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Abstract: In recent years, frequent forest fires have plagued countries all over the world, causing
serious economic damage and human casualties. Faster and more accurate detection of forest
fires and timely interventions have become a research priority. With the advancement in deep
learning, fully convolutional network architectures have achieved excellent results in the field of
image segmentation. More researchers adopt these models to segment flames for fire monitoring,
but most of the works are aimed at fires in buildings and industrial scenarios. However, there are
few studies on the application of various fully convolutional models to forest fire scenarios, and
comparative experiments are inadequate. In view of the above problems, on the basis of constructing
the dataset with remote-sensing images of forest fires captured by unmanned aerial vehicles (UAVs)
and the targeted optimization of the data enhancement process, four classical semantic segmentation
models and two backbone networks are selected for modeling and testing analysis. By comparing
inference results and the evaluation indicators of models such as mPA and mIoU, we can find out
the models that are more suitable for forest fire segmentation scenarios. The results show that the
U-Net model with Resnet50 as a backbone network has the highest segmentation accuracy of forest
fires with the best comprehensive performance, and is more suitable for scenarios with high-accuracy
requirements; the DeepLabV3+ model with Resnet50 is slightly less accurate than U-Net, but it can
still ensure a satisfying segmentation performance with a faster running speed, which is suitable for
scenarios with high real-time requirements. In contrast, FCN and PSPNet have poorer segmentation
performance and, hence, are not suitable for forest fire detection scenarios.

Keywords: forest fires; deep learning; image processing; neural network; flame segmentation

1. Introduction

The major causes of socio-economic losses and human casualties include traffic acci-
dents [1,2], forest fires [3,4], and natural and geological disasters [5,6]. Among them, the
ecological damage caused by forest fires is huge, irreversible and long-lasting compared
to the economic damage caused to human society, even endangering the fragile global
ecosystem. Forest fires occur suddenly and are wide-ranging; however, due to the lack of
observation methods, forest fires are always detected after they have spread over a large
scale, making them arduous to control and extinguish. Therefore, since the end of the
last century, many scholars have carried out research on forest fire image recognition and
monitoring technology.

Traditional forest fire detection methods include man-powered watchtowers, patrol air-
craft, and remote-sensing satellites for woodland monitoring [7,8]. Among them, although
the satellites have a wide range of applications, their detection periods are long and lack
flexibility. In general, these methods not only require a large amount of resource input, but
also are severely limited by the weather and environmental conditions, making it difficult
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to ensure the quality of forest fire monitoring. With the advancement in image-processing
technology, in recent years, authorities have increased the use of unmanned aerial vehicles
(UAVs) and surveillance for aerial monitoring of forest areas [9,10], collecting and real-time-
processing fire images for earlier warning and intervention. In order to identify forest fire
areas in the images, flame detection techniques are introduced in some studies. In the early
stage of the research, Habiboglu et al. [11] proposed a forest fire flame detection algorithm
based on a covariance matrix by using color, space and event information. Wang et al. [12]
proposed an adaptive fire-monitoring algorithm based on random testing and robust fea-
tures to construct a forest fire classification model for fire identification. Although the above
methods have achieved certain results in the field of forest fire identification, the overall
process is complex, the accuracy of flame area detection is relatively low, and the scale and
change of forest fire is difficult to quantify. In view of this, more researchers adopt flame
segmentation algorithms for forest fire detection. Such algorithms can identify all the pixels
of forest fire areas in an image and better detect and quantify a fire situation, and can be
applied to fire trend prediction and intervention analysis to provide timely data support for
forestry departments and authorities. Flame segmentation techniques mainly contain two
categories: classical methods and deep-learning-based methods. Classical segmentation
methods mainly rely on features such as color, spatial structure and texture to label the
pixels of the flame area. TLIG et al. [13] proposed a corresponding image segmentation
method based on principal component analysis and Gabor filter, which proposed a new
superpixel extraction strategy, but it was insensitive to noise and needed to rely on manual
feature design. The applicability in different scenarios was poor. T Toulouse et al. [14] ex-
tracted 200 million fire pixels and 700 million non-fire pixels in 500 images, and segmented
the flame area based on two new rules and detection methods. Meanwhile, this work shows
that a machine-learning-based segmentation technique outperforms the state-of-the-art
techniques at the time, thus opening new ideas for fire detection research.

Semantic segmentation techniques based on deep learning can train network models
based on annotation data and predict the category of each pixel to achieve end-to-end
image segmentation. Among them, fully convolutional network models are widely used in
the field. By testing the performances of different semantic segmentation models on public
datasets, it was found that the detection accuracy of the fully convolutional network models
is much better than that of previous methods [15–17]. Hence, researchers have introduced
FCN and FCN-based models into the field of flame segmentation. Choi H. S. et al. [18]
applied the FCN model to fire detection based on a FiSmo dataset. Cai C et al. [19] used the
U-Net model to segment flames of a chain furnace. Although the above work successfully
applied fully convolutional models to fire segmentation tasks, since the performance of
the same model on different targets will be quite different, these models that perform well
in respective scenarios are not necessarily suitable for forest fire segmentation. Hossain F.
M. A. and Ghali R. [20,21] combined the U-Net model with UAV aerial photography tech-
nology, and proposed two efficient up-sampling methods to monitor and segment forest
fires. Harkat H et al. [22] applied the DeepLabV3+ model to the forest fire detection field.
However, most of the data used above are collected by traditional means based on optical
sensors and surveillance cameras, and the data quality is lower than that captured by UAVs.
Zhang et al. [23] developed an effective SqueezeNet-based asymmetric encoder–decoder
U-shape architecture, mainly functioning as an extractor and a discriminator of a forest fire,
which is relatively reliable with good accuracy and prediction time. M Shahid et al. [10]
introduced the spatio-temporal network and proposed a two-stage cascaded architecture
to improve accuracy, achieving better performance than the existing state-of-the-art meth-
ods. In general, these works only analyze from the perspective of a single model and
backbone network, lacking comparisons between models, and therefore cannot compare
the performance of different models in forest fire segmentation tasks. In addition, due to
the relative complexity of some of the methods, it is difficult to promote them in practical
forest fire detection applications due to the limited computational resources of the relevant
departments in various regions. Großkopf J et al. [24] used DeepLabV3+ to conduct a
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comparative analysis in industrial fire environments with different backbone networks,
experimenting in specific scenarios. Although this study carried out a comparative study
on different backbones, it still lacks a comparison with other models, and is only applicable
to industrial scenarios. At present, due to the shortage of remote-sensing images for forest
fire segmentation, there is little related research on forest fire scenarios, and the comparative
experiments of different semantic models applied in forest fire scenarios are inadequate;
hence, the comprehensive performances of these models applied to forest fire scenarios
cannot be evaluated from multiple perspectives.

In view of the above problems, in this study, we collected a large number of remote-
sensing images of forest fires taken by UAVs, manually annotated some of the data, con-
structed a flame segmentation dataset, and established a data enhancement process appli-
cable to forest fire images to improve the data quality. Four classical semantic segmentation
models and two backbone networks were selected for theoretical research, experimental
design and comparative analysis. From different perspectives, we tested the performance of
each model for forest fire segmentation tasks, explored the most suitable semantic segmen-
tation model for forest fire scenarios, and provided forestry departments and authorities
with more effective application means, data and decision support.

2. Materials and Methods

At present, the systems adopted by most countries for forest fire identification and
segmentation include five stages, which are image capturing, data processing, model
training and testing analysis, cloud computing, and alerts and intervention. This work
focuses on the optimization and comparative research of data processing and model
analysis stage. The overall process of this experiment is shown in Figure 1, and the specific
contents of each stage are as follows:

• Stage 1: Image capturing. Usually, when a forest fire occurs, UAVs, forest surveillance
and cruise helicopters capture and collect images of the fire and upload them after
collation, thus obtaining a real-time forest fire scene.

• Stage 2: Data augmentation. In this paper, the traditional data-processing method is
optimized, and a set of data enhancement processes for forest fire images is proposed
to improve the data quality and the accuracy of the model. In this stage, the images
collected by UAVs are firstly imported. During the augmentation process, the images
are first flipped and rotated, and then cropped and resized; subsequently, the images
are subjected to color dithering in batches. In order to improve the generalization
capacity of the model, random noise is added to the image, and then the interference
images are fused with the dataset and divided.

• Stage 3: Model training and testing analysis. In this part, four widely used fully con-
volutional network models are selected and trained based on two backbone networks,
respectively. Meanwhile, we adopt four different indicators to evaluate the models’
segmentation performances, record segmentation results of the models on forest fire
and interference images, and compare and analyze from various perspectives.

• Stage 4: Cloud computing. In the actual forest-fire-monitoring application, the main
computing tasks such as model training and real-time segmentation of forest fire
images can be performed in the cloud computing center after 5 G high-speed data
transmission, which greatly reduces the computing tasks of single-point servers to
adapt to the problem of insufficient server resources in some regions.

• Stage 5: Alerts and intervention. Once the cloud server completes the segmentation
task, it can detect whether a forest fire has occurred in the currently captured area. If a
fire area is segmented, an alarm is immediately raised to notify the relevant forestry
and fire departments to intervene in a timely manner and take measures on the fire site.

On the basis of improving the data augmentation module to obtain high-quality
data, this work focuses on the comparative analysis of common semantic segmentation
algorithms, and explores models that are more suitable for forest fire scenarios.
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2.1. Construction of Forest Fire Dataset

In this study, 4200 remote-sensing images of a forest fire were collected as the basis
of the flame segmentation dataset. Among them, a large proportion of the images were
from Northern Arizona University’s forest fire dataset FLAME [25], captured by UAVs.
However, most of these forest fire images were taken in sunny or clear weather, and the
environmental conditions were relatively simple. In order to improve the robustness of
the system under various conditions, images taken under four common environmental
conditions such as foggy, stormy, blizzard, and smoky were selected and added to the
dataset. These data came from the Internet and the forest fire videos were intercepted
frame-by-frame, which were captured by forest surveillance and firefighting helicopters. In
addition, in order to improve the anti-interference ability of the models, 200 interference
images similar to forest fires and background colors were also added to the dataset. As
shown in Table 1, 95.23% of the 4200-image dataset contains forest fires, and 4.76% of
the data contain similar interferences; the respective proportions of these images taken in
various conditions are also shown. Figure 2 shows part of the forest fire images with a
resolution of 3840 × 2160; Figure 3 shows part of the interference images with a resolution
of 800 × 450.

Table 1. Distribution and proportion of dataset.

Proportion Clear Foggy Stormy Blizzard Smoky Total

Forest fire images 63.49% 8.48% 4.22% 3.62% 15.42% 95.23%

Interferences 3.42% 0.56% — — 0.78% 4.76%
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2.2. Forest Fire Segmentation Models

In this study, four fully convolutional network models, FCN, U-Net, PSPNet and
DeepLabV3+, which are widely used in image semantic segmentation tasks, were selected
for comparative analysis. Among them, FCN (fully convolutional networks) [26] applied
deep-learning technology to the field of image segmentation for the first time, achieved
end-to-end pixel-level processing, and opened a new era of semantic segmentation. U-Net
(unity-networking) [27] solved the problem of partial pixel spatial information loss through
the encoder–decoder structure. PSPNet (pyramid scene parsing network) [28], a semantic
segmentation model based on feature fusion, improved segmentation accuracy through
feature fusion of global and local information. DeepLabV3+ [29] fused spatial pyramid
pooling and a decoder to further refine the segmentation results. In summary, the four
models adopted four different core architectures which are representative.

2.2.1. FCN

In 2014, Long proposed fully convolutional networks, which was the first time deep-
learning technology was used to fundamentally solve the image semantic segmentation
tasks. The FCN structure is shown in Figure 4.
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The convolutional neural network (CNN) structure [30,31] is more used to solve
target classification, which uses fully connected layers after convolution layers to obtain
a fixed-length feature vector. However, the FCN structure uses convolutional layers to
replace the fully connected layer for the first time, uses the skip-layer connection to fuse the
features extracted by different layers, then uses deconvolution, bilinear interpolation and
other means to up-sample and restore the image size, thereby achieving the end-to-end
processing of images.

Compared with CNN, the FCN model can accept image inputs of any size without
pre-sizing. Secondly, the FCN model is much more efficient, which can effectively solve
the problems related to repeated storage and convolution calculations caused by the use of
pixel blocks.

The FCN structure transforms the classification network into a structure for semantic
segmentation for the first time. The FCN model’s segmentation accuracy is greatly im-
proved compared with previous methods, which drives the image semantic segmentation
technology into a new era and provides inspirations for subsequent research on semantic
segmentation algorithms.

2.2.2. U-Net

In the field of image segmentation, the encoder–decoder structure [27,32] is often
used to solve the problem of spatial pixel loss. The structure mainly contains two parts:
the encoder and decoder. The encoder mainly includes convolutional layers and down-
sampling layers, which gradually reduce the size of feature maps and capture higher-level
semantic information through convolution. The decoder includes an up-sampling layer, a
convolution layer and a fusion layer, and gradually recovers the target detail information
and spatial dimension through deconvolution. The whole structure exploits the multi-scale
features of the autoencoder and recovers the spatial resolution from the decoder.

In 2015, the U-Net (unity-networking) structure proposed by Ronneberger O became
one of the classic representatives of the encoder–decoder structure.

The U-Net structure is shown in Figure 5, which mainly includes a contraction path to
capture contextual information and a symmetric expansion path for precise localization.
The encoder part on the left side of the model consists of four sub-modules; each sub-
module contains two convolutional layers, and is followed by a max-pooling layer to
achieve down-sampling. The decoder part on the right side of the model also consists
of four sub-modules, which recover the target details and spatial dimensions through
up-sampling. The skip connection structure in U-Net connects the up-sampling results
with the features of the same resolution in the encoder, and performs cross-layer feature
fusion as the input to the next sub-module of the decoder. U-Net achieves multi-scale
feature fusion and can complete end-to-end processing with a small amount of data.

2.2.3. PSPNet

In 2017, Zhao H proposed the PSPNet structure, which is shown in Figure 6. Based on
FCN, it makes full use of global semantic connection to improve the reliability of prediction
by aggregating contextual information in different regions. It is characterized by the use of
a pyramid pooling module, which fuses four feature maps with different scales to extract
local and global information of the image, cascading and integrating the features of the
same level.

In the pyramid pooling module, the outputs of different scale levels contain feature
maps of different sizes, and the contextual dimension is reduced to 1/N by using a 1 × 1
convolutional layer to ensure the global region weight. Then, the low-dimensional feature
maps are up-sampled by bilinear interpolation to obtain features of equal size, these
features of different levels are spliced into bit pyramid pooling global features, and, finally,
pixel-by-pixel prediction results are outputted through a convolutional layer.
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To a certain extent, PSPNet overcomes the main disadvantage of the FCN structure for
image semantic segmentation without considering contextual information, thereby extract-
ing a complete feature representation and further improving the segmentation accuracy.

2.2.4. DeepLabV3+

In 2018, on the basis of deeplabV3, Chen proposed DeepLabV3+, which added a
decoder structure. The structure is shown in Figure 7. DeepLabV3 is used as the encoder
structure to extract rich contextual information, and the added new decoder optimizes the
segmentation results and restores semantic information of the object.

The core aim of the encoder is to build an atrous spatial pyramid pooling module (ASPP)
which can process the features of DCNN in 5 different ways, including 3 kinds of convolution
with different hole rates, pooling and dimensionality reduction, and then fuse the features.
The decoder connects the shallow-layer features of the DCNN through the features extracted
by the ASPP module, and performs deconvolution to obtain the final result.

The DeeplabV3+ structure adds a separable depthwise separable convolution to the
ASPP module and decoder, which improves the network running speed and robustness,
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and greatly improves the segmentation accuracy, so as to achieve a relative balance between
model accuracy and algorithm time complexity.
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2.3. Methods

This study used the forest fire dataset constructed above, and randomly selected 80%
of the data for training, 10% for validation, and 10% for testing.

FCN, U-Net, PSPNet, and DeeplabV3+ were used to conduct comparative segmenta-
tion research on forest fires, and the backbones were VGG16 and Resnet50, respectively.
The structure of VGG16 is relatively simple, and the stacked small convolution kernels
were used to replace the larger ones in the classical network, with fewer parameters and a
faster running speed; Resnet50 has a deeper structure, and adopts a residual module to
ameliorate the degradation of the model, which can build more convolutional layers to
extract deeper features.

In the experiments, the binary cross-entropy loss function was used as Loss. The exper-
imental environment and configuration are shown in Table 2, and the network parameter
settings are shown in Table 3.

Table 2. Experimental environment and configuration.

Content Configuration

CPU Intel(R) Core(TM) i7-7700
GPU NVIDIA GeForce 2080Ti

Operating System Win 10
Pytorch 1.11.0

Table 3. Network parameter settings.

Parameter Value

Learning rate 0.001
Batchsize 8

Epoch 600
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2.4. Evaluation Indicators

The evaluation indicators recorded during model testing include PA, mPA, mIoU and
FWIoU. In the following formulas, TP (true positive) refers to the number of flame pixels
correctly predicted by the model; FP (false positive) refers to the number of pixels predicted
to be flames, but the true value is the woodland background; FN (false negative) indicates
that the woodland background is predicted, but the true value is the number of pixels
of the flame; TN (true negative) represents the number of correctly predicted woodland
background pixels.

1. Pixel Accuracy (PA):

PA refers to the proportion of correctly classified flame and woodland background
pixels in the total pixels in the image, which represents the accuracy of the model’s classifi-
cation of pixels. The greater the PA, the more accurate the model will be to segment the
flame and woodland background.

PA =
TP + TN

TP + TN + FP + FN
=

TP + TN
Total

(1)

2. Mean Pixel Accuracy (mPA)

mPA is to calculate the prediction accuracy of the flame and woodland background
pixels separately, and take the average value of the two, which can better reflect the
segmentation accuracy of the model for the overall semantics. The higher the mPA, the
higher the segmentation accuracy of the flame and the woodland background, and the
more precise the model.

mPA =
1
2
(

TP
TP + FN

+
TN

TN + FP
) (2)

3. Mean Intersection over Union (mIoU)

The IoU refers to the ratio of the intersection and union of the target ground-truth
pixel set and the prediction set. The mIoU is to calculate the IoU of the flame and woodland
background, respectively, and take the average value. The larger the mIoU, the higher the
predicted coincidence between the flame and the woodland background and the real area.

mIoU =
1
2
(

TP
TP + FP + FN

+
TN

TN + FN + FP
) (3)

4. Frequency-Weighted Intersection over Union (FWIoU):

The frequency-weighted IoU is a weighted summation of the various intersection
ratios according to the frequency of the flame and forest background pixels. Compared
with mIoU, FWIoU sets weights for each category according to the frequency of occurrence,
which better improves the overall semantic evaluation. The larger the FWIoU, the stronger
the overall segmentation performance.

FWIoU =
TP + FN

Total
× TP

TP + FP + FN
+

TN + FP
Total

× TN
TN + FN + FP

(4)

3. Results

The test set contains a total of 420 pictures, including various environmental conditions
such as clear, foggy, stormy, blizzard and smoky, and also includes interference images
similar to the background color of flames and woodland. Based on the trained models
above, we aimed to test and record the segmentation results and evaluation indicators from
multiple perspectives.
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3.1. Forest Fire Segmentation

Shown in Figure 8 are the segmentation results of each model with VGG16 as the
backbone network; shown in Figure 9 are the segmentation results of each model with
Resnet50 as the backbone network.
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Figure 9. Results of forest fire image segmentation (Resnet50).

In the figure, column (a) is the original image of the forest fire; column (b) is the
ground-truth label of the forest fire image; column (c) is the segmentation result of the FCN
structure; column (d) is the segmentation result of the U-Net structure; column (e) is the
segmentation result of the PSPNet structure; and column (f) is the segmentation result of
the DeepLabV3+ structure.

From the perspective of different fully convolutional network models, for the forest fire
area, it can be seen from column (d) that the U-Net model has the most precise segmentation
results of the flame edge, with the highest degree of overlap with the flame area of ground-
truth. U-Net also has a satisfying segmentation result on the outer flame, and can well
segment the flame area occluded by the trees. Column (c) shows that the FCN model has
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the worst flame segmentation results among all models, whose segmentation results of
the flame contour and outer flame are poor, and only the inner flame can be identified.
However, the FCN model cannot segment the flame occluded by trees well. Columns
(e) and (f) show that the PSPNet and DeepLabV3+ structure can better identify the main
body and part of the outer flame. However, for the irregular outer flame shape, the forest
background will be incorrectly divided into flames, and the segmentation of flame details
is not as good as the U-Net structure, causing errors.

3.2. Anti-Interference Segmentation

In the test with interference images similar to the background colors of flames and
forest background, the models with VGG16 as the backbone predict the interference im-
ages precisely, the background pixels are not incorrectly predicted as flames, and the
segmentation results are completely coincident with the label map which is in black.

However, models with Resnet50 as the backbone had slightly different segmentation
of interference images. Figure 10 shows that the PSPNet model with Resnet50 was not
affected by the interference images, the segmentation result is no flame in the figure which
is a full black image, the same as ground-truth. U-Net misidentified flames in all three
interfering images, causing errors. The FCN and DeepLabV3+ models performed similarly,
they also had the correct segmentation performance for different interference images, and
their false-pixel-prediction frequency was lower than U-Net.
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3.3. Comparision of Models

From the data in Table 4, it can be seen that the evaluation indicators of the four models
are generally high, and the above four models have good performance in the forest fire
segmentation. U-Net with Resnet50 has higher indicators than the other models in different
forest fire scenarios, and the segmentation result is the best. The FCN model with VGG16
is inferior to other models in all indicators, and the segmentation result is the poorest. The
overall performance of PSPNet and DeepLabV3+ with Resnet50 is moderate and has a
relatively good segmentation result.

Table 5 shows the size of the weight files of each model. Combined with the experi-
mental results in Table 4, it can be seen that the weight files of FCN and PSPNet are small,
but the segmentation effect is relatively poor. U-Net’s weight file is moderate and the
segmentation is the best. DeepLabV3+ has the largest weight file, but its segmentation
results are slightly lower than U-Net. Table 6 shows the time consumption of respective
trained models when inferencing a single image when running on CPU.
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Table 4. Evaluation indicators of models.

Model Backbone PA mPA mIoU FWIoU

FCN
VGG16 0.9967 0.8456 0.8162 0.9952

Resnet50 0.9972 0.8474 0.8279 0.9963

U-Net
VGG16 0.9986 0.9226 0.8875 0.9983

Resnet50 0.9991 0.9281 0.8924 0.9989

PSPNet
VGG16 0.9978 0.8986 0.8438 0.9965

Resnet50 0.9981 0.8998 0.8571 0.9969

DeepLabV3+ VGG16 0.9986 0.9112 0.8728 0.9973
Resnet50 0.9989 0.9147 0.8752 0.9979

Table 5. Weight file of models.

Backbone FCN U-Net PSPNet DeepLabV3+

VGG16 168.2 MB 384.1 MB 231.3 MB 371.2 MB
Resnet50 276.5 MB 462.3 MB 356.6 MB 423.7 MB

Table 6. Time consumption of a single image inference.

Backbone FCN U-Net PSPNet DeepLabV3+

VGG16 0.41 s 0.73 s 0.46 s 0.56 s

Resnet50 0.43 s 0.82 s 0.49 s 0.68 s

4. Discussion

In forest fire detection, more and more systems adopt flame segmentation algorithms
to replace classification algorithms. Table 7 shows some representative algorithms for fire
classification and segmentation and their results. In comparison, the fire segmentation
algorithms have higher accuracy and stronger detection performance. Secondly, for the
forest background, the segmentation algorithm can better locate the fire site, then analyze
and predict the fire situation in combination with the surrounding conditions. In addi-
tion, classification algorithms mainly focus on detecting flames, while most segmentation
algorithms can combine flames together with smoke to further improve the detection
performance.

Table 7. Comparison between fire classification and segmentation method.

Mode Ref Methodology Smoke/Flame Dataset Accuracy (%)

Classification

Treneska S and
Stojkoska B.R. [33]

VGG16

Flame FLAME: 8617 images

80.76

VGG19 83.43

Resnet50 88.01

Chen Y. et al. [34] CNN-17 Flame/Smoke Private: 2100 images 86.00

Shamsoshoara A.
et al. [35] Xception Flame FLAME: 48,010 images 76.23

Segmentation

Bochkov V.S. and
Kataeva L.Y. [36] wUUNet Flame Private: 6250 images 94.09

Harkat H. et al. [37] DeepLabV3+ Flame/Smoke Corsian: 1775 images 97.53

Frizzi S. et al. [38]
U-Net

Flame/Smoke Private: 366 images
90.20

CNN based on
VGG16 93.40

Comparing the segmentation results of each model with different backbone networks
in Figures 8 and 9, on the whole, all of the above models could well segment the flame from
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the forest background, but there are still some differences in the accuracy of the outline. It
can be seen that the U-Net with Resnet50 as the backbone network was the most accurate
for forest fire segmentation and described the details the best; the FCN model with VGG16
as the backbone network was the least accurate for flame segmentation, but it could still
identify the flame’s main body.

From the perspective of different backbones, compared with VGG16, each model
with Resnet50 as the backbone had more refined segmentation results, which could better
segment the flame from the forest background, and the segmentation results were more
complete and closer to ground-truth.

In terms of the segmentation of interference images, U-Net led to the misidentification
of flames for interference images in the test due to its excessive sensitivity to fire features.
In contrast, DeepLabV3+ outperformed the U-Net model in terms of segmentation perfor-
mance against interference images, and its flame recognition misidentification rate was
lower than that of the U-Net model. Although PSPNet had the lowest false-identification
rate for interfering images, it is not suitable to be used because of its relatively poor
segmentation accuracy.

From the analysis of model evaluation index level, PA and FWIoU can better reflect
the model’s overall segmentation performance, that is, the prediction of all pixels including
the flames and forest background. However, because the forest fire pictures used in the
experiment had high resolution and many pixels, most of the pixels were forest background,
and just about 5%–10% of the pixels in the image were forest fire. Therefore, in the test,
these two indicators tended to account for the larger portion of the forest background
pixels, resulting in higher values.

In contrast, mPA and mIoU can better reflect the model’s segmentation performance of
the flame area. As can be seen from the above, each model had a good segmentation of the
forest background whose pixels accounted for a large proportion. The above two indicators
were calculated after averaging the forest fire area segmentation results. Therefore, mPA
and mIoU had a strong positive correlation with the flame area segmentation accuracy.

The main reason for the differences in the segmentation results of each model is
that different semantic segmentation network models have different fusion methods and
utilization levels of deep and shallow features.

The FCN structure only performs two cross-layer feature fusions for the extracted
features, and lacks multi-scale operations on features, so the segmentation results were poor.
The core of PSPNet is to pool the extracted features at four different scales, and then merge
them with the previous features. Compared with other models, PSPNet lacks the fusion of
shallow features and has a low feature utilization rate. As an encoder–decoder structure,
U-Net performs multiple down-sampling in the encoder, and the collected deep features
can obtain the overall contextual semantic information. It performs up-sampling operations
multiple times in the decoder, and connects the extracted features with the down-sampling
results of the same stage, instead of directly back-propagating on the high-level semantic
features, which ensures that more shallow features can be fused into the feature map.
Therefore, U-Net retains and combines both deep and shallow features, so it achieves
better results in forest fire segmentation tasks. DeepLabV3+ performs multi-dimensional
operations on deep features in the encoder, and combines them with shallow features. It
also takes into account both deep and shallow features, so its indicators are better than
FCN and PSPNet, second only to U-Net.

Based on the above data, U-Net with Resnet50 performs the best with the highest
indicators, but its weight file is the largest with a relatively slow running speed. It can be
used in forest fire segmentation scenarios that do require high-precision flame details, such
as fire attribute analysis, trend prediction for forestry departments, and related scientific
research. The FCN and PSPNet models have performed relatively poorer with lower
indicators, so they are not suitable for forest fire segmentation scenarios. The indicators of
DeepLabV3+ with Resnet50 are relatively satisfying, only slightly lower than the U-Net,
but its weight file is smaller with a faster running speed. It is suitable for scenarios with
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high real-time requirements, such as the real-time detection of forest fires and monitoring,
fire real-time warning systems, etc.

5. Conclusions

In this paper, we compile remote-sensing forest fire images captured by UAVs in
multiple conditions to construct a dataset, and optimize the data enhancement process for
forest fire image features. Based on the enhancement of data quality, four full convolutional
networks and two backbone network models are adopted for combined training, analysis
and testing, respectively. The focus is on the comparative research of the semantic segmen-
tation methods applied to the forest fire segmentation scenarios, analyzing and discussing
their application value and functional focus.

The results show that, among the four widely used deep semantic segmentation
models, the U-Net model has the best performance in forest fire segmentation, with a better
description of semantic details such as outflames and contours, but the inference speed
for a single instance is relatively slow, which is more suitable for application scenarios
requiring high accuracy, such as forest fire attribute analysis and trend prediction; the
DeepLabV3+ model has relatively faster inference speed while ensuring high segmentation
accuracy. Despite the description of flame details being slightly lower than that of U-
Net model, it is still satisfactory, which is suitable for scenarios requiring high real-time
performance, such as forest fire real-time detection and alerts. The FCN and PSPNet
models are relatively unsuitable for forest fire segmentation scenarios because of their low
segmentation test and evaluation index. In addition, the comparative research concluded
that the detection accuracy of forest fire segmentation methods is generally higher than that
of the classification methods; therefore, the U-Net and DeepLabV3+ are more applicable in
forest fire detection systems.

Image segmentation is the key area for forest fire detection. Forest fire segmentation
and recognition in remote sensing woodland images with faster, more accurate and lower
resource cost is the focus of current research in this field. Although the existing techniques
have achieved certain results, improvements are still needed in the following aspects
in future research: combining smoke and forest fires for identification and analysis, the
optimization of identification for forest fires under complex backgrounds and occlusion,
and the adoption of edge computing technology to improve inference speed.
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