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Abstract: Forest aboveground biomass (AGB) is an important indicator for characterizing forest
ecosystem structures and functions. Therefore, how to effectively investigate forest AGB is a vital
mission. Airborne laser scanning (ALS) has been demonstrated as an effective way to support
investigation and operational applications among a wide range of applications in the forest inventory.
Moreover, three-dimensional structure information relating to AGB can be acquired by airborne
laser scanning. Many studies estimated AGB from variables that were extracted from point cloud
data, but few of them took full advantage of variables related to tree crowns to estimate the AGB.
In this study, the main objective was to evaluate and compare the capabilities of different metrics
derived from point clouds obtained from ALS. Particularly, individual tree-based alpha-shape,
along with other traditional and commonly used plot-level height and intensity metrics, have been
used from airborne laser scanning data. We took the random forest and multiple stepwise linear
regression to estimate the AGB. By comparing AGB estimates with field measurements, our results
showed that the best approach is mixed metrics, and the best estimation model is random forest
(R2 = 0.713, RMSE = 21.064 t/ha, MAE = 15.445 t/ha), which indicates that alpha-shape may be a
good alternative method to improve AGB estimation accuracy. This method provides an effective
solution for estimating aboveground biomass from airborne laser scanning.

Keywords: tree crown; alpha-shape; airborne laser scanning (ALS)

1. Introduction

Forest biomass is a fundamental parameter for characterizing forest ecosystem struc-
tures and functions, which is the data of basic features for studying forest ecosystems [1].
Forest aboveground biomass (AGB) plays a vital role in the carbon cycle and the greenhouse
effect reduction, as the energy base and material source for forest ecosystem works [2].
Especially, the rainforest is the most resistant and stable ecosystem on earth, with hot
perennial climate, rich rainfall, rapid biological community succession, and abundant bio-
diversity [3,4]. Therefore, its biomass surveys are important for their water cycle, climate
regulation, and organic matter conversion.

Although traditional surveys have a high precision on the ground, they are destructive
to forest environments and there are some uncertainties in the selection of sample plots;
there can also be residual variability, parameter estimation errors in the calculations, and
a large labor force is required [5–7]. Remote sensing has the advantages of large scale,
fast operation and low cost, and has become an important technique for investigating and
monitoring forest resources [8].
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LiDAR, in particular, is an active remote sensing technique that acquires three-dimensional
(3-D) structure information of the vegetation directly and accurately, making up for the
drawbacks of optical remote sensing applications in forestry [9]. Moreover, airborne laser
scanning has the ability to accurately indicate the 3-D structure of the forest canopy [10,11].
It is also fast and efficient in the acquisition of spatial information of a large area and
identifies abundant surface features in a short time, greatly reducing the workload and
shortening the time required for field measurement [12].

Most studies of AGB modeling have used the correlation between the point cloud
variables and measured AGB in situ. Laurin et al. studied tropical forest AGB estimation in
Ghana, where LiDAR metrics were calculated using ALS data, and Multivariate Adaptive
Regression Splines (MARS) was used in AGB estimation. The results showed that MARS
provided a better accuracy for estimating AGB (R2 = 0.72, RMSE = 47.1 t/ha). Moreover,
this study indicated that the employed LiDAR metrics can be used for tree species richness
assessment [13]. Manuri et al. assessed the effect of LiDAR return density on estimating
AGB in tropical peat swamp forests in Kalimantan, Indonesia, where they found cumulative
return proportion (CRP) variables in the power model has explanatory of 90.9% for the
AGB variation [14]. Knapp et al. proposed a general estimation method of AGB across
forest types from different continents. They studied five different sites including temperate
and tropical forests in North America, Central America, South America, Europe, and Africa,
respectively. The results indicated the importance of the employed structure descriptors in
AGB estimation and the mechanisms and relationships (nRMSE = 12.4%, R2 = 0.74) [15].
Jiang et al. suggested a stratification-based category for estimating AGB, which was named
stratification based on forest stand structure (SBFSS). They used ALS to estimate the AGB
of Gaofeng Forest Farm in China, and their model was able to improve estimation accuracy
efficiently and corresponding to specific forest types in a subtropical forest ecosystem
(R2 = 0.78, RMSE = 0.78 t/ha, RMSEr = 23.65%) [16]. Oliveira et al. used ALS data to
estimate total aboveground carbon (TAGC) and total aboveground biomass (TAGB) of dry
tropical forests in Brazil, and established a model using multiple stepwise linear regression
methods. The results showed that LiDAR can be used for estimating biomass and total
carbon in dry tropical forests (R2 = 0.533, RMSE = 14.76 t/ha) [17].

In conclusion, ALS data can observe the forest vertical structure and identify the fea-
tures of tree height and crown, which have been frequently used as a proxy for estimating
AGB. In order to estimate AGB with the point cloud, a widely-used general approach is
using height, intensity, and density parameters derived from point cloud data, analyzing
the relationship between these variables and AGB, and establishing estimation models.
However, few studies have used point cloud data to extract individual tree crown mor-
phological parameters to estimate AGB, such as crown surface area, crown volume, and
crown width; these parameters can affect the AGB in the actual forest environment. The
crown is one of the important parts of a tree and an important source of nutrients; the
size reflects the competition between trees and the level of environmental effects. At the
same time, the crown is the comprehensive result of tree growth and interaction with the
environment [18]. Crowns are also related to tree growth and affect the quantity of AGB.
Therefore, the research on volume, surface area, and crown width are important for the
tree biomass. It is usually difficult to measure the volume and surface area of tree crowns
in the field, but the 3-D characteristics of crowns can be highlighted by using airborne
laser scanning.

Tree objects can be formed by the alpha-shape algorithm, which was used to recon-
struct crown and stem attributes of trees from scattered point clouds. However, most
research with the alpha-shape algorithm in forestry is related to the forestry scenes sim-
ulation or individual tree reconstruction; these parameters of crown construction based
on alpha-shape had not been used to establish regression models of forestry parameters.
Therefore, we employed the alpha-shape algorithm to obtain crown features and construct
parameters for each tree in this paper. We took the National Park of Hainan Tropical
Rainforest in southern China as the research area. In this forest, we established AGB
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estimation models with field measurements and some variables extracted from the point
cloud, and compared the advantages of crown metrics and other metrics for performing
AGB estimation. Research from this study will provide insights into the rainforest situation
at Hainan Island that improve the estimation accuracy in understanding forestry resources
for scientific management and better development.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The study area is located in the National Park of Hainan Tropical Rainforest in Hainan
Island, China (108◦36′~109◦57′ E, 18◦23′~19◦11′ N, Figure 1), which is located in the
northwestern part of the South China Sea. The island has dense tropical rainforests, and the
hydrothermal conditions are superior. Forest coverage exceeds 50% and the composition of
vegetation is rich and diverse with a tropical monsoon maritime climate. Hainan Island is
rich in rainfall, rivers, and hydrological resources. Therefore, monitoring and recording
an inventory of aboveground biomass of the island is beneficial to sustaining biodiversity,
forest management, forest resources development, and the tourism industry [19,20]. The
study area covers about 4900 km2, which is one-seventh of the area of Hainan Island.
The dominant tree species in the plantation forest are mixed broad-leaved forest, Hevea
spp., Eucalyptus spp., Acacia spp., Cunninghamia lanceolata, and Foreign Pines in the study
area [21]. It is located on a hilly landform at an altitude of 100–1876 m. The annual rainfall
is about 1759 mm with an average temperature of 21.6 ◦C, and the relative humidity is 80%.
May to November are the rainy months and December to April are usually dry.
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Figure 1. Location of the study area and the distribution of sample plots.

2.1.2. ALS Data Acquisition

The airborne laser scanning data were collected by National Forestry and Grassland
Administration from March 2020 to February 2021, using a RIGEL VQ1560i-DW laser
scanning system carried on a Cessna 208B aircraft on two sorties. The data format was LAS,
and the average point cloud density of the plantation was 10 points/m2. We collected ALS
data for 217 routes with 71 h flight duration. The detailed scanning parameters of ALS are
shown in Table 1.
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Table 1. Airborne laser scanning system parameters.

Parameters Value

Wavelength (nm) 1064
Divergence angle (mrad) 0.25

Pulse repetition rate (KHz) 2000
Scanning rate 2 × 666 kHz @ 60◦ scan angle

Width (m) 1980
Relative flight altitude (m) 1800

Flight speed (km/h) 260
Side overlap (%) 22

Average point spacing (m) 0.45

2.1.3. ALS Data Processing

The raw ALS data coordinates were calculated using position and orientation system
(POS) and continuously operating reference stations (CORS). A POS was integrated on the
LiDAR sensor. The POS model was Applanix AP60 (produced by Trimble Inc., Sunnyvale,
CA, USA), which has an integrated global navigation satellite system (GNSS) receiver
(that performs georeferencing of the data) and an inertial measurement unit (IMU) (which
measures the drone’s multi-directional movements and orientation and assists in increasing
the accuracy of data georeferencing). The continuously operating reference stations (CORS)
data were provided by Hainan Administration of Surveying Mapping and Geoinformation.
Following this we used LiDAR360 (version 4.1 developed by GreenValley Co., Ltd., Beijing,
China) to process within strip mosaic, point cloud classification, noise reduction, height
normalization, individual tree detection, and individual tree segmentation. Among them,
the individual tree segmentation algorithm used Li et al.’s [22] development algorithms,
which were integrated into LiDAR360.

2.1.4. Inventory Data

The field data include sample-plot survey results collected during the ALS data
acquisition period. On account of the topographic relief, accessibility of sample plots
location, and the operability of setting sample plots, some plots were set outside the study
area but the tree species were the same as within the study area. Meanwhile, these plots
were recorded by airborne laser scanning and had corresponding point cloud data. As a
result, we obtained 166 circular plots (Figure 1), each with a radius of 15 m, with real-time
kinematic (RTK) used to measure the position of the center of each plot. The laser altimeter
(Haglof Vertex Laser developed by Haglöf Sweden) was used to measure the height of
each tree and the DBH of each tree was measured with a diameter tape. The crown width
of the north–south and west–east directions of each tree were measured with tapes. The
distribution of sample plots is shown in Figure 1. The specific sample plot information is
shown in Table 2.

Table 2. Sample plots information.

Tree Species Number of
Sample Plots

Diameter at Breast Height
(DBH/cm)

Tree Height
(m)

Coniferous and broad-leaved mixed forest 6 21.4 ± 9.2 16.0 ± 7.6
broad-leaved mixed forest 18 19.1 ± 22.7 11.9 ± 11.4

Other coniferous trees 12 21.8 ± 20.6 15.6 ± 8.4
Chinese fir 2 18.1 ± 2.8 12.0 ± 2.2

Eucalyptus robusta Smith 49 17.2 ± 15.4 16.9 ± 10.7
Acacia confusa Merr. 30 21.7 ± 19.2 15.8 ± 11.2

Hevea brasiliensis 49 17.9 ± 20.2 14.7 ± 8.6
Note: m ± n, m is the median of the tree parameters for each tree species, n is the maximum value by which this
parameter fluctuates up or down.
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2.2. Methods
2.2.1. AGB Calculation

The AGB of all tree species were calculated by using the AGB formula in [23]. Each of
the AGB models is shown in Table 3.

Table 3. AGB models for each of the tree species.

Tree Species AGB Models of Individual Tree AGB of Plot (t·ha−1)

Coniferous and broad-leaved mixed forest AGB = 0.2253× D2.4213 124.6 ± 106.4
broad-leaved mixed forest AGB = 0.1131×

(
D2H

)0.8407 113.5 ± 260.2
Other coniferous trees AGB = 0.2309×

(
D2H

)0.6838 185.0 ± 174.6
Chinese fir AGB = 0.0182×

(
D2H

)0.9710 46.8 ± 7.3
Eucalyptus robusta Smith AGB = 0.0576×

(
D2H

)0.8587 89.2 ± 175.3
Acacia confusa Merr. AGB = 1.4240×

(
D2H

)0.5680 127.6 ± 170.0
Hevea brasiliensis AGB = 0.0524× D2.7451 46.5 ± 87.7

Note: AGB is aboveground biomass of individual trees, D is the diameter at breast height, and H is the tree height.

2.2.2. Crown Features Extraction

Alpha-shape is a classical algorithm of point cloud that outlines extraction, in which
polyhedral generated precision was controlled from a parameter of α [24,25]. Selecting an
appropriate α value to construct alpha-shape for a given point cloud data is able to return
the original shapes approximately [26]. An alpha-shape polyhedral of a plot is shown
in Figure 2.
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2.2.3. Feature Variables Extraction

According to the structural features of point cloud data, considering the forest stand
characteristics, canopy index, and ecological index, the four categories of feature parameters
were extracted from LiDAR data for each field plot.

(a) Height metrics

Height metrics are statistical parameters related to the normalized height of the
point cloud, which can be used in regression analysis with forest parameters of field plot
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measurements. Otherwise, 10 density variables were also extracted at different elevations.
The point cloud elevation is divided into 10 layers with the same height interval from
lowest to highest within each plot. The proportion of echoes in each height slice is the
corresponding density metric. As a result, we extracted 56 statistical parameters related to
elevation. The depiction of elevation metrics is shown in Table 4.

(b) Intensity metrics

The intensity metrics are similar to the elevation metrics, but they are different from
the elevation information of point cloud. A total of 42 intensity variables were calculated
and the variable descriptions are shown in Table 4.

(c) Alpha-shape metrics

Alpha-shape algorithm was constructed in MATLAB, and we extracted 72 variables
corresponding to tree crown with alpha-shape algorithm and statistical metrics derived
like Table 4. These variables are shown in Table 5.

(d) Stand metrics

For the forest stand feature, four feature parameters were calculated, including canopy
density, leaf area index, gap fraction and density of trees [27]. Canopy cover is the per-
centage of the vertical projection of forest canopy to forest land area, which plays an
important role in forest ecology and resource management [28]. It is also an essential
factor for estimating forest aboveground biomass. The leaf area index (LAI) is one of the
most fundamental parameters for forest canopy structure and is a composite indicator of
optical energy utilization and tree crown structures [29]. Additionally, the physiological
and physical processes of the vegetation were reflected from the LAI, therefore it is closely
related to forest biomass. Gap fraction can reflect illumination in forest stand and growth
of the understory layer [1]. The competition of soil, water, and fertilizer among plants is
also reflected indirectly in the gap fraction. The density of trees can indicate the utilization
level of the space occupied by trees. As a result, the features of Tables 4–6 were calculated
in LiDAR360. The four variables are shown in Table 6.

Table 4. ALS-derived tree height metrics, density metrics, and intensity metrics.

Variable Abbreviation Description Reference

Hmax(Imax) Maximum tree height (intensity)

[30]

Hmin(Imin) Minimum tree height (intensity)
Hmean(Imean) Mean tree height (intensity)
Hmed(Imed) Median tree height (intensity)
Hvar(Ivar) Variance of tree heights (intensity)
Hstd(Istd) Standard deviation of tree heights (intensity)
Haad(Iaad) Average absolute deviation of tree heights (intensity)

Hcrr Hcrr =
mean−min
max−min

Hcv(Icv) Variation coefficient of tree heights (intensity)
Hkurt(Ikurt) Kurtosis of tree heights (intensity)
Hskew(Iskew) Skewness of tree heights (intensity)
Hmm(Imm) Median of median absolute deviation of tree heights (intensity)

Hn(In)
Tree height or intensity 1st, 5th, . . . . . . 95th, 99th percentile, 15 features were

extracted in total
AIHn(AIIn) Accumulative interpercentile height (intensity)

Hiq

(
Iiq

)
Interquartile range (H75 − H25 ) or (I75 − I25 )

AIHiq AIH Interquartile range (AIH75 −AIH25 )
Hsqrt Generalized means for the 2nd power
Hcube Generalized means for the 3rd power

Dn Density metrics (0th, 1st, . . . . . . , 9th)
Note: Hxxx is elevation, Ixxx is intensity.
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Table 5. Tree crown metrics of alpha-shape complexity derived.

Abbreviation Description

CVmax, CVmin, CVmean, CVstd, CVvar,
CVmed, CVcv, CVkurt, CVskew, CViq

The volume as the alpha-shape complexity, unit: m3

CSAmax, CSAmin, CSAmean, CSAstd, CSAvar,
CSAmed, CSAcv, CSAkurt, CSAskew, CSAiq

The surface area as the alpha-shape complexity, unit: m2

CX_max, CX_min, CX_mean, CX_std, CX_var,
CX_med, CX_cv, CVX_kurt, CVX_skew, CVX_iq

The width of the X-axis as the alpha-shape complexity, unit: m

CY_max, CY_min, CY_mean, CY_std, CY_var,
CY_med, CY_cv, CY_kurt, CY_skew, CY_iq

The width of the Y-axis as the alpha-shape complexity, unit: m

CZ_max, CZ_min, CZ_mean, CZ_std, CZ_var,
CZ_med, CZ_cv, CZ_kurt, CZ_skew, CZ_iq

The length of the Z-axis as the alpha-shape complexity, unit: m

CWmax, CWmin, CWmean, CWstd, CWvar,
CWmed, CWcv, CWkurt, CWskew, CWiq

The average crown width, CW = 1
2 (CX + CY)

CSRmax, CSRmin, CSRmean, CSRstd, CSRvar,
CSRmed, CSRcv, CSRkurt, CSRskew, CSRiq

Crown shape ratio, CSR = 1
2 (CX + CY)/CZ

Vol The volume of the 3-D alpha-shape
Sur f The surface area of the 3-D alpha-shape

Note: Alpha-shape metrics statistics for each plot as same as height and intensity metrics of point cloud data,
maximum (max), minimum (min), average (mean), standard deviation (std), variance (var), median (med),
coefficient variation (cv), kurtosis (kurt), skewness (skew), interquartile range (iq), respectively.

Table 6. Forest stand metrics.

Variable Abbreviation Description References

LAI Leaf Area Index, half of the surface area of all leaves projected on the
surface area of a plot

[28,29]CC Canopy cover, the ratio of the first vegetation echoes to the total number
of first echoes

GF Gap fraction, the ratio of ground points to total points in a plot

TD Density of trees, the ratio of tree numbers of individual tree segmented
from point cloud in each plot area

2.2.4. Regression Modeling of AGB

In this paper, random forest and stepwise linear regression were used for establish-
ing AGB models. The random forest and linear regression models were established by
R programming.

Random forest (RF) is a robust machine learning algorithm that is constructed by
combining the results of various decision trees and bagging the original dataset to select
samples. Meanwhile, random forest is also a common feature variable selection method,
and the features importance was sorted by increasing mean square error (IncMSE) [31,32],
whose formula is shown in Equation (1):

IncMSE =
1

ntree ∑
(
OOBerror −OOB′error

)
(1)

where: ntree is the number of random forest trees; OOB (out of bag) is a randomly selected
sampling dataset; OOBerror is the error of OOB when the sampling dataset is not changed;
and OOB′error is the error of OOB when the sample set is changed.

Multiple stepwise linear regression (MSLR) considers the contribution of all inde-
pendent variables to the dependent variable, step-by-step iterative establishment of a
regression model, and finally the selection of independent variables to be built ultimate
model [33]. We used the selected independent variables in random forest to populate the
equation. The MSLR formula is shown in Equation (2):

y = a1x1 + a2x2 + a3x3 + · · · · · ·+ anxn + ε (2)
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where: a1, a2, a3, · · · , an are constants, x1, x2, x3, · · · , xn are independent variables, and ε is
the error term.

2.2.5. Precision Assessment

The correspondence of the estimates with the reference data was evaluated by the
coefficient of determination R2, root mean squared error (RMSE), and mean absolute error
(MAE). However, R2 value will always increase when models add independent variables
in MSLR, so we use adjusted R2 to assess the models’ precision. The four assessment
indicators were calculated according to:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (3)

R2
adj = 1− n− 1

n− k− 1

(
1− R2

)
(4)

RMSE =
2

√
∑n

i=1(yi − ŷi)
2

n
(5)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (6)

where: ŷi is predicted values; y is the average of predicted values; yi is observed values, n
is the number of samples, k is the number of independent variables.

Where: ŷi is predicted values, y is average of predicted values, yi is observed values; n
is the number of samples; and k is the number of independent variables.

3. Results
3.1. Feature Selection

We set the proportion of training samples and testing samples as 60%:40%. Among
the 174 feature variables extracted from the point cloud data, the top 15 feature variables
importance was sorted from height, intensity, alpha-shape, and mixed metrics, respectively,
and four features importance were sorted by stand metrics. The importance rankings
selected are shown in Figure 3.

Figure 3 shows the most important variables according to increasing the mean square
error (IncMSE). The variable with the maximum IncMSE is tree density (TD), which is a
suitable variable in forest stand features, followed by the surface area of 3-D alpha-shape
(Surf ), Imm, AIH60th, which are extracted from alpha-shape metrics, intensity metrics, and
height metrics, respectively.

Furthermore, Figure 3e showed the top 15 features of all variables. Among them, the
number of height metrics is the largest, followed by the alpha-shape, stand, and intensity
metrics, respectively, of the whole variables. It indicates that the tree height and alpha-shape
metrics are dominant, and they are more important to AGB.

As can be seen from the variables, the percentiles and accumulative interpercentiles are
more important than the descriptive statistical variables in the height metrics and intensity
metrics. There are significant IncMSE for in stand metrics, the four variables IncMSE > 1000.
It is apparent that tree density, canopy cover, gap fraction, and LAI are important to AGB.
The difference in the extremal value range of IncMSE between alpha-shape metrics and
other metrics is very wide, besides, the descriptive statistical variables occupy the main
part of the top 15 important features.
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Figure 3. Feature importance rankings of top 15 in height, intensity, and alpha-shape metrics,
respectively, and feature importance ranking of stand metrics. (a) Height metrics, (b) Intensity
metrics, (c) Alpha-shape metrics, (d) Stand metrics, (e) All variables.

3.2. Correlation Analysis

The correlation coefficient analysis was carried out between AGB and the importance
features. The bar charts in Figure 4 show the correlation between variables of each group
and AGB.
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Figure 4. Features correlation of each group features: (a) Height metrics; (b) Intensity metrics;
(c) Alpha-shape metrics; (d) Stand metrics; (e) Mixed metrics.

Among the 15 height features of the point cloud data, their correlation coefficient value
was significantly and positively correlated with AGB (r > 0.70, p < 0.01). Overall, elevation
percentiles features and AGB are the most correlated. However, the correlation between
variables in intensity metrics, alpha-shape metrics, and stand metrics are negatively and
positively correlated with AGB (p < 0.01), as shown in Figure 4b–d. Among all variables,
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the surface area is the most correlative to AGB. From the bar charts, it can be seen that the
absolute extreme difference of the correlation coefficient is large. In addition, the variables
associated with the Z-axis of alpha-shape are positively correlated the same as height
metrics. While the descriptive statistical variables of CSR and crown width are negatively
correlated with AGB.

3.3. AGB Estimation Models

Figure 5 and Table 7 show the aboveground biomass models of random forest parame-
ters. First, the data were normalized to remove the effect of dimension, then the selected
variables were set to establish the AGB models.
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Figure 5. Hyperparameter tuning results for random forest: (a) The relationship between MSE and
the number of trees; (b) The relationship between R2 and the number of trees.

Table 7. The optimal parameters for each of the random forest model corresponding variables.

Feature Parameters
Corresponding the Minimum MSE Corresponding the Maximum R2

Min MSE ntree Corresponding R2 Max R2 ntree Corresponding MSE

Height metrics 3259.615 173 0.487 0.487 173 3259.615
Intensity metrics 4910.851 198 0.219 0.229 66 5123.448

alpha-shape metrics 3194.515 197 0.502 0.537 26 3526.796
Stand metrics 3949.003 125 0.358 0.375 75 4012.294
Mixed metrics 2711.566 270 0.582 0.603 109 2721.430

The results of the random forest models are shown in Figure 5, where it can be seen
that mean square error (MSE) decreases and R2 increases gradually as the number of trees
(ntree in random forest algorithm) increases. It is obvious that the trend is stable when the
value of ntree reaches approximately 200. Combining the MSE and R2 shows that after
stabilization the error of intensity metrics is the largest, and R2 is the smallest. There is a
clear characteristic that R2 < −1 when a few the ntree are applied, indicating that the fitting
is poor. The alpha-shape metrics have the smallest MSE and the largest R2. This indicates
that the accuracy of random forest regression based on variables of alpha-shape is the best,
followed by height, stand, and intensity metrics.

In addition, the model started training with a small ntree and the MSE and R2 perfor-
mance were unstable, while the performance tends to be stable when the number of trees
weas increasing and taking into account the removal R2 < −1 of intensity metrics model.
Secondly, Excessive ntree will lead to overfitting. Therefore, the optimal parameters were
found by counting the variation in MSE and R2 between 8 to 200 trees. Table 7 lists the
optimal parameters for random forest regression of each variables group. It can be seen
from the ntree in Table 7 that the ntree with the best MSE and R2 of height variables was the
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same, while there is a great difference for the other three groups of variables. Overall, the
most stable model is the height metric-based model, while the most accurate model is the
alpha-shape based model. To compare the difference between min MSE and max R2, the
optimal number of trees is 26 for alpha-shape variables.

Table 8 illustrates the aboveground biomass models of MSLR. The AGB model of
each linear regression was established by using the selected important variables based on
the four categories of feature parameters. The table below illustrates some of the main
characteristics of the regression coefficients and important independent variables. The
larger the absolute value of the regression coefficient, the stronger explanation of the
variable for AGB, and the higher the number of independent variables, the better the
relationship between the response of AGB and LiDAR signal. It is apparent from this table
that the mixed metrics model is the same as the alpha-shape metrics model. We used the
Durbin–Watson test, F statistics and R2

adj to assess the MSLR models, which showed that
the surface area of the crown was a better and important variable to estimate the AGB,
followed by the height, stand, and intensity metrics.

Table 8. Different linear regression models.

Feature Parameters Model Durbin-Watson Test R2
adj Sig.

Height metrics AGB = −36.035 + 9.028× AIH70 2.182 0.501 p < 0.001
Intensity metrics AGB = 437.465− 0.047× AII20th + 0.036× I30th 2.360 0.204 p < 0.001

alpha-shape metrics AGB = 2.332 + 0.015× Sur f 2.215 0.607 p < 0.001
Stand metrics AGB = 5.011 + 0.134× TD + 11.616× LAI 2.253 0.450 p < 0.05
Mixed metrics AGB = 2.332 + 0.015× Sur f 2.215 0.607 p < 0.001

3.4. Regression Model Precision Assessment

Figures 6 and 7 summarize the accuracy of the evaluation results of AGB estimation
models. Figure 6i,j show that the result using random forest based on mixed metrics is closer
to the red line (the 1:1 line) (R2 = 0.713, RMSE = 21.064 t/ha, MAE = 15.445 t/ha), compared
to others results, followed by alpha-shape, height, stand, and intensity metrics. In the
model of alpha-shape metrics based, the training R2 > 0.7 and the testing R2 are closed to
0.7. It shows that the performance is more stable than height, stand and intensity metrics.

As can be seen from Figure 7, there was an optimal relationship between measured
AGB and alpha-shape metrics in stepwise linear regression, the same as random forest.
The R2

adj > 0.6 of the training model (R2
adj = 0.607) and testing model (R2

adj = 0.711) derived
by alpha-shape variables, indicating that variables are more related to individual trees for
the great estimation effect, followed by height, stand and intensity, but the conspicuous
difference between RMSE and MAE in training and testing model. However, in the testing
datasets, intensity metrics performed extremely badly.
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Figure 6. Scatterplot between measured and predicted AGB from the random forest model of
each type of variables. (a) Training dataset of height metrics; (b) Testing dataset of height metrics;
(c) Training dataset of intensity metrics; (d) Testing dataset of intensity metrics; (e) Training dataset
of alpha-shape metrics; (f) Testing dataset of alpha-shape metrics; (g) Training dataset of stand
metrics; (h) Testing dataset of stand metrics; (i) Training dataset of mixed metrics; (j) Testing dataset
of mixed metrics.
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Figure 7. Scatterplot between measured and predicted AGB from the stepwise linear regression of
each type of variables. (a) Training dataset of height metrics; (b) Testing dataset of height metrics;
(c) Training dataset of intensity metrics; (d) Testing dataset of intensity metrics; (e) Training dataset of
alpha-shape metrics; (f) Testing dataset of alpha-shape metrics; (g) Training dataset of stand metrics;
(h) Testing dataset of stand metrics.
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4. Discussion
4.1. The Important Roles of Variables from ALS for AGB Estimation at Stand Level

Figures 3 and 4 show the relationship between AGB and the variables extracted from
ALS data. In stand metrics, IncMSE all variables are greater than 1000, indicating that tree
density (TD), leaf area index (LAI), canopy cover (CC) and gap fraction (GF) are important
to AGB. Tree density delineated not only the number of trees in the stand, but also an
important indicator for structure of the ecological system and biological cycling [34,35].
Canopy cover is also an indicator of stand density the same as tree density. Furthermore,
it is an important parameter in forest management and estimating forest volume [36–38].
Since the study area is in a tropical rainforest with dense trees, obvious vertical stratification
and complex structure, the competition among tree crowns for light and living space is
extremely strong, and the growth of the understory and forest floor are affected. Therefore,
the biomass is also affected, and additionally, the leaf area index is intimately related
to canopy and a feature of forest health; it can affect many physiological and physical
processes in vegetation, such as photosynthesis, respiration, transpiration, and carbon
cycling and precipitation retention [39,40]. The gap fraction can reflect the characteristics of
canopy structure and spatial distribution of biomass [41,42].

Tree height as one of the most important quantitative forest observation parameters,
especially in tropical rainforests, has a strong influence on tree growth, understory, and
photosynthesis [11,43]. While it is important to summarize observations in terms of max,
min, median, etc., it is more comprehensive when it is combined with percentiles [44]. The
quantile is a measurement used to compute the position of the data, and the percentile
provides information about the distribution of all data between the min and max, so the
percentile step can be also used as an indicator to depict the degree of discrete distribution
of data. The value of the percentile is fairly stable when there are many observations.
Therefore, it is helpful to analyze stand height characteristics and aboveground biomass of
the stand by combining elevation metrics of point cloud data and quantiles. Accumulative
interpercentile height and height percentile performed better in AGB estimation.

The intensity reflects the intensity of laser pulse echoes, which are affected by the
length of the laser path, scanning angle, distribution of branches and leaves, and the terrain
in the forest [45–47]. Moreover, the intensity values are intimately related to tree species,
and living and dead standing wood [48]. The median absolute deviation (MAD) is a robust
measurement of sample differences in univariate datasets. MAD is a robust statistic, which
is more flexible than standard deviation in dealing with outliers in data sets and can greatly
reduce the impact of outliers on datasets [49,50]. Hence, the robust statistical metrics of
intensity are benefit to vertical structure and AGB of forest stand.

4.2. Effects on Structure of Individual Trees Based on Alpha-Shape Analysis

The height, intensity and forest stand metrics delineated stand features at plot level;
however, the principal part of aboveground biomass was made of individual trees on a plot
and consequently, some characteristics were extracted by using the alpha-shape algorithm
at tree-level, which is of benefit to describe the relationship between AGB and the variables
extracted by the point cloud data; thereby we can make full use of point cloud data and
take advantage of airborne laser scanning. We extracted surface area and volume of crown
by using alpha-shape, which are important parameters describing the crown structure,
responding the size and shape of crown directly and reflecting the photosynthetic ability
and biomass accumulation indirectly [1].

The crown fullness ratio (CFR) is not only a quantitative index reflecting the crown
size, but also indicating the growth of trees and the ability to occupy growth space [51,52].
Therefore, the size of the crown fullness ratio has a great influence on the growth of
trees [53]. As a result of the laser scanning data acquisition and the high crown density in
tropical rainforest, the segmented single tree point clouds cannot fully express details of
the individual tree, and the alpha-shape polyhedron contains the tree height information.
We use the ratio of average crown width to tree height as the evaluation factor of crown
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fullness ratio. Furthermore, corresponding variables of the length of the Z axis (CZ) also
characterized tree height the same as height metrics. Therefore, the extraction of individual
tree structure metrics based on alpha-shape after single tree point clouds segmentation is
beneficial to estimating forest aboveground biomass.

4.3. Regression Models of AGB Estimation

We used two regression methods to estimate AGB. In both them, multiple stepwise
linear regression is the parametric regression technique, which made clear the relationship
between AGB and LiDAR derived metrics. Nevertheless, there were some assumptions for
the data, such as sample independence, normal distribution, and equal variance [54,55].
On the other hand, the forest environment is an ecosystem that is too complex and non-
linear to be depicted by linear regression. Besides, the individual wood is affected by site
quality, stand competition, and other factor interactions, and it is difficult to express highly
complex systems by using linear regression [56]. Moreover, there were possibilities of
missing treetops during laser scanning in this study area, and the crown of each tree was
less accurately depicted by the variables that extracted ALS data.

However, random forest is a common non-parametric regression method that makes
no assumptions about the distribution of input data but also analyzes the relationship
between AGB and LiDAR metrics well, deep mining valuable information of forest parame-
ters and establishing a better regression model [57,58]. The RF model had a good inversion
effect on the AGB in all kinds of metrics. Moreover, the random forest model was good at
dealing with nonlinear regression and multicollinearity, such as parameters of the forestry
environment in particular [56]. It is easy to improve performance and decrease overfitting.
Additionally, it has some drawbacks, as the hyperparameters could not be adjusted well
inside the RF model [59], therefore it may not perform well for other similar forests as it
did in this study.

And the focus is not to discuss the regression method in this paper. In terms of regres-
sion strategies, more machine learning methods can be used and compared, for instance,
support vector machine (SVM), artificial neural network (ANN), k-nearest neighbor (k-NN)
etc., but the sample size and model generalization, which are also important problems to
be considered. Figures 6 and 7 show that RF and MSLR models produced biases when
AGB > 200 t/ha. The biases showed that the random effects of forestry environment for
AGB. In addition, AGB has the characteristics of spatial autocorrelation and heterogeneous
in forest [36,60,61]. The spatial effects will lead to the error of AGB estimation without
considering the spatial autocorrelation and heterogeneity, but spatial regression model is
a great method, the same as geographically weighted regression (GWR). In addition to
considering the analyzed attributes and the weight of spatial distance, the spatial variance
can be better characterized [62].

4.4. Other Factors for Characterizing AGB Estimation

Another advantage of ALS is the ability to generate a high spatial resolution digital
elevation model (DEM). The stand characteristics were also affected by terrain, such as
slope, aspect, relief, and curvature [50]. Moreover, topography has a significant impact
on species’ richness, hydrothermal conditions, and soil nutrient supply, especially in
tropical areas [9,63,64]. In this paper, we did not consider topographic factors, or more
importantly, the relationship between structure characteristics of stand or individual trees
and aboveground biomass. The quality of generating DEM by ALS is affected by forest
structure, off-nadir angle and interpolation algorithm [64,65]. Hence, high resolution DEM
is used to extract topographic factors, which are used as independent variables for modeling
in future research.

In terms of tree species, the shapes of conifer and broad-leaved trees species are quite
different, which also produces different responses for laser scanning signals. Accuracy of
the AGB estimation model can be improved by distinguishing tree species [66]. Due to the
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limitation of conditions in situ, the number of sample plots for each dominant tree species
is different, with merely a few sample plots for individual tree species.

5. Conclusions

In this research, the aim was to evaluate aboveground biomass of explanatory potential
using different kinds of features extracted from airborne laser scanning data, such as the
individual tree crown features that can play an important role in AGB estimation. The
random forest model performed better than multiple stepwise linear regression. The
multicollinearity and nonlinear were avoided, but also other variables related to AGB were
chosen by random forest. The findings of this study suggest that the shape of the point
cloud clusters representing tree crowns can be geometrically reconstructed by alpha-shape
algorithm, which corresponds to some extracted features that are able to estimate AGB
well. There was a fine relationship between AGB and the surface area, and the volume of
crowns along with the crown shape ratio and tree height extracted from the alpha-shape
polyhedron. In future work, the method may be extended to distinguish tree species
mapping at stand level that could improve estimates of regional aboveground biomass.
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