. Our approach of maximizing inter-class variance

https://ladsweb.modaps.eosdis.nasa.gov/
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and minimizing intra-class variance to assess the fitness of different solutions led to a high
threshold and filtering out some small and low-temperature fire points. In addition, the
detection results of the proposed algorithm were close to those of the previous algorithms
in some areas, such as California and Khabarovsk. This may be because the two methods in
these regions have close thresholds in potential fire point extraction, and the fixed threshold
of brightness temperature change detection in false alarm filtering is low and may have
difficulty working for some areas. Overall, although this method has some problems, it is
improved in many aspects compared with the previous algorithm, providing a new choice
for fire detection based on FY-3D.
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4.1. Comparison with MYD14

MODIS Fire and Thermal Anomaly products are globally recognized as products with
strong stability. This paper also uses the product MYD14 for comparison to prove the
effectiveness of the proposed algorithm.

Figures 5 and 6 are two examples. The background is composed of 3, 2 and 1 channel
images at 250 m resolution of MERSI. Figure 5 shows fires in Australia on 1 January 2020.
The fire locations found by this method are in good agreement with those obtained by
MYD14. Figure 6 shows fires in the Amazon on 23 August 2019; it can be seen that although
most fire points are detected, some small fire points are missing.
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After analysis, we found that the overlapping position of the two results was basically
in the center of the fire. The sensor and imaging time difference between MERSI and
MODIS leads to a slight deviation in the location of the detected fire, which is the main
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reason for the error at edges. In addition, there are some small fires covered with thick
smoke, resulting in a decrease in the energy radiated to the satellite sensor, and causing low
temperature omission [46]. In general, the algorithm in this paper produces comparable
results to those obtained using MYD14, proving its effectiveness and stability.

4.2. Comparison with Previous Algorithm

The previous FY-3D algorithm has produced good results, however there is still room
for improvement in terms of accuracy. Figures 7 and 8 show the advantages of the new
algorithm. It is not difficult to see that previous algorithms reduce omission errors at the
expense of accuracy. Figure 7 shows the fire event in Siberia, Russia on 5 August 2019. The
edge error of the previous algorithm, whose detection area is significantly larger than that
of the proposed algorithm and MYD14, is obvious. However, the problem of omission in
this area is slightly more serious for the proposed algorithm. Figure 8 shows the fire event
in Sichuan, China on 30 March 2020. In addition to edge errors, the previous algorithm
has two false detections due to the influence of smoke and the pixels with similar spectral
characteristics to the fire points, which are marked in the picture. However, in this area,
the results of both algorithms are worse. This is related to the difference in imaging time
between MODIS and MERSI. The imaging time difference between the two sensors in this
area is larger than the others and the fire has shown a tendency to spread in all directions,
so the accuracy obtained by FY-3D algorithms is lower.

In summary, compared with the previous algorithm, the proposed algorithm presents
a major improvement in detection accuracy and adaptability and more effectively rejects the
misjudgment caused by smoke and conventional hot spots. However, there is no significant
improvement in omission error, and in some areas, it is even slightly worse than before,
such as Siberia, as shown in Figure 7. This indicates that the proposed algorithm can more
easily miss the low-temperature fire points. In potential fire identification, the genetic
algorithm suffers from the problem of setting a high threshold in the pursuit of accuracy,
which is a major drawback of the proposed method.
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5. Conclusions

FY-3D is a second-generation Chinese polar-orbiting satellite, and MERSI-II is one
of the advanced sensors it carries. The current fire detection algorithm based on FY-3D
MERSI-II data is similar to the enhanced contextual algorithm, and the neglect of temporal
information and poor adaptivity due to fixed thresholds are the drawbacks. In order to
improve the existing algorithm, we propose a fire point monitoring algorithm combining
the genetic algorithm and brightness temperature change detection. The genetic algorithm
is introduced to extract potential fire points to improve the regional adaptiveness, and
Otsu is chosen as the fitness function of the genetic algorithm to calculate the optimal MIR
threshold. Temporal information is also introduced to filter out misclassifications due to
conventional hotspots with similar spectral characteristics to the fire point. To evaluate the
performance of the proposed algorithm, fire events from different regions were selected for
validation and compared with the previous results of the FY-3D algorithm in this paper.
The results show that the accuracy of the proposed algorithm is generally above 80%, while
the accuracy of the previous algorithm is above 70%. The comparison results show that the
proposed algorithm performs better.

However, omission errors are still a major problem in this paper. We found that
the omission was around 10% in most areas, even reaching 20% in Russia. The genetic
algorithm tends to filter out small, low-temperature fires covered by dense smoke when
extracting potential fires, which is a major problem of the proposed algorithm. The current
infrared signals based on optical satellites are easily affected by clouds and smoke, and
synthetic aperture radar (SAR) data can be considered. SAR has a certain degree of surface
penetration and can be considered to complement the information from optical satellites.
At the same time, fire radiated power (FRP) can help quantify the scale of fire events and
should be taken into account in subsequent studies.

In addition, the “MIR change rate” presented in this paper is calculated using two
images before and after the fire. If the time between images is too long, seasonal differ-
ences may affect the results. In the future, the introduction of multiple time series can be
considered for detection. We also used a fixed threshold to filter false fire points for the
“MIR change rate”, which does not take into account the differences between regions. This
threshold could be improved to allow for automatic adaptation to different regions.
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