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Abstract: Breeding long-lived trees is challenging, but it has been shown that genomic information
can be used to improve efficiency. In this study, genomic prediction (GP) was tested on selected
individuals of a two-generation breeding population of Cryptomeria japonica, the most common
plantation tree in Japan. In the 1980s, the second-generation plus trees (101 clones) were selected from
about 8500 individuals obtained by cross-mating the first-generation plus trees (47 clones). RAD-seq
based on 8664 SNPs was used to perform GP for three important traits in this population: tree
height, wood stiffness, and male flower quantity. The association between traits and genotypes was
modeled using five Bayesian models whose predictive accuracy was evaluated by cross-validation,
revealing that the best model differed for each trait (BRR for tree height, BayesA for wood stiffness,
and BayesB for male flower quantity). GP was 1.2–16.0 times more accurate than traditional pedigree-
based methods, attributed to its ability to model Mendelian sampling. However, an analysis of the
effects of intergenerational kinship showed that parent–offspring relationships reduce the predictive
accuracy of GP for traits strongly affected by selection pressure. Overall, these results show that GP
could significantly expedite tree breeding when supported by a deep understanding of the targeted
population’s genetic background.

Keywords: genomic selection; Cryptomeria japonica (Japanese cedar); RAD-seq; Bayesian GP models;
intergenerational kinship

1. Introduction

Genomic prediction (GP) is the use of large numbers of genomic markers located
on the genome to construct predictive models that explain breeding values or genotypic
values [1]. Breeding methods for selecting superior individuals based on GP are called
genomic selection (GS) [1]. It has been used extensively in cattle breeding since 2008 [2] and
subsequently in the breeding of other animals and plants [3,4]. As a result, it has drawn
interest from forest geneticists and tree breeders [5,6], who have shown that GS and GP can
be effectively applied to forest trees [7]. Accelerated breeding using techniques such as GS
and GP is extremely valuable for conifers because they must grow for multiple decades
before harvesting [8].

Several statistical methods have been recommended for use in GP modeling, and it
has been suggested that the best method in any given case will depend on the genetic
architecture of the trait of interest [9]. However, results from actual operations have
revealed minimal differences in the predictive accuracy between GP models [10,11], and
traditional pedigree-based prediction methods have been more accurate than GP in some
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cases [12]. Careful model selection is, therefore, essential when performing GP, and the
chosen model’s ability to outperform traditional pedigree-based prediction methods is an
important criterion when deciding whether to incorporate GP into a tree-breeding program.

The selection of an appropriate target population is another important issue when
considering GP because kinship within the population significantly affects the technique’s
predictive accuracies when applied to forest trees. This has primarily been observed in
studies examining one-generation full- and half-sib populations [10,13,14]. There have
been comparatively few reports on applying GP to multiple generations in forest tree
breeding where generation times are long [12,15]. Even the world’s most generationally
renewed conifer, Pinus taeda (for which GS has recently been introduced), has only recently
entered its fourth generation of breeding [16], and C. japonica in Japan is only in its second
generation [17]. Consequently, there is little information on how cross-generational kinship
influences the predictive accuracy of GP in tree breeding. Furthermore, trait information
is expected to be more accurate for breeding populations consisting of clonal individuals,
so GP should be particularly reliable in such populations [18]. However, this expectation
has not yet been tested. With the right population set-up and accurate trait information,
forward selection based on GP could greatly reduce the time needed for forest tree breeding
by avoiding problems resulting from long generation times.

This work investigates the potential utility of GP in C. japonica, the most important
forestry tree species in Japan: it is planted widely in all parts of the country, other than
Okinawa, accounting for about 44% of Japan’s planted forest area [19]. Eastern Japan is
dominated by seedling forestry derived from seed gardens, while western Japan, where
this study was conducted, is dominated by clonal forestry based on cuttings from scion
gardens [20]. Clonal forestry has been practiced in this region for over 500 years [21],
and clonal values, i.e., genotypic values, are commonly estimated in clonal test sites to
select plus trees. The GP in clonal forestry targets not only the breeding value but also the
clonal value of the tree intended for clone deployment [18]. An advantage of implementing
GS in a cloned population lies in constructing a prediction model based on a training
population with reliable clonal values derived from phenotypic data collected on the
clonally replicated individuals.

This study focuses on three traits: tree height, wood stiffness, and male flower quantity.
Pollen-related characteristics such as male sterility and low pollen fecundity are important
breeding targets for C. japonica in Japan because allergic reactions to its pollen have recently
become a severe public health problem, affecting at least 26.5% of the Japanese population
according to a nationwide epidemiological survey [22]. To address this problem, forest
research institutes and forestry agencies in various regions have developed and made
available male sterile individuals and individuals with low pollen fertility [20,23,24]. Male
flower quantity is generally assessed after 15 years or more when trees have reached matu-
rity. GP could, therefore, greatly shorten breeding programs targeting this variable. Tree
height is also an important trait because it is directly related to production. Consequently, it
has been the subject of numerous GP studies [25,26]. However, tree height is also strongly
influenced by the environment, making it difficult to estimate clonal values [27]. Therefore,
in this study, GP was performed using clonal values calculated for populations of clones
planted in multiple test sites to incorporate the effects of both microenvironmental differ-
ences within clonal test sites and macroenvironmental differences between them. Wood
stiffness is another major breeding objective in tree breeding programs. The properties of
wood are age dependent [28] and are generally assessed by distinguishing juvenile wood
(i.e., wood from trees aged up to 15 years since planting) from mature wood. This means
that many years of growth are needed to obtain reliable stiffness data. The use of GP to
select trees with high wood stiffness could thus significantly accelerate C. japonica breeding
programs targeting this trait.

Because parentage and sibling relationships are thought to create genetic similarities
between clones and influence the accuracy of GP predictions [29], prior knowledge about
the genetic relationships of the studied population is important [7,12]. There have been
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many reports of exogenous pollen contamination in seed orchards [30,31], and mating
errors may also occur during artificial crosses. Moreover, forest tree breeding takes place
over many years, so when dealing with material that was bred over 50 years ago, as in
the case studied here, confirmation and correction of parentage information using DNA
information is essential for efficient breeding [32].

Here, GP was tested to address three questions. First, if five Bayesian statistical meth-
ods are used to model three traits (tree height, wood stiffness, and male flower quantity),
do the optimal models for each trait differ? Second, can the genomic estimated clonal value
(GECV) achieve greater predictive accuracy than traditional pedigree-based prediction?
Third, how does intergenerational kinship impact the accuracy of GP predictions? Answer-
ing these three questions could reveal ways to improve the accuracy of GP and thereby
help to increase the efficiency of forward selection significantly.

2. Materials and Methods
2.1. Population Composed of Two Generations

The effectiveness of GP was tested in a two-generation population composed of se-
lected individuals, which was created as follows. The first-generation (hereafter G1) plus
trees consisted of 47 clones. G1 plus trees were selected mainly from planted forests in
the 1950s by phenotypically comparing individual trees and selecting those with superior
growth and shape around Saga Prefecture. Second-generation seedling individuals were
produced from 1965 to 1972 using 26 unrelated clones from the G1 plus trees as founders
with a mating design that included diallel crosses [33,34] (Figure 1). Approximately
8500 second-generation (hereafter G2) seedlings produced from about 300 combinations of
parents were planted between 1969 and 1972 with lineage management. Test sites planted
with G2 seedlings were established at six locations in Saga Prefecture, Japan [34]. Based on
the results of a height and form survey conducted in the 1980s, when the G2 trees were
approximately 10 years old, 101 individuals were selected as G2 plus trees and clonally
propagated with cuttings. The G2 plus trees were selected based only on height data
because equipment to measure wood stiffness in standing trees was not yet available and
the pollen allergy problem was not recognized at the time.
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Figure 1. History of artificial crossbreeding and selection of Cryptomeria japonica (Japanese cedar)
plus trees in Saga Prefecture, Japan.

2.2. Study Sites

We studied six clonal test sites in Saga Prefecture (Site 110, Lat. 33◦22′N, Long. 130◦07′ E,
Elev. 600 m, planted in 1983; Site 111, Lat. 33◦24′ N, Long. 130◦06′ E, Elev. 550 m, planted
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in 1984; Site 112, Lat. 33◦19′ N, Long. 130◦08′ E, Elev. 500 m, planted in 1985; Site 113,
Lat. 33◦15′ N, Long. 129◦52′ E, Elev. 250 m, planted in 1986; Site 115, Lat. 33◦21′ N,
Long. 130◦09′ E, Elev. 580 m, planted in 1988; Site 116, Lat. 33◦27′ N, Long. 130◦16′ E,
Elev. 500 m, planted in 1989) (Figure 2). The G2 plus trees and G1 plus trees from their
parent generation were planted simultaneously at these sites, and the sites were settled
based on randomized complete block designs with three replicates and multiple trees per
clone. A wealth of trait data exists for the populations at each site due to the continuous
research conducted over more than 30 years since their planting.
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2.3. Phenotypic Data and Clonal Values

We evaluated the predictive performance of GP for three important traits in clonally
propagated G1 and G2 plus trees: tree height, wood stiffness, and male flower quantity.
This study is concerned with breeding material that is actually selected for the purpose of
creating suitable varieties, not just for research purposes. There are a few missing research
data on the breeding process over half a century. Therefore, the number of clones subjected
to GP analysis was 142 (G1:47, G2:95), 145 (G1:44, G2:101), and 148 (G1:47, G2:101) for each
trait, respectively (Table 1). The reasons for the differences from the 148 (G1:47, G2:101)
genotyped clones and the method used to calculate the clonal values are described below.

Table 1. Numbers of clones and individuals surveyed and phenotyping ages used to estimate clonal
values for each trait.

Trait
First-Generation Plus Trees (G1) Second-Generation Plus Trees (G2) Total

Clone N Age Clone N Age Clone

Tree height 47 11,860 10 95 3058 10 142
Wood stiffness 44 299 30–39 101 620 22–39 145

Male flower
quantity 47 – ≥15 101 4640 22–29 148

See the detailed version of Table 1 for more information (Table S1). The individuals surveyed for each clone
are shown in the Supplementary Materials (tree height: Table S2, wood stiffness: Table S3, male flower
quantity: Table S4).
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Tree height was evaluated when the trees were 10 years old because genetic traits
are easier to assess at this stage before competition for light and other resources between
individuals becomes more intense. Clonal values for 139 clones (G1:44 clones, G2:95
clones) out of a total of 148 clones (G1:47 clones, G2:101 clones) were calculated using the
best linear unbiased prediction (BLUP) method [35] based on the corrected tree heights.
No data or published scores for 6 of the 101 G2 clones, which were therefore excluded
from the analysis. Corrections for tree height were performed by calculating spatial cor-
relation residuals from the tree height and tree location maps (Figure S1) representing a
total of 14,918 individuals (range: 5–735 individuals per clone) in the 6 clonal test sites
(Tables S1 and S2). The corrected tree heights were then used to calculate clonal values
using the BLUP method, with the effect of each site on tree height as a fixed effect. These
calculations were performed in the breedR-package [36,37] of the R platform [38], in which
the autoregressive AR model for spatial analysis [39] was implemented. Three of the
47 G1 clones were not planted in the clonal test sites but already have published scores [40].
Therefore, the published scores for these clones were converted to clonal values (see details
in Supplementary Materials S1 and Table S2).

Wood stiffness was assessed in two surveys: (1) a survey of lumber from trees over
30 years old using a fast Fourier transform (FFT) analyzer (RION, Tokyo, Japan) and
(2) standing tree surveys using a TreeSonic timer (FAKOPP, Sopron, Hungary) or a Fakopp
ultrasonic timer (FAKOPP, Sopron, Hungary). The lumber surveys provided the most
reliable stiffness data because they examined trees over 30 years old, and the wood proper-
ties of timber change when a tree goes from juvenile (aged 0 to 15 years) to mature (over
15 years old). However, due to the high cost of surveys, only 73 clones (G1: 27 clones, G2:
46 clones) out of a total of 148 clones were examined in the lumber survey, and another 72
(G1: 17 clones, G2: 55 clones) were included in the standing tree survey (Tables S1 and S3).
The remaining three clones of the 47 G1 clones were not present at the clonal test sites and
were excluded from the survey. The lumber surveys were performed as follows. First, logs
taken from standing trees at 0.4–2.4 m above ground level after stress wave times were
measured with a TreeSonic timer. Lumber (dimensions: 2000 mm × 38 mm × 89 mm) was
then obtained by cutting each log outwards sequentially from both sides across the pith
(Figure S2). After drying, the dynamic Young’s modulus of the lumber was measured using
an FFT analyzer. In total, 1403 pieces of lumber (4–63 per clone) were measured in this way.
For each log, the two pieces of lumber touching the pith (779 pieces in total) were classified
as juvenile timber, and the outer timber (624 pieces) was classified as mature lumber. Clonal
values for wood stiffness were then calculated using the BLUP method [35] with two fixed
effects: the juvenile/mature status of the lumber and its average annual ring width. This
calculation was performed using rstan version 2.21.2 [41] on the R platform [38], which
enables efficient calculations. The wood stiffness of the 72 clones not included in the lumber
survey was determined in standing tree surveys (see details in Supplementary Materials S2
and Table S3).

Male flower quantity in the G1 generation (47 clones) was assessed using published
scores calculated on the basis of field research conducted between 1988 and 1997 [40]. For
the G2 generation (101 clones), data from field research conducted between 2008 and 2013
was used instead (Tables S1 and S4). Due to the large annual variation in male flower
quantity, surveys were conducted over six to nine years in G1 and four to six years in G2 on
mature individuals over 15 years of age. Although the survey periods differed, both field
surveys were conducted using the same methodology. As described by Toda et al. [42],
the distribution of male flower setting was evaluated using a six-point scale based on
observations of the canopy surface. This scale has the following possible scores: 0: no male
flowers; 1: a few male flowers; 2: a low number of male flowering branches or low number
of male flowers on some branches; 3: a moderate number of male flowering branches or
degree of male flowering; 4: almost all branches have a significant amount of male flowers,
or some branches have a large amount of male flowers; 5: the entire canopy is covered with
a large amount of male flowers. The raw observed data for the clonal test site were used to
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calculate clonal values for the male flower quantity of each G2 clone were calculated using
the BLUP method [35] as implemented in rstan version 2.21.2 [41] on the R platform [38],
with the year of measurement as a fixed effect. Conversely, the clonal values for the G1
clones were derived from their published scores (see details in Supplementary Materials S3
and Table S4).

2.4. Genotype Data and SNP Discovery

DNA was extracted from one individual from each of the 148 clones included in the
study. Total genomic DNA was extracted from 100 mg of each sample using the DNeasy
Plant Mini Kit (Qiagen, Hilden, Germany). The concentration of extracted DNA was
quantified using the QubitTM dsDNA Broad Range Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA). Double digest restriction site-associated DNA sequencing (ddRAD-
seq) libraries were prepared as previously described [43]. Briefly, genomic DNAs were dou-
ble digested using PstI and Sau3AI restriction endonucleases (Invitrogen,
Waltham, MA, USA), ligated with Y-shaped adaptors, and amplified using PCR with
KAPA HiFi polymerase (KAPA BIOSYSTEMS, Boston, MA, USA).

After PCR amplification with adapter-specific primer pairs (Access Array Barcode
Library for Illumina, Fluidigm, South San Francisco, CA, USA), an equal amount of
DNA from each sample was mixed and size-selected with BluePippin 2% agarose gel
(Sage Science, Beverly, MA, USA). Approximately 450 bp library fragments were retrieved.
The quality of the library was checked using KAPA Library Quantification Kits on a Light-
Cycler 480 Instrument (Roche, Basel, Switzerland). Finally, nucleotide sequence libraries
were sequenced using a high-throughput Illumina Hi-Seq X Ten platform (Macrogen, Inc.,
Seoul, Republic of Korea) to generate 150 bp long paired-end reads.

All individuals genotyped in this work were sequenced using the Illumina Hi-Seq X
Ten platform. The resulting raw reads were processed using the dDocent v.2.9.4 pipeline [44]
followed by quality trimming (Trimmomatic v.0.33) [45], de novo assembly to create ref-
erence reads (CD-HIT v.4.6.6), read mapping (BWA mem v.0.7.12) [46], and SNP calling
(FreeBayes v.0.9.20) [47]. Filtering was performed using VCFtools [48], and finally, un-
natural SNPs were removed based on the parent–offspring relationships described in the
available breeding records based on microsatellite markers.

2.5. SNP-Based Pedigree Reconfirmation in Tree Breeding Programs

This study reconfirmed breeding records by paternity testing using CERVUS v.3.0 [49,50]
based on SNP data from 900 randomly selected loci. First, G2 clones (101 clones) with
records of artificial mating were assumed to have no records. Next, paternity testing was
performed using CERVUS with all G1 clones (47 clones) as candidate parents. CERVUS
is a pairwise likelihood comparison approach that calculates likelihood scores for each
candidate parent–offspring pair. A “parent pair-sexes unknown” analysis was performed in
CERVUS to find the most likely female and male parents for each offspring; parentage was
considered confirmed if the LOD score was positive with an allele mismatch percentage
below 1%. For paternal assignments, we determined significance using the delta score,
which is the difference in LOD scores between the most likely and second most likely
candidate parent pairs. The critical delta score to assign parentage with 95% confidence
was determined by simulating 10,000 offspring, assuming that the genotyping error rate
was 1% and about 50% of candidate parents were sampled.

2.6. Pedigree-Based Prediction Using Mid-Parent Values

In the traditional pedigree-based approach, the clonal values of G2 clones are predicted
to equal the mean of the parental breeding values. Therefore, in the absence of phenotype
data, this approach predicts the same clonal value (known as the mid-parent value) for
all offspring within a full-sib family [51]. The predicted clonal value of the offspring is
obtained from the mean of the parental breeding values for the G1 trees. This would
require phenotypic data of the complete set of 8500 G2 seedlings tested. However, the
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seedling population has now been drastically reduced, and parental information could not
be recovered. Because the recent research in C. japonica breeding has shown that clonal
value could potentially be used as a proxy for the breeding value [52], the present study
utilized the parental clonal value for the prediction of the clonal value of the offspring. To
obtain the mid-parent value, the parents and their clonal values for the traits of interest
must be known. A total of 87 of the G2 clones satisfied these requirements for tree height,
72 for wood stiffness, and 92 for male flower quantity. Predictive accuracy based on
pedigree relationships in G2 clones was determined by calculating the Pearson’s correlation
coefficient between the mid-parent value and the actual clonal value.

2.7. Bayesian GP Models and Genome Estimated Clonal Values (GECVs)

GECVs were obtained using five different Bayesian genome-wide regression models
for the three traits of interest. These models were designated BayesA, BayesB, BayesCπ,
Bayesian lasso (BL), and Bayesian ridge regression (BRR). All of them were implemented
in the BGLR package [53,54] of the R platform [38].

To estimate the parameters of each model, 200,000 MCMC iterations were performed
with a burn-in period of 50,000 cycles, retaining every fifth sample. Five-fold cross-
validation was then used to evaluate each model’s predictive accuracy. Finally, each
model’s GP accuracy was determined by calculating the Pearson’s correlation coefficient
between the GECVs and the corresponding clonal values.

2.8. Cross-Validation Sampling Methods and Prediction Accuracy

The accuracies of the statistical models were compared using two methods. First, all
clones were split into five sets for 5-fold cross-validation. Random sampling of the G1 and
G2 clones was used to ensure that both G1 and G2 clones were represented in each set. In
detail, since there are 142–148 clones (tree height: 142 clones, wood stiffness: 145 clones,
male flower quantity: 148 clones) in total, each of the five sets consisted of 28–30 clones,
and cross-validation was performed by about 120 clones for training and about 30 clones
for validation.

Second, to investigate the impact of intergenerational kinship on predictive accuracy,
the G1 clones were divided into two groups: “G1_parent”, comprising parent of G2
clones, and “G1_unrelated”, comprising clones with no offspring in G2. Each G1 group
was then combined with the full set of G2 clones to form two groups, one containing
parents and their offspring (G1_parent + G2) and the other with no parental relationships
(G1_unrelated + G2). We next performed 5-fold cross-validation within the groups after
randomly dividing each group into five sets as in the first method. The GP accuracy of
difference sampling was determined by calculating the Pearson’s correlations between the
GECVs and the clonal values obtained by cross-validation sampling. For each trait, the
model found to have the highest predictive accuracy when using the first method (which
neglects intergenerational relationships) was then tested for predictive accuracy in the
second method (which incorporates the effects of intergenerational relationships).

3. Results
3.1. Relationships between Phenotypic Traits

Figure 3 shows the comparison of clonal values between generations in each trait
and the correlations between the clonal values for tree height, wood stiffness, and male
flower quantity. For tree height, the clonal value of G2 significantly exceeded that of G1
(t = −10.4, p = 2.2e − 16). However, there were no significant intergenerational differences
in wood stiffness (t = −0.08, p = 0.93, ns) or male flower quantity (t =−1.71, p = 0.09, ns). The
Pearson’s correlation coefficients between the traits revealed weak correlations between
tree height and wood stiffness (r = 0.24, p < 0.05) and between tree height and male flower
quantity (r = 0.28, p < 0.01). There was no correlation between wood stiffness and male
flower quantity (r = 0.12, p = 0.17, ns).
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Figure 3. Scatter plots (lower diagonal), histograms (diagonal), and correlations (upper diagonal)
showing the relationships between the clonal values for tree height, wood stiffness, and male flower
quantity. Data for G1 and G2 clones are shown in pink and blue, respectively. Correlations in the
figure are between traits considering all data (G1 and G2 combined).

3.2. Genotypic Data and SNP Discovery

Sequencing was performed successfully for every sampled individual from the
148 clones using the Illumina Hi-Seq X Ten platform. A total of 904 million reads
(904,372,436 reads) corresponding to 79.86 Gb of sequence data were obtained, with an
average of 6.11 million reads (6,110,625 reads) per sample. The raw reads were subjected to
quality trimming, de novo assembly to create reference reads, and read mapping before SNP
calling. The first filtering step using VCFtools enabled successful genotyping of over 50% of
the sampled individuals using the following settings: maximum missing parameter = 0.5,
minimum number of alleles = 3 (mac 3), minimum quality score = 30 (minQ 30), and
minimum sequencing depth per SNP and individual = 3 (minDP3). After this process,
70,743 SNPs were retained as genotypic differences for GP analysis.

To maximize the number of individuals and loci in the final dataset, filtering was
performed by applying the following criteria: calling rate > 95%, minor allele frequency
(MAF) < 0.05, and minDP < 20. This reduced the total number of SNPs to 23,847. Filtering
loci by heterozygous allele balance and the proportion of individual missing data per locus
then reduced the total number of SNPs to 10,578. Finally, in 1914, unnatural SNPs were
removed based on the parent–offspring relationships described in the breeding records,
resulting in a total of 8664 SNPs retained for GP analysis.
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3.3. Pedigree Reconfirmation

Parentage information for 101 clones in G2 was checked using CERVUS v.3.0
(Table S5). Among the 202 parents of the 101 G2 clones, nine could not be assigned
to any of the 47 G1 clones used as candidate parents. All of the remaining 193 parents were
successfully assigned to a G1 clone (Figure 4a).
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Figure 4. (a) Number of offspring in G2 per parent (G1_Parent). G1_Parent clones labeled “unknown”
on the x-axis represent parents who were not assigned to any G1 clone by the CERVUS v.3.0 software.
(b) Histogram of full-sib family size in G2.

As regards the pedigree relationships between G1 and G2, 21 G1 clones were parents
of G2 clones, and the parent with the most offspring had 28 G2 clones (mean = 9.19 clones).
The most frequent full-sib family size was three (13 full-sib families), and there were
28 clones with no full-sibs (Figure 4b).

3.4. Genomic Prediction and Comparison of Models for the Three Traits

The predictive accuracies of the statistical models used for GP were compared for each
of the three traits of interest (Table 2 and Table S6). The lowest predictive accuracy was
achieved for male flower quantity: the predictive accuracy for this trait was lower than that
for tree height by 0.06–0.15 and that for wood stiffness by 0.05–0.11. The models with the
highest predictive accuracy for each trait differed: BRR was most accurate for tree height
(r = 0.60), BayesA for wood stiffness (r = 0.57), and BayesB for male flower quantity (r = 0.48).

Table 2. Predictive accuracies achieved using genomic data (5 methods) and pedigree data (mid-
parent values).

Trait Model N r (SE)

Tree height

Genomic prediction
BayesA 142 0.57 (0.03)
BayesB 142 0.59 (0.04)
BayesC 142 0.52 (0.05)

BL 142 0.54 (0.04)
BRR 142 0.60 (0.05)

Mid-parent value 87 0.15

Wood stiffness

Genomic prediction
BayesA 145 0.57 (0.01)
BayesB 145 0.56 (0.03)
BayesC 145 0.52 (0.07)

BL 145 0.51 (0.05)
BRR 145 0.50 (0.05)

Mid-parent value 72 0.46
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Table 2. Cont.

Trait Model N r (SE)

Male flower quantity

Genomic prediction
BayesA 148 0.46 (0.06)
BayesB 148 0.48 (0.06)
BayesC 148 0.46 (0.05)

BL 148 0.45 (0.05)
BRR 148 0.45 (0.05)

Mid-parent value 92 0.03

Values in bold are the highest predictive accuracy for each of the three traits.

3.5. GECVs vs. Pedigree-Based Prediction Using the Mid-Parent Value

GECVs achieved greater predictive accuracy than the traditional approach using the
mid-parent value for all traits (Figure 5, Table 2). This outcome was especially pronounced
for tree height and male flower quantity: the predictive accuracy of GP exceeded that of
the pedigree-based approach by 0.37–0.45 and 0.42–0.45, respectively, for these two traits.

The relationship between the GECV and the mid-parent value based on full-sib families with
three or more siblings is shown in Figure 6. Traditional pedigree-based methods rely on averaging
the clonal values of the parents and thus produce a single predicted value for all siblings, whereas
the genomic marker-based GECV generates unique predictions for each sibling.
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Figure 5. The predictive accuracy (r) of genomic estimated clonal values (GECVs) (left figure) and
the mid-parent value, i.e., the mean of the clonal values of the two parents (right figure). The line
y = x is plotted in black. The GECVs for each trait were calculated using the model shown to be most
accurate for that trait by cross-validation, i.e., BRR for tree height, BayesA for wood stiffness, and
BayesB for male flower quantity (see Table 2). The values on the x-axis are the same for all upper
graphs, and the y-axis is also the same on the left and right. The GECV in the left graph includes the
first generation in the prediction due to cross-validation. The graph on the right only includes the
second generation as a predictor.
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Figure 6. Scatter plots of genomic estimated clonal values (GECVs) and predictions based on pedigree
(mid-parent value) for tree height (top), wood stiffness (middle), and male flower quantity (bottom)
in clones from different full-sib families. GECVs based on genomic prediction are plotted on the
vertical axis, and pedigree-based mid-parent values are plotted on the horizontal axis. Results for
full-sibs from the same family are plotted in the same color circles. The mid-parent values of full-sibs
are expected to be identical, whereas the GECVs of full-sibs are unique. The most accurate models
for each phenotype were used (see Table 2).

3.6. Impact of Intergenerational Relationships

Predictive accuracy was determined for a parent–offspring group (G1_parent + G2)
and a group without parental relationships (G1_unrelated + G2) (Table 3 and Table S7).
Tree height and male flower quantity were predicted more accurately (by 0.21 and 0.15,
respectively) for the groups without parental relationships (G1_unrelated + G2). Conversely,
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wood stiffness was predicted more accurately (by 0.05) for the parent–offspring group
(G1_parent + G2).

Table 3. Impact of intergenerational kinship on the accuracy of genomic prediction.

Trait Model

G1_parent + G2 G1_unrelated + G2

N N

Total G1 G2 r (SE) Total G1 G2 r (SE)

Tree height BRR 116 21 95 0.44 (0.06) 121 26 95 0.65 (0.05)
Wood stiffness BayesA 119 18 101 0.53 (0.03) 127 26 101 0.48 (0.05)

Male flower quantity BayesB 122 21 101 0.37 (0.05) 127 26 101 0.52 (0.08)

G1_parent: G1 clones with G2 offspring. G1_unrelated: G1 clones that left no offspring in G2. For each trait, the
model providing the highest accuracy over the full dataset was used (see Table 2).

4. Discussion
4.1. Impact of Selection on the Three Traits

With regards to tree height, the clonal value for G2 determined in the clonal test site
exceeded that for G1, demonstrating the effect of selecting G2 plus trees from a seedling
population of about 8500 individuals based on height measurements at a tree age of
approximately 10 years. However, the intergenerational comparison revealed no effect of
selection on wood stiffness or male flower quantity.

The GP results for tree height constitute one of this work’s most important con-
tributions because there are few reported examples of GP being applied to trees from
two-generation clonal populations [12] and none where the populations were subjected to
intense selection between generations.

4.2. Most Accurate GP Models for the Three Traits

The finding that the optimal prediction models for each trait differed may indicate
that the relationship between traits and genetic information is trait dependent [9]. The
fact that the BRR model most accurately predicted tree height is consistent with previous
reports that this trait is influenced by many weakly effective loci [10,54]. As wood stiffness
is said to be heritable [55], it was expected to be most accurately predicted by the BayesA
model [1,56]. Male flower quantity was predicted most accurately by the BayesB model,
which may suggest that it is controlled by a small number of loci, unlike the other two
traits [4,57]. The maximum differences in prediction accuracy among the models were
0.08, 0.07, and 0.03 in tree height, wood stiffness, and male flower quantity, respectively. In
summary, selecting the appropriate model for the trait of interest seems to be important for
improving predictive accuracy when using GP, although the differences between models
were often small [10,11]. At present, it may be best to compare the accuracy of several GP
models for different traits before choosing a model to adopt.

4.3. GP vs. Pedigree-Based Prediction

The GECV had a higher predictive accuracy than the mid-parent value, suggesting
that it can be a more effective breeding tool than prediction based on pedigree data [8,9].
This may be because the G2 plus trees examined in this work were from a population of
full- and half-sibs with strong kinship, which should enhance the predictive accuracy of
GP [13,14,58].

Furthermore, the traditional pedigree-based approach using mid-parent values pro-
vides a single prediction for all full-sibs within a family [51], whereas the marker-based
GECV generates unique predictions for each full-sib. This could be taken to mean that
GP models the phenomenon of Mendelian segregation [59]. If GP can correctly capture
the Mendelian sampling effect, it could significantly improve the outcomes of breeding
programs while also reducing the time needed for forward selection [7,8].
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4.4. Impact of Across Generations

Contrary to expectations, wood stiffness was the only trait more accurately predicted in
the group with parent–offspring relationships. Wood stiffness shows a high heritability [55],
which increases the predictive accuracy of GP [56]. In other words, wood stiffness is an
easy trait to predict from parental information. Therefore, accurate evaluation of parental
clonal values for this trait is important for efficient breeding.

Conversely, tree height was predicted more accurately for the groups without parent–
offspring relationships. This trait was subject to intense selection pressure when the G2 plus
trees were selected from the population of G1 offspring, which would not be a problem if
GP only detected associations with specific loci associated with trait information. However,
in reality, it also uses associations with pedigree information, which affects predictive
accuracy [29]. Hence, when targeting a population that has been selected and is expected
to be strongly affected by dominance and epistatic components of non-additive effects,
the kinship between the training and predicted populations should be considered [59].
Furthermore, the use of a GP model including these non-additive effects is reported to
improve the accuracy of predictions [60,61].

Male flower quantity in C. japonica is a highly heritable trait [62] that is more easily
predicted by GP than tree height or material quality [17]. However, the present results
show that male flower quantity was more accurately predicted in the group without parent–
offspring relationships between generations, even though this trait was not subjected to
anthropogenic selection pressure. These discrepancies may be due to limitations on the
accuracy of the clonal values based on field survey data. Male flower quantity differs
from other traits in that it requires continuous surveys over multiple years to accurately
determine each tree’s potential for male flower production, and the survey results used
in this work were based on observations made over different periods for different groups
(G1: 1988~1997, G2: 2008~2013). In addition, this trait is difficult to measure and is most
accurately measured when surveyed by multiple people [63]. The correlation between
clonal values and mid-parent values was also low for male flower quantity. Therefore,
certain full-sib families have unnaturally large deviations from the relationship between
the GECV and mid-parent value (for example, the full-sibs in the bottom row of Figure 6,
which had the highest GECV for this trait but the lowest mid-parent value) should be
re-examined to identify potential assessment errors. Much of the discussion about GP has
focused on the benefits of using the vast quantities of genetic information provided by NGS
technologies, but it is important to recall that it is also fundamentally dependent on reliable
trait information, so compiling accurate trait information remains as important as ever [64].
One benefit of using GP is that it can reveal anomalies in trait information such as those
mentioned above.

4.5. Application of Genomic Prediction in C. japonica Breeding

We found that prediction of phenotypic traits (tree height, wood stiffness, male flower
quantity) using genome-wide SNPs from clonal tests was more accurate than traditional
pedigree-based prediction. This suggests that GP can improve the breeding efficiency of
C. japonica by applying the clonal test results. This indicates that the clonal test would
be essential in clonal forestry areas. Furthermore, the clonal tests could provide early
validation of GP results by analyzing juvenile–mature correlations and environmental
effects based on data from first- and second-generation clonal test sites beyond 30 years of
age. The combination of traditional clonal tests with the new technology of GP would set
the standard for C. japonica breeding, as it would save a great deal of time and cost while at
the same time increasing the accuracy of the tests.

5. Conclusions

This study underscores the potential of genomic prediction (GP) in enhancing
C. japonica breeding programs, especially with cloned populations. Key findings include:
(1) GP consistently outperforms traditional pedigree-based predictive methods, especially
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when equipped with precise trait and pedigree data from clonal testing. (2) The enhanced
accuracy of GP is largely due to its proficiency in capturing Mendelian sampling effects.
(3) Implementing forward selection based on GECVs can address challenges in forest
tree breeding arising from their extended lifespans and the time lag in trait measurement
across generations. (4) While our research spotlights the merits of using GP across two
generations, it also highlights potential pitfalls. Specifically, while DNA encodes both traits
and pedigree information, ensuring continuity across generations, the parent–offspring
kinship can reduce prediction accuracy under selective breeding conditions. (5) In sum-
mation, GP emerges as a promising tool for forest tree breeding, provided predictions are
astutely validated and interpreted considering the genetic backdrop and trait specifics of
the targeted population.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f14102097/s1, Supplementary Materials S1: Method of
deriving clonal values for trait of tree height. Supplementary Materials S2: Method of deriving clonal
values for trait of wood stiffness. Supplementary Materials S3: Method of deriving clonal values for
trait of male flower quantity. Figure S1: (a) Tree height at age 10 years in the clonal test site, (b) Spatial
autocorrelation residuals. Background maps are red relief image maps. Figure S2: Methods for
measuring the wood stiffness of lumber products (2000 × 38 × 89 mm) using FFT analyzer. Table S1:
Numbers of clones and individuals surveyed and phenotyping ages used to estimate clonal values
for each trait. Table S2: Numbers of individuals and mean tree heights in 6 clonal test sites used to
calculate clonal values for tree height. Table S3: Number of individuals or lumber pieces and mean
values per clone used to calculate clonal values for wood stiffness. Table S4: Numbers of individuals
and mean male flower index survey scores per clone used to calculate clonal values for male flower
quantity. Table S5: Results of a parent–child analysis performed with Cervus 3.0 using 900 SNPS
markers. Table S6: Five-fold cross-validation test results for the population consisting of G1 and G2.
Table S7: (a) Five-fold cross-validation test results for the population consisting of G1_parent and G2,
(b) Five-fold cross-validation test results for the population consisting of G1_unrelated and G2.
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