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Abstract: Implementing adaptation and mitigation strategies in forest management constitutes a
primary tool for climate change mitigation. To the best of our knowledge, very little research so
far has examined light detection and ranging (LiDAR) technology as a decision tool for operational
cut-tree marking. This study focused on investigating the potential of airborne LiDAR data in en-
hancing operational tree marking in a dense, multi-layered forest over complex terrain for actively
supporting long-term sustainable forest management. A detailed tree registry and density maps
were produced and evaluated for their accuracy using field data. The derived information was
subsequently employed to estimate additional tree parameters (e.g., biomass and tree-sequestrated
carbon). An integrated methodology was finally proposed using the developed products for sup-
porting the time- and effort-efficient operational cut-tree marking. The results showcased the low
detection ability (R2 = 0.15–0.20) of the trees with low DBH (i.e., regeneration and understory trees),
while the dominant trees were accurately detected (R2 = 0.61). The stem biomass was accurately
estimated, presenting an R2 of 0.67. Overall, despite some products’ low accuracy, their full and
efficient exploitability within the aforementioned proposed methodology has been endeavored with
the aim of actively contributing to long-term sustainable forest management.

Keywords: sustainable forest management; tree registry; harvesting; cut-tree marking; remote
sensing; LiDAR data; tree detection

1. Introduction

Forests’ existence and health strongly depend on climate change and its’ ever-increasing
global impacts [1]. The elevated temperature and reduced precipitation affect forest growth
and productivity while increasing the occurrence and intensity of extreme wildfires, which
result in additional loss of forest cover worldwide [2]. Scientific predictions suggest that
global warming and subsequent severe drought will have further catastrophic impacts on
forest ecosystems [3]. In addition, it is widely recognized that climate change mitigation
cannot be accomplished without the contribution of forests since they constitute a large
carbon sink, storing 90% of the total carbon (C) in natural terrestrial ecosystems [4]. As
such, climate change’s speed makes implementing adaptation and mitigation strategies
in forest management highly important [5]. In fact, sustainable forest management is a
primary tool for forest conservation and, consequently, preserving an environment suitable
for human life.

An integral part of sustainable forest management is the forest management plan,
conducted for a given forest area every 5 to 20 years [6]. Forest inventory is the first step
for creating a comprehensive forest management plan [7] and is used—among others—for
cut-tree marking (i.e., marking of trees to be harvested), a vital activity defining the forest
management success and, thus, the future stand development [8,9]. Traditionally, selective
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tree marking, applied to multi-layered forests, is performed through labor-intensive and
time-consuming fieldwork, including walking through the forested area to measure and
identify the trees suitable for harvest. The typical tree-marking measurements include the
diameter at breast height (DBH) and height estimation, which can be directly transformed
into volume or biomass using allometric equations [10]. The difficulty in obtaining the
necessary field-based information further increases in case areas of intense topography
require inspection.

The use of remote sensing technology has provided an alternative solution for monitor-
ing the forest environment and constitutes a valuable tool for developing forest inventories
worldwide [11–13]. Light detection and ranging (LiDAR) sensors are successfully employed
for this task since they can penetrate forest canopies and provide a three-dimensional rep-
resentation of the Earth’s surface and its’ objects. Several studies have focused on using
airborne laser scanning (ALS) data for accurate forest tree detection, leading to highly
accurate results [14–19]. Actually, the ability of ALS-derived data to accurately identify
tree tops and heights has provided researchers with the possibility to employ the tree
detection results as reference/validation data [20]. Therefore, LiDAR technology enables
the generation of a detailed tree registry over an entire forest area, providing accurate
positional information on each individual tree. Except for the efficient cut-tree marking, the
precise geographical location and height of ALS-detected trees constitute a fundamental
source of information for the estimation of additional, vital for sustainable management,
tree attributes, such as the diameter at breast height (DBH), the tree biomass (e.g., foliage
and branches biomass), the tree sequestrated carbon and the potential surface fuel load
(SFL, the dry weight of woody and non-woody organic material potentially created in case
of logging a tree) [14,21,22]. As such, forest managers can use the additional estimated tree
parameters to further assess the carbon- and SFL-related ecological impacts arising from
each harvesting activity.

Despite the advantageous capabilities of LiDAR over other sensor types (e.g., optical
and synthetic aperture radar (SAR)), high tree detection accuracy is not always a given. In
fact, the effectiveness of forest tree detection through ALS data is inextricably linked to the
LiDAR point cloud density and forest vegetation type and structure [23,24]. For instance,
ALS-based tree detection has been proven to be more accurate in coniferous stands than in
deciduous ones, while complex forest structures characterized by the intense presence of
understory vegetation, high overstory tree density, or intense topography can significantly
hinder the efficient detection of single trees [14,24]. Therefore, existing relevant research has
been mostly conducted in specific parts of single-layered forests, plantations, or terrain of
low relief, where forest conditions allow reliable identification of tree tops [14,17,20,23,25].

Although cut-tree marking activities play a pivotal role in the comprehensive man-
agement of forests at a global level, to the best of our knowledge, very few researchers
have examined LiDAR data potential as a decision tool for operational cut-tree marking
activities. The work of Contreras et al. (2012) constitutes a typical example of such appli-
cation, where the effectiveness of thinning treatments was evaluated through modeling
of tree-level fuel connectivity using LiDAR technology with the aim of reducing crown
fire potential [26]. The developed methodology was demonstrated using an ALS-derived
stem map, and according to the authors, it can form the basis for further research and
applications within the framework of sustainable forest management. In addition, in 2013,
Contreras and Chung developed a computerized approach for optimizing tree removal
information derived from ALS data [27]. In this work, the aim of the ALS data application
also included the reduction of crown fire potential, which, according to the results, can be
achieved by employing the proposed developed methodology.

In order to fill the abovementioned literature gaps, the aim of the present study was
to investigate the potential of LiDAR technology in enhancing operational tree marking
activities in a dense coniferous forest characterized by uneven-aged structure and intense
terrain for the purpose of actively supporting sustainable forest management in the long-
term. The present study constitutes among the first known endeavors to employ ALS-
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derived information for developing a tree registry covering an entire forest area to support
sustainable forest management activities at an operational level.

More specifically, we developed a detailed ALS-derived tree registry and tree density
maps covering the entire extent of the forest. The products were validated for their accuracy
using field measurements and incorporated into an integrated methodology for time- and
effort-efficient cut-tree marking. The information provided by the produced tree registry
was subsequently employed for the estimation of the total and the tree components’ (i.e.,
stem, foliage, branches, bark, and deadwood) biomass, the tree sequestrated carbon, and
the potential total, woody and non-woody SFL, which are essential for forest and fire
management planning as well as for climate change mitigation.

2. Materials and Methods
2.1. Study Area

The study area is the Pertouli University Forest, located in the Pindos Mountain Range
of Central Greece (latitude 39◦32′–39◦35′ and longitude 21◦33′–21◦38′) (Figure 1). The forest
is managed by the Aristotle University of Thessaloniki and serves research and educational
activities. The altitude of the area ranges between 1100 m and 2073 m above mean sea level,
and the climate is characterized as transitional, Mediterranean-Mid-European (i.e., rainy,
cold winters and dry, warm summers). The forest occupies an area of 3296.59 ha, most
of which (i.e., 2427.62 ha) is covered with pure natural hybrid Abies borisii regis (Abies alba
Mill. X Abies cephalonica Loud.) stands. This species forms a tall, coniferous, uneven-aged
structured forest with a dense understory due to its shade-tolerant properties. A total
of 130.74 ha of the remaining area is covered by non-vegetated areas within the forest,
555.40 ha by mountain pastures, 114 ha by lowland grasslands, and 68.83 ha are occupied
by agricultural areas and settlements.
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2.2. Dataset Description
2.2.1. Airborne LiDAR Data

The remote sensing data employed in the present study are composed of ALS-derived
point clouds covering the entire area of the Pertouli University Forest. In particular, the
ALS data were acquired in October of 2018 using a RIEGL VQ-1560i-DW laser scanner
(RIEGL Laser Measurement Systems GmbH, Riedenburgstraße 48, A-3580 Horn, Austria)
mounted on an airplane at an average altitude of 2243 m above the terrain. The point cloud
is characterized by a very high point density (i.e., approximately 83 points/m2), a pulse
spacing of 0.13 m, and a ground-to-total returns percentage of 27% (i.e., 24 points/m2). In
addition, aerial photographs were acquired using a Phase One IXU_1000RS (Copenhagen,
Denmark) with a Rodenstock 50 mm (Munich, Germany) sensing (i.e., a spatial resolution
of 10 cm) simultaneously with the ALS data over the entire study area.

2.2.2. Ground Inventory Data

The in situ data were collected in October 2019 by measuring specific variables of
individual fir trees, including the diameter at breast height (DBH), the tree height, and the
crown radius. In particular, the DBH of each tree was measured using a Haglof Mantax
Blue caliper, while the measurements of the tree heights included the use of a Blume–Leiss
altimeter. Given the precision (i.e., 0.5 m) of the Blume–Leiss altimeter and potential
measurement errors of random nature (e.g., leaning trees or branches obscurement due
to dense canopy), the tree height was measured at least three times for each tree, and
the average value was set as reference [28]. The crown radius was recorded using a laser
distance meter (i.e., Leica Disto D2) through the radius measurement across the four main
axes of each tree. The final crown radius for each individual tree was calculated using the
arithmetic mean of all four measured radii. As a result, a total of 300 trees were registered,
and their data were homogenized for further analysis. It is worth mentioning that the
selected trees were representative samples characterized by different social statuses and
attributes. The aforementioned field data were used to apply the methodology described
in Section 2.3.

Additionally, positional measurements were conducted during the same time period
in 38 sample plots of 1000 sq. m. each (rectangle 40 m × 25 m) covered by pure dense Abies
borisii regis stands. In particular, the locations of the plots’ corners were recorded using a
handheld GNSS with an average horizontal positional accuracy of 3 m. The specific plot
dimensions are based on the sampling method applied for managing the forest, one of the
two methods (fixed-area plots of size 40 m × 25 m or Bitterlich plots) employed for the
forest management plans development in Greece. These plot measurements were used for
the accuracy assessment of the generated products.

2.3. LiDAR Data Processing

The methodology employed in the present study was composed of two processing
parts. The first one includes the ALS data processing for the generation of a detailed
tree registry for the entire study area, including the height and DBH information for each
individual tree, as well as four tree density maps at 50 m resolution, providing the number
of all trees and the number of trees characterized by three different DBH classes (i.e.,
class 1: ≤20 cm, class 2: 21–34 cm, and class 3: ≥35 cm). In accordance with common
forest practice, the information provided by the aforementioned products is essential for
conducting all activities related to cut-tree marking [29].

The second part of the employed methodology refers to estimating additional tree
parameters using the information provided by the tree registry (i.e., tree height and DBH).
These tree parameters include the total stem, bark, foliage, branches, and deadwood tree
biomass, the sequestrated carbon, and the total woody and non-woody potential SFL. The
estimated information is essential for forest and fire managers to evaluate carbon and
SFL-related ecological impacts after each harvesting activity.
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The workflow of the entire methodology is presented in the following flowcharts
(Figures 2 and 3).
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2.3.1. Tree Registry Generation

The ALS point cloud was initially filtered for noise removal with the statistical outliers
removal algorithm using the default parameters [30]. According to this method, points
having more than three times the standard deviation of the cloud’s average distance were
removed [31]. The points of the filtered cloud were labeled as ground and non-ground using
the cloth simulation algorithm [32]. Subsequently, the ground points were interpolated
using the k-nearest neighbor approach with an inverse distance weighting, constructing
the digital terrain model (DTM) [33]. The produced DTM was eventually used to eliminate
the terrain effects, resulting in a height-normalized point cloud.

The canopy height model (CHM) was generated using the pit-free algorithm, signifi-
cantly improving the tree detection accuracy in high- and low-density ALS point clouds [34].
In addition, morphological erosion with a cross-shaped structuring element was applied to
enhance the severability of all trees due to the complex canopy structure. The resolution
of both rasters (i.e., DTM and CHM) was set to 0.5 m, which was defined based on the
nominal point spacing of the ALS data [35].

Although a handful of methods have been developed for tree detection [15,36–39],
most studies rely on local maxima detection of CHM. More specifically, a moving window is
used to determine the positions and height of the detected trees based on the local maxima
filter. The window size was set to 5.75 m, two times the average crown radius measured in
the field. Each tree’s position (i.e., X, Y coordinates and altitude) and height were stored,
while the detected tree tops below three meters in height were removed from the produced
tree registry.

2.3.2. Tree Registry Evaluation and Manual Correction

Following the generation of the tree registry for the entire Pertouli University Forest,
the product was visually inspected and manually corrected wherever required. In particular,
aerial photographs of very high spatial resolution (i.e., 10 cm), acquired simultaneously
with the ALS point cloud, were employed to inspect the developed tree registry and its’
modification. The detected errors originated from the presence of rocks, buildings, pillars,
cables, and other artificial surfaces, wrongly considered trees by the employed tree detection
algorithm. Therefore, the points (i.e., tree tops) generated over the aforementioned areas
were removed from the tree registry. Figure 4 illustrates a typical example of an area where
several points were wrongly created over artificial surfaces and subsequently removed for
the generation of the final product.
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Finally, the corrected tree registry was subset to the boundaries of the Abies borisii
regis-covered area.

2.3.3. Height to DBH Conversion Equation

The next processing step included the incorporation of the DBH into the produced
tree registry, which constitutes one of the most vital pieces of information to be provided
to the local forest managers during the cut-tree marking period. Given the limited ability
of ALS to detect stems and provide direct DBH measurements, a log-transformed linear
model was developed (Equation (1)) to derive the DBH from each detected tree, using the
tree height and DBH data collected on the field.

ln(DBH) = ai + bi × ln(H) + εi (1)

where DBH is the diameter at the breast height of each tree, a and b are the intercept and
scaling coefficient, respectively, and ε is the residual error.

The constructed allometric equation was applied to each tree included in the developed
tree registry using the already incorporated tree height information. The resulting DBH
was finally integrated into the tree registry to generate the final product. The prediction
performance of the constructed allometric equation was evaluated based on the relative
square error (RSE), R2, and adjusted R2 (adjR2).

2.3.4. Estimation of Tree Parameters

A set of allometric equations, developed by Georgopoulos et al. [22,24], was employed
to calculate total and tree components’ biomass. The aforementioned equations were
specifically developed for fir species, using each tree’s DBH and height to estimate each
individual’s stem, bark, branches, and needles biomass. Although tree volume is identified
as the main decision factor for cut-tree marking activities, biomass, and sequestered carbon
are considered the most important parameters in sustainable and adaptive forest manage-
ment [40]. Therefore, a series of biomass and carbon-related parameters (i.e., sequestered
carbon, potential SFL, potential woody SFL, and potential non-woody SFL) was estimated
for each tree, providing valuable information about the carbon stock emissions and the
ecological impact of the harvesting activities in the ecosystem.

The total SFL represents the full weight of the harvesting residues that will potentially
remain in the forest, and it is estimated as the sum of all biomass components except
the stem. In addition, the SFL was further discriminated into woody and non-woody,
referring to the woody biomass components (bark, branches, deadwood) and foliage,
respectively. Finally, the sequestered carbon for each tree was calculated by multiplying
the total aboveground biomass by the carbon conversion factor (i.e., 0.5).

2.3.5. Tree Density Maps Generation

The last part of the analysis process included the generation of four tree-density
products, which provided additional necessary information to the forest manager and
field worker during cut-tree marking. Initially, the number of trees was calculated per
50 m × 50 m grid resolution using the developed tree registry, leading to the generation of
the general tree density map. Next, the calculation of the number of trees was performed
using the DBH information included in the registry. As a result, three additional products
were produced, each of which included the number of trees belonging to one of the three
DBH classes (i.e., class 1: <20 cm, class 2: 21–34 cm, and class 3: >35 cm) on a 50 m × 50 m
grid resolution.

2.3.6. Accuracy Assessment

Quantitative accuracy assessment was performed for all four tree density maps and
the stem biomass estimations, derived from the tree registry information (i.e., height and
DBH) and applying an existing allometric equation [24]. On the contrary, since the tree
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registry product was thoroughly examined and manually corrected, its validation was not
considered necessary at this point.

The reference data employed for the accuracy evaluation of the general tree density
map include the GPS measurements of the 38 plot boundaries (as described in Section 2.2.2)
as well as the forest management plan for the year 2018. Each plot’s boundaries were used
to delineate the respective boundaries on the tree registry. Next, the number of trees in total
and per DBH class was calculated based on the tree tops included within each delineated
plot. The resulting tree number and the estimated stem biomass per tree were compared
with the respective parameters provided by the forest management plan.

In particular, three standard goodness-of-fit metrics were calculated for the quanti-
tative assessment of the products’ performance, namely the coefficient of determination
(R2) (Equation (2)), the adjusted coefficient of determination (Adj.R2) (Equation (3)) and the
relative squared error (RSE) (Equation (4)).

R2 = 1−∑n
i=1(yi − xi)

2/∑n
i=1

(
yi −

−
y
)2

(2)

Adjusted R2 = 1−
(
1− R2)(N − 1)

N − p− 1
(3)

RSE = ∑n
i=1(yi − xi)

2/∑n
i=1

(
yi −

−
y
)2

(4)

where yi is the observed value for plot i, xi is the estimated value for plot i,
−
y is the mean

observed value, and n is the number of plots.

3. Results

In the present work, we employed ALS data covering a dense, uneven-aged structured,
coniferous forest to generate products essential for operational cut-tree marking activities
to actively support long-term sustainable forest management. Specifically, five products
were generated in accordance with the needs of the local forest managers responsible for
the related field work in our study area. The products include a tree registry of the forest
covered by the Abies borisii regis species, a tree density map of a 50 m resolution as well
as three additional density maps illustrating the number of trees of the individual DBH
classes (i.e., class 1: ≤20 cm, class 2: 21–34 cm, and class 3: ≥35 cm) on a 50 m × 50 m grid
resolution. Finally, we propose a workflow (described in detail in Section 4) for practically
employing the generated products during and post-cut-tree marking activities.

3.1. Height to DBH Allometric Equation

Table 1 presents the results of the allometric DBH estimation model. The statistical
measures considered to evaluate the equation’s performance include RSE, R2, and adjR2,
which were calculated to be 0.2, 0.88, and 0.88, respectively (Table 1).

Table 1. Parameters, residual standard error (RSE), R2, adjusted R2, and p-values for the DBH
estimation based on the tree height. Parameters a and b are the intercept and the scaling
coefficient, respectively.

Equation Parameters RSE R2 AdjR2 p-Value

Tree Height
to DBH

a = −4.01594
b = 1.06188 0.1956 0.8834 0.8795 1.53 × 10−15

3.2. Tree Registry and Tree Density Maps

The products derived from the ALS data analysis are presented in Figures 5–9. The
produced tree registry was initially composed of 882,771 individuals, including all forest
species. However, since selective tree logging in our study area is performed only on the
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Abies borisii regis species, the points representing the tops of other tree species, such as
black and Scots pine (Pinus nigra and Pinus silvestris) and beech (Fagus moesiaca), were
removed from the initial tree registry. In total, 94,554 points were removed, resulting in
the generation of a tree registry composed of 789,816 fir tops (Figure 5). The tree height
included in the registry ranges from 3 to 35 m.

Forests 2023, 14, x FOR PEER REVIEW 10 of 20 
 

 

altitudes in the Eastern and Western parts of the forest (Figure 6). Trees with a DBH of 
class 2 (i.e., 21–34 cm.) mostly cover the southern part of the forest, while trees of class 3 
DBH (≥35 cm.) can be almost equally found throughout the entire area. 

 
Figure 5. A subset of the generated tree registry for the Pertouli University Forest (Greece), includ-
ing the Abies borisii regis tops (points), which indicate their exact geographic position. The canopy 
height model (CHM), also produced using ALS data, serves as the map background depicting the 
tree height as a continuous surface. 

 
Figure 6. The tree density map depicting the number of trees per 2500 sq. m. over the area covered 
by the Abies borisii regis species, which is the one undergoing harvesting activities on a yearly basis. 

Figure 5. A subset of the generated tree registry for the Pertouli University Forest (Greece), including
the Abies borisii regis tops (points), which indicate their exact geographic position. The canopy height
model (CHM), also produced using ALS data, serves as the map background depicting the tree height
as a continuous surface.

Forests 2023, 14, x FOR PEER REVIEW 10 of 20 
 

 

altitudes in the Eastern and Western parts of the forest (Figure 6). Trees with a DBH of 
class 2 (i.e., 21–34 cm.) mostly cover the southern part of the forest, while trees of class 3 
DBH (≥35 cm.) can be almost equally found throughout the entire area. 

 
Figure 5. A subset of the generated tree registry for the Pertouli University Forest (Greece), includ-
ing the Abies borisii regis tops (points), which indicate their exact geographic position. The canopy 
height model (CHM), also produced using ALS data, serves as the map background depicting the 
tree height as a continuous surface. 

 
Figure 6. The tree density map depicting the number of trees per 2500 sq. m. over the area covered 
by the Abies borisii regis species, which is the one undergoing harvesting activities on a yearly basis. 
Figure 6. The tree density map depicting the number of trees per 2500 sq. m. over the area covered
by the Abies borisii regis species, which is the one undergoing harvesting activities on a yearly basis.



Forests 2023, 14, 2311 10 of 19
Forests 2023, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 7. The tree density map depicting the number of trees with a DBH ≤ 20 cm per 2500 sq. m. 
over the area covered by the Abies borisii regis species, which is the one undergoing harvesting ac-
tivities yearly. 

 
Figure 8. The tree density map depicting the number of trees with a DBH from 21 to 34 cm per 2500 
sq. m. over the area covered by the Abies borisii regis species, which is the one undergoing harvesting 
activities on a yearly basis. 

Figure 7. The tree density map depicting the number of trees with a DBH ≤ 20 cm per 2500 sq.
m. over the area covered by the Abies borisii regis species, which is the one undergoing harvesting
activities yearly.

Forests 2023, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 7. The tree density map depicting the number of trees with a DBH ≤ 20 cm per 2500 sq. m. 
over the area covered by the Abies borisii regis species, which is the one undergoing harvesting ac-
tivities yearly. 

 
Figure 8. The tree density map depicting the number of trees with a DBH from 21 to 34 cm per 2500 
sq. m. over the area covered by the Abies borisii regis species, which is the one undergoing harvesting 
activities on a yearly basis. 

Figure 8. The tree density map depicting the number of trees with a DBH from 21 to 34 cm per
2500 sq. m. over the area covered by the Abies borisii regis species, which is the one undergoing
harvesting activities on a yearly basis.

Forests 2023, 14, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 9. The tree density map depicting the number of trees with a DBH ≥ 35 cm per 2500 sq. m. 
over the area covered by the Abies borisii regis species, which is the one undergoing harvesting ac-
tivities on a yearly basis. 

3.3. Accuracy Assessment Results 
Table 3 presents the results of the accuracy assessment process performed for the four 

tree density maps and the stem biomass estimated using the height, and the DBH pro-
vided using the produced tree registry. More specifically, the R2, AdjR2, and RSE for the 
general tree density map were calculated to be 0.14, 0.12, and 5.72, respectively. Further-
more, the goodness-of-fit statistics showcase R2 values ranging from 0.15 to 0.61 for the 
tree density maps referring to the three different DBH classes (i.e., class 1: ≤20 cm, class 2: 
21–34 cm, and class 3: ≥35 cm). In particular, the R2 and Adj. R2 have been calculated to be 
0.15 and 0.12, 0.20 and 0.18, and 0.61 and 0.60 for DBH classes 1, 2, and 3, respectively, 
while the RSE reached 5.09 for DBH class 1, 5.21 for DBH class 2, and 5.15 for DBH class 
3. As for the accuracy of the estimated stem biomass, the employed allometric equation 
achieved an R2 value of 0.67, an AdjR2 of 0.66, and an RSE of 1813. 

Table 3. The goodness-of-fit statistical measures obtained from the comparison of the four produced 
tree density maps (illustrating the total and per DBH class number of trees at a 50 m × 50 m spatial reso-
lution) and the estimated stem biomass for each tree with the respective parameters of the forest man-
agement plan of the year 2018. DBH class 1 includes the trees with a DBH ≤ 20 cm, DBH class 2 refers to 
trees with a DBH between 21 and 34 cm, and DBH class 3 includes the trees of a DBH ≥ 35 cm. 

Variable R2 AdjR2 RSE 
Tree density (total) 0.14 0.12 5.72 
Tree density (DBH class 1) 0.15 0.12 5.09 
Tree density (DBH class 2) 0.20 0.18 5.21 
Tree density (DBH class 3) 0.61 0.60 5.15 
Stem biomass 0.67 0.66 1813 

Further examination of the aforementioned results (Table 2) can also be performed 
through the reference versus estimated values depicted in Figures 10–14. The scatterplots 
presented in Figures 10–12 showcase that the tree density (i.e., number of trees) most ac-
curately estimated (R2 = 0.61) is the one including the trees of DBH class 3 (i.e., ≥35 cm), 
while the general tree density map and the one including trees of DBH class 1 are charac-
terized by the highest estimation error (R2 = 0.14 and R2 = 0.15, respectively). The satisfying 
estimation accuracy of the tree stem biomass (R2 = 0.67) is also illustrated in the respective 
scatterplot (Figure 14), which shows no significant over and underestimation errors.  

Figure 9. The tree density map depicting the number of trees with a DBH ≥ 35 cm per 2500 sq.
m. over the area covered by the Abies borisii regis species, which is the one undergoing harvesting
activities on a yearly basis.



Forests 2023, 14, 2311 11 of 19

Except for the height and DBH information incorporated into the tree registry, ten
additional tree parameters were estimated, namely the stem, deadwood, needles, branches,
bark and total aboveground biomass, sequestered carbon, potential total, and woody and
non-woody SFL derived from the harvesting procedures (Table 2). These parameters are es-
sential for the adaptive management of forest ecosystems, providing accurate quantification
of the harvest residues and carbon losses.

Table 2. The maximum, minimum, and average values of the additional tree parameters were
estimated with the use of the generated ALS-derived tree registry (tree height and DBH) and species-
specific allometric equations over the entire forest region covered by the Abies borisii-regis species.

Parameters Maximum Minimum Average

Stem biomass 4907.16 6.27 525.41

Dead branches biomass 13.33 0.05 2.41

Needles biomass 1.65 0.0009 0.17

Branches biomass 233.63 0.19 31.91

Bark biomass 129.54 0.37 16.51

Total biomass 5285.33 6.89 576.44

Sequestrated carbon 2642.67 3.44 288.22

Potential total SFL 378.17 0.62 51.02

Potential woody SFL 5283.68 6.89 576.26

Potential non-woody SFL 1.65 0.0009 0.17

The general tree density map is illustrated in Figure 6, providing information on the
number of trees per a 2500 sq. m. area. The minimum number of trees in the fir-covered
forest is one, and the respective maximum value is 174. The areas of low tree density are
mainly located at the forest boundaries as well as within the surroundings of the road
network. On the contrary, the densest forest stands can be found at the higher parts of the
forest, namely above the altitude of 1200 m.

The three remaining tree density products are depicted in Figures 7–9, presenting the
number of trees within 2500 sq. m. of the three DBH classes, respectively. Specifically, the
results show that trees with a DBH of class 1 (i.e., ≤20 cm.) are mostly located at high
altitudes in the Eastern and Western parts of the forest (Figure 6). Trees with a DBH of
class 2 (i.e., 21–34 cm.) mostly cover the southern part of the forest, while trees of class 3
DBH (≥35 cm.) can be almost equally found throughout the entire area.

3.3. Accuracy Assessment Results

Table 3 presents the results of the accuracy assessment process performed for the four
tree density maps and the stem biomass estimated using the height, and the DBH provided
using the produced tree registry. More specifically, the R2, AdjR2, and RSE for the general
tree density map were calculated to be 0.14, 0.12, and 5.72, respectively. Furthermore, the
goodness-of-fit statistics showcase R2 values ranging from 0.15 to 0.61 for the tree density
maps referring to the three different DBH classes (i.e., class 1: ≤20 cm, class 2: 21–34 cm,
and class 3: ≥35 cm). In particular, the R2 and Adj. R2 have been calculated to be 0.15 and
0.12, 0.20 and 0.18, and 0.61 and 0.60 for DBH classes 1, 2, and 3, respectively, while the
RSE reached 5.09 for DBH class 1, 5.21 for DBH class 2, and 5.15 for DBH class 3. As for
the accuracy of the estimated stem biomass, the employed allometric equation achieved an
R2 value of 0.67, an AdjR2 of 0.66, and an RSE of 1813.



Forests 2023, 14, 2311 12 of 19

Table 3. The goodness-of-fit statistical measures obtained from the comparison of the four produced
tree density maps (illustrating the total and per DBH class number of trees at a 50 m × 50 m spatial
resolution) and the estimated stem biomass for each tree with the respective parameters of the forest
management plan of the year 2018. DBH class 1 includes the trees with a DBH ≤ 20 cm, DBH
class 2 refers to trees with a DBH between 21 and 34 cm, and DBH class 3 includes the trees of a
DBH ≥ 35 cm.

Variable R2 AdjR2 RSE

Tree density (total) 0.14 0.12 5.72
Tree density (DBH class 1) 0.15 0.12 5.09
Tree density (DBH class 2) 0.20 0.18 5.21
Tree density (DBH class 3) 0.61 0.60 5.15
Stem biomass 0.67 0.66 1813

Further examination of the aforementioned results (Table 2) can also be performed
through the reference versus estimated values depicted in Figures 10–14. The scatterplots
presented in Figures 10–12 showcase that the tree density (i.e., number of trees) most
accurately estimated (R2 = 0.61) is the one including the trees of DBH class 3 (i.e., ≥35 cm),
while the general tree density map and the one including trees of DBH class 1 are character-
ized by the highest estimation error (R2 = 0.14 and R2 = 0.15, respectively). The satisfying
estimation accuracy of the tree stem biomass (R2 = 0.67) is also illustrated in the respective
scatterplot (Figure 14), which shows no significant over and underestimation errors.
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Finally, for the sake of comprehensible results presentation, the percentage of detected
and undetected trees in each sample is illustrated in the following stacked bar graphs
(Figure 15). The comparison of the graphs confirms the aforementioned results related to
the accuracy of the tree density maps.
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a result of the accuracy assessment of the general tree density map, which includes all DBH classes
(i.e., all trees) and the three tree density maps, each of which includes trees of an individual DBH
class (i.e., DBH class 1, DBH class 2, and DBH class 3, respectively).

4. Discussion

A series of ALS-derived products were generated in this work to be employed by
forest managers and/or field workers and facilitate the yearly operational cut-tree marking
activities within our study area (i.e., Pertouli University Forest). Considering the forest
managers’ needs and according to common forest practice, we also propose a workflow for
the practical employment of the results during and post-cut-tree marking activities. This
study constitutes among the first known applications of ALS data for developing a tree
registry covering an entire forest to be applied in the context of operational tree-marking
and long-term sustainable forest management.

The LiDAR analysis performed to produce the tree registry and density maps
(Figures 4–8) were based on the most widely and successfully employed techniques. In
fact, the very high point cloud density allowed the implementation of some of the well-
established processing algorithms, such as point cloud classification, cloth simulation,
and local maxima filter, ensuring the highest possible validity of the resulting prod-
ucts [25,39,41]. The results were assessed for their accuracy using data collected on the field.

The tree detection errors created in the registry product were visually identified. These
errors can be attributed to the complex multi-layered structure of the forest [15] and were
manually corrected through photo interpretation of the very high-resolution aerial imagery
acquired along with the ALS point cloud data. The manual correction, although time-
consuming, was the only direct method for the accuracy of the tree registry to reach the
highest level possible.
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The accuracy assessment of the tree density maps was performed with the use of field
data. The results (Table 1 and Figures 10–13) indicate that as the trees’ DBH increases, the
tree detection algorithm’s performance also increases. More specifically, trees characterized
by DBH ≤ 20 cm (i.e., DBH class 1) mostly belong to the understory vegetation since Abies
borisii regis constitutes a shade-tolerant species. This means that these trees frequently
remain undetected by the LiDAR sensor. Nevertheless, despite the low accuracy of the
product, it provides valuable information for cut-tree marking. In fact, the higher number
of detected DBH class 1 trees indicates the higher detection capability of the LiDAR sensor,
which can be attributed to the fact that the examined area is not covered by dense overstory.
As such, it can be confidently assumed that the area is covered by natural regeneration
and, considering that falling trees can severely damage it, such areas are not considered
suitable for harvest. Therefore, the information provided by the respective tree density
map can be ancillary used during the process of cut-tree marking for the proper selection
of the harvesting area. With regard to the trees with DBH from 21 to 34 cm (i.e., class 2)
(co-dominant trees), they present intense competition with the ones of DBH ≥ 35 cm (i.e.,
class 3) (dominant tree). Hence, similar to the DBH class1 trees, the co-dominant trees are
usually located underneath the canopy of the dominant ones and are difficult to identify
using the LiDAR sensor. In summary, trees of DBH classes 1 and 2 often remain undetected
due to the unevenly aged structure of the forest, which led to the low accuracy of the
respective tree density maps.

Contrary to the DBH classes 1 and 2, the dominant trees were accurately detected from
the ALS point cloud, which is depicted both by the goodness-of-fit statistics (Table 1) and
the comparison scatterplot (Figure 13). In fact, this product provides the most significant
information for cut-tree marking since dominant trees of high commercial value are mostly
selected for harvesting in the framework of economic-oriented management. Finally, as
expected, the general tree density map incorporates the accuracy of all three aforementioned
density maps, which results in an R2 of 0.61 compared with the reference data.

Despite the inability of ALS technology to detect each and every tree in a multi-layered
forest and complex terrain, which resulted in the low accuracy of some of the generated
products, we endeavored their full and efficient exploitability within the framework of
operational cut-tree marking and long-term sustainable forest management. In particular,
we propose a workflow methodology that focuses on the appropriate use of the products
so that each fieldwork is completed promptly and efficiently.

More specifically, the forest manager is recommended to use a GIS mobile application,
which can serve as a complementary tool for forest management since it enables faster
and more accurate (compared to the use of study) field data collection, reliable data
analysis, and an efficient real-time update of the collected sddata whenever required [40,42].
For decades, researchers have been developing mobile GIS applications for a variety of
environmental field surveys, including forest tree measurements [42–46]. Nowadays, a
number of mobile GIS applications exist, either open-source or proprietary, such as QField
(https://qfield.org/, accessed on 1 October 2023), ArcGIS Field Maps (https://www.esri.
com/en-us/arcgis/products/arcgis-field-maps/overview, accessed on 1 October 2023),
and ArcGIS Survey123 (https://survey123.arcgis.com/, accessed on 1 October 2023), which
provide users with all the aforementioned possibilities during fieldwork.

Prior to fieldwork and based on the information provided by the forest management
plan, a specific forest compartment (the respective map is provided in the context of the
forest management plan) is defined as the area suitable for harvesting. Next, the manager
is required to consult the forest management plan about the amount of timber volume (i.e.,
the number of trees and their specific DBH class/classes) that needs to be deducted from
the selected forest compartment. Based on this information, the areas with the highest tree
density of the DBH class/classes of interest should be located using the DBH-related tree
density maps (Figures 7–9). Based on the general tree density map (Figure 6) and expert
knowledge, the manager can then locate the sub-areas characterized by a sufficient tree
density, ensuring that the scheduled harvesting will not impact the forest’s sustainability.

https://qfield.org/
https://www.esri.com/en-us/arcgis/products/arcgis-field-maps/overview
https://www.esri.com/en-us/arcgis/products/arcgis-field-maps/overview
https://survey123.arcgis.com/
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Next, the field worker will use the ALS-derived tree registry (Figure 5) to select the trees
suitable for harvest on the site based on their geographical position, height, and visual
assessment. The completion of the harvesting process can be followed by the update of the
tree registry by removing the points that represent the tops of the deducted trees. Moreover,
the additionally estimated tree parameters, i.e., the total and the tree components’ (stem,
foliage, branches, bark, and deadwood) biomass, the tree sequestrated carbon, and the
potential total, woody, and non-woody SFL can serve as a basis for the assessment of the
post-harvesting carbon and potential SFL-related ecological impacts. Finally, except for
the cut-tree marking process, the tree registry product can be used in a variety of forest
applications, such as diseases and potential risk records.

Following the above-described cut-tree marking methodology, the expert is directly
provided with the necessary knowledge about tree distribution and characteristics using the
ALS-derived spatial layers. The proposed methodology also enables the quick and accurate
definition of the area suitable for harvesting and, thus, ensures the reduced required
man effort compared to the traditional method of cut-tree marking. In fact, following the
selection of the area densely covered by the trees of interest, the field worker can identify
the location of the trees of interest within the 2500 sq. m. area through access to all the
necessary information about the essential characteristics (i.e., DBH and height) of each tree
using the tree registry product. Moreover, the forest manager and the field worker are
provided with the possibility of a straightforward digital update of the forest tree registry
after the performed harvesting. As such, the products generated within the context of this
work and the employed GIS technology can support sustainable forest management for a
long-term time period. Overall, the proposed methodology can be applied to any other
forest where selective harvesting is being performed in its management framework.

Nevertheless, although the present study has reached its aim, some unavoidable
limitations exist. Specifically, the high density of the forest canopy can cause errors in
the GPS measurement made by the marker. However, these errors can be manually cor-
rected through the employed GIS mobile app. Although the development of the proposed
methodology was based on the current specific needs of the local forest managers and
field workers, no tree-marking activities have yet been performed in the Pertouli Uni-
versity Forest. Additionally, the presented results are experimental, and all findings are
intended for research purposes in the current state. Therefore, if needed, the methodology
will be applied, evaluated, and adjusted during the next scheduled marking period (i.e.,
spring 2024).

Finally, it is worth noting that, except for the cut-tree marking activities, the tree
registry developed within the context of the present study can be employed in various
applications related to the forest’s sustainable management. More specifically, this ALS-
derived product can be utilized for the detailed record of diseases per individual tree
and for other potential risks/disasters related to biotic and abiotic factors. Last but not
least, the tree registry can serve for the prediction and post-harvesting estimation of the
forest’s carbon stock prior to and after harvesting, respectively, in the context of carbon-
oriented management.

5. Conclusions

This study’s primary focus was examining the potential of ALS data in enhancing op-
erational tree-marking activities in a dense coniferous forest characterized by an unevenly
aged structure and intense terrain to actively support long-term sustainable forest manage-
ment. A comprehensive tree registry and tree density maps were developed, covering the
entire extent of the forest. In addition, a methodology was proposed, following standard
forest practices, to effectively make use of the ALS-derived products during cut-tree mark-
ing activities. The aim was to streamline and optimize the process of conducting cut-tree
marking activities, saving time and effort. It is worth mentioning that the developed
ALS-derived tree registry constitutes among the first known that cover an entire forest area



Forests 2023, 14, 2311 17 of 19

and aim at being employed in the context of operational sustainable forest management.
More specifically, the conclusions that can be drawn from our study are the following:

• The tree registry was manually corrected, resulting in the highest possible accuracy of
the product itself and its derivatives (i.e., tree density maps);

• The trees of DBH ≤ 20 cm (class 1) and DBH 21–34 cm (class 2) were not accu-
rately detected due to the multi-layered structure of the forest. On the contrary, the
DBH ≥ 35 cm trees were reliably identified since they are the dominant ones and fully
detectable using the LiDAR sensor;

• Despite the LiDAR sensor’s low detection capability in areas with high tree density
and small DBH classes, the map indicates the absence of co-dominant or dominant
trees and the strong presence of regeneration. This provides the user with the ability
to directly decide whether the respective area is considered suitable for harvest, as
falling trees can severely damage regeneration trees during logging;

• The tree density map of DBH class 3 demonstrates high reliability, which is of utmost
importance as this information is commonly used during cut-tree marking activities;

• Among the tree parameters that were additionally estimated and incorporated into the
tree registry descriptive information, the stem biomass was assessed for its accuracy
through its comparison with the respective data provided by the forest management
plan (2018). The results showcased that the stem biomass was reliably estimated,
presenting an R2 value of 0.67;

• Except for cut-tree marking and harvesting activities, all products generated within the
context of this work can be employed for various other environmental management
purposes, such as the development and adoption of climate mitigation and adaptation
strategies, as well as monitoring biotic and abiotic components of forest ecosystems;

• Considering the common forest practice, the present work provides detailed guidelines
for using the produced products (tree registry and tree density maps) to facilitate the
process of selective cut-tree marking in terms of time and effort efficiency;

• The presented methods, results, and findings are experimental, and the methodology
will be applied and evaluated during the next scheduled marking period by the
University Forest Service (i.e., spring 2024).

Future research will involve the application of the developed methodology and the
ALS-derived products in the field, their evaluation, and appropriate adjustment, if required,
according to the forest manager’s needs. The ALS data employed in this study will also be
examined for their potential to accurately delineate the crown of each individual tree over
the entire forest. This will enable the accurate estimation of the forest gaps area created after
the deduction of each tree, which can provide forest managers with valuable knowledge
related to the natural regeneration and succession of the forest.
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