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Abstract: Tree species surveys are crucial in forest resource management and can provide references
for forest protection policymakers. Traditional tree species surveys in the field are labor-intensive
and time-consuming. In contrast, airborne LiDAR technology is highly capable of penetrating forest
vegetation; it can be used to quickly obtain three-dimensional information regarding vegetation over
large areas with a high level of precision, and it is widely used in the field of forestry. At this stage,
most studies related to individual tree species classification focus on traditional machine learning,
which often requires the combination of external information such as hyperspectral cameras and
has difficulty in selecting features manually. In our research, we directly processed the point cloud
from a UAV LiDAR system without the need to voxelize or grid the point cloud. Considering that
relationships between disorder points can be effectively extracted using Transformer, we explored
the potential of a 3D deep learning algorithm based on Transformer in the field of individual tree
species classification. We used the UAV LiDAR data obtained in the experimental forest farm of
Northeast Forestry University as the research object, and first, the data were preprocessed by being
denoised and ground filtered. We used an improved random walk algorithm for individual tree
segmentation and made our own data sets. Six different 3D deep learning neural networks and
random forest algorithms were trained and tested to classify the point clouds of three tree species.
The results show that the overall classification accuracy of PCT based on Transformer reached up to
88.3%, the kappa coefficient reached up to 0.82, and the optimal point density was 4096, which was
slightly higher than that of the other deep learning algorithms we analyzed. In contrast, the overall
accuracy of the random forest algorithm was only 63.3%. These results show that compared with the
commonly used machine learning algorithms and a few algorithms based on multi-layer perceptron,
Transformer-based networks provide higher accuracy, which means they can provide a theoretical
basis and technical support for future research in the field of forest resource supervision based on
UAV remote sensing.

Keywords: deep learning; forestry; airborne LiDAR; tree species classification; point cloud

1. Introduction

Forests are the main natural resources on Earth and play an indispensable role in
the process of environmental self-regulation, such as the energy exchange between the
land surface and atmosphere [1]. Forest resources mapping is mainly carried out using
remote sensing data, and tree species classification is an important part of forest resources
mapping [2,3]. With the rapid development of modern science and technology, traditional
forest survey methods, which consume a large amount of manpower and financial re-
sources, are gradually being replaced by emerging remote sensing technology [4]. Precision
forestry has become a trend in the development of the forestry industry. New survey
methods such as satellite remote sensing, laser radar (LiDAR, light detection and ranging),
and unmanned aerial vehicle remote sensing have gradually come to represent typical
directions of research. LiDAR technology is an active remote sensing technology. Its laser
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pulse demonstrates good penetrability in forests, and the high sampling density it offers
means it can be used to obtain the three-dimensional structural characteristics of a single
tree [5], which are widely used in forestry research. According to different data acquisition
platforms, LiDAR technology can be divided into three categories: ground-based [6], air-
borne [7], and spaceborne [8]. Spaceborne LiDAR technology acquires a large amount of
information and has a long acquisition period with low relative accuracy, which means it is
only applicable to large-scale and long-period forestry surveys. Compared with airborne
LiDAR data, UAV (unmanned aerial vehicle) LiDAR data have lower associated costs and
higher point cloud density, which are obviously advantageous traits in the field of forest
information acquisition. Brandtberg’s research [9] on deciduous forests in Virginia proved
that LiDAR data can be used to classify certain deciduous trees earlier.

There are two main steps to complete the tree species classification pipeline. One is
automatic individual tree segmentation and the other is tree species classification, which
our research focuses on in this research. Some scholars have achieved similar research
goals by using machine learning. Cao et al. [10] used full waveform LiDAR data to
identify single tree species in subtropical forests. Their results showed that the overall
classification accuracy of six types of trees was 68.6%, four types of trees was 75.8%, and
coniferous forests and broad-leaved forests was 86.2%. Based on the airborne LiDAR
data, Li et al. [11] classified four species of coniferous and broad-leaved forests with an
overall accuracy of 77.5% by extracting the three-dimensional texture, clustering degree,
and tree gap information related to trees and by using a genetic algorithm to select features.
Kim et al. [12] separated the information related to a single tree based on multi-temporal
airborne LiDAR data and classified and identified it according to the echo intensity of
the trees before and after defoliation. The results showed that the joint recognition of the
data before and after defoliation was the best, with an accuracy of 90.6%. Shoot et al. [13]
used a combination of airborne hyperspectral and LiDAR data, showing that the random
forest classification algorithm with the hyperspectral vegetation index and LiDAR-derived
terrain and canopy height indicators had the highest level of accuracy (the overall accuracy
was 78%).

Most studies above regarding individual tree species classification are based on tra-
ditional machine learning algorithms such as random forests or support vector machines.
And some studies [14] used multi-source remote sensing data such as LiDAR and hyper-
spectral data. The data used in these studies are associated with large data redundancy and
difficulty in the manual selection of features. With the sustainable development of graphics
hardware, especially the performance of parallel computing, deep learning technology has
been developed in terms of processing 3D data. Compared with machine learning, deep
learning is more effective when used for feature extraction. Gradually, scholars began to
study the application of deep learning in tree point cloud classification and recognition.
Sun et al. [15] transformed LiDAR data into a canopy height model (CHM) and classified it
with a modified convolutional neural network after segmentation. Mizoguchi et al. [16]
converted 3D point clouds into images to facilitate classification tasks based on the bark
surfaces of two species, and it was shown that their classification accuracy was usually
greater than 90%. In these studies, the point cloud was usually converted to other formats
first, but this technique generally means that some information is lost [17]. In recent years,
some scholars have also used 3D deep learning in this field. For example, Liu et al. [18]
used the method which proposed the use of the LayerNet network, based on multi-layer
perceptron (MLP), to classify the point clouds of two species of trees from UAV laser
scanning and TLS (terrestrial laser scanning), and a high level of accuracy was obtained.

In the field of point cloud classification tasks using deep learning algorithms, common
structures are based on multi-layer perceptron, such as PointNet and PointNet++ [19,20].
These approaches overcome the difficulty of convolution in computing, but it is difficult to
consider the relationship between points. Another concept applied to the deep learning of
point clouds is to design an operator with permutation invariance which is independent of
the connection relationship of European spatial points to deal with point clouds. The core
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part of the Transformer [21] structure proposed by the Google team in 2017 is the attention
mechanism, which is always used as an auxiliary module to enhance the ability of the
model to extract important features in some convolution networks to improve the integer
effect. The attention mechanism itself is an operator that does not change the arrangement
and does not rely on the connection between points. Its self-attention mechanism follows
simple setting operations. It is not affected by the cardinality and arrangement of input
features. It can easily understand the relationship between sparse point clouds in 3D scenes
and is suitable for use in processing point cloud data. In recent years, an increasing number
of scholars have applied Transformer in point cloud tasks, such as Point-MAE in point
cloud classification tasks [22]. Considering the number of classes and the difficulty of pre-
training, our research attempted to use a deep learning algorithm called PCT (point cloud
transformer) proposed by Guo et al. [23] in this study. The individual tree segmentation
results were made and sent into the classifier after processing for the corresponding training
and testing sets, so as to achieve the classification of Quercus mongolica (the Latin name is
Quercus mongolica Fisch.ex Ledeb.), birch (the Latin name is Betula platyphylla Suk.), and
sylvestris (the Latin name is Pinus sylvestris var.mongholica Litv.); Classification of individual
tree species was completed and the potential of the emerging deep learning algorithm
framework was explored based on Transformer in this field.

2. Materials and Methods
2.1. Study Area

The study area shown in Figure 1 is the urban forestry demonstration base of Northeast
Forestry University (126◦63′15” E, 45◦43′ N), which is located at the junction of NanGang
District and XiangFang District, Harbin, Heilongjiang Province, and adjacent to Majiagou
River, covering an area of 43.95 ha. With an altitude of 136~140 m, the original vegetation is
valley elm, sparse forest, and grassland. There are 46 sample plots and 18 kinds of artificial
forests in the forest farm, which is a large “forest oxygen bar” in Harbin. The study area has
a temperate, continental, monsoon climate, with mild and rainy summers and cold and dry
winters. The main tree species are Larix gmelinii and Fraxinus mandshurica. The mixed
forest type is broad-leaved mixed forests and coniferous mixed forests, which provided a
basis for the identification of tree species.
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2.2. Data Acquisition

The LiDAR data used in the experiment was obtained using a Zenmuse L1 laser radar
carried by DJI MTK R300. A continuous rectangle area containing three tree species was
selected as the data collection site. The scanning took place on September 2, 2022 and
took approximately 40 min. Normal flight was adopted, and the route height was set to
35 m. The vehicle speed was 3 m/s, and the laser side overlap rate was 65% to achieve
maximum efficiency during data acquisition. The sample rate was 160 khz, and the three-
echo mode was adopted. The scanning mode was repeated. The point cloud density was
1772 points/m2. The original data obtained were a set of files, including laser data, RTK
data, camera calibration data, etc. The standard format file of LiDAR (.LAS) can be obtained
through the reconstruction of DJI Terra. To facilitate subsequent processing, the point cloud
files were converted to the standard format of the point cloud database. Figure 2 shows the
point cloud file obtained by scanning the study area using ULS (unmanned aerial vehicle
laser scanning). The details of the parameters are shown in Table 1.
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Table 1. ULS parameter settings.

Instrument Parameters Zenmuse L1 Settings

Flying height 35 m
Flying speed 3 m/s

Point cloud density 1772 points/m2

Side overlap 65%
Course angle 28◦

Echo mode Triple
Sample rate 160 khz
Scan mode Repeat

2.3. Methodology

The methodological workflow (Figure 3) consisted of the following steps: (1) prepro-
cessing to gain a simplified forest point cloud, including denoising and ground filtering;
(2) individual tree segmentation to obtain a single tree point cloud; (3) creating our own
data set, resampling, normalizing, and centralizing the single tree point cloud, adding
labels and then dividing the training set and test set; (4) classifier selection, including train-
ing and parameter adjustment; and (5) comparative experiments and evaluation, and the
comparison of the performance of several deep learning and machine learning algorithms
in this task.
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2.3.1. Preprocessing

Data preprocessing included the following steps, which mainly comprised denoising and
ground filtering. The following operations were mostly completed by using the open-source
software CloudCompare and combining the PCL library and Python in the Linux environment:

1. Denoising

When obtaining point cloud data, due to the accuracy of the equipment, the surround-
ing environment, and other factors, some noise will inevitably appear in the point cloud
data, which may lead to deviation in the results. Firstly, the KNN algorithm was used for
noise reduction. The K value was set to 12 and the threshold value was set to 1.2 so as to
distinguish between noisy and non-noisy points. Then, points larger than this threshold
value were eliminated through calculation, and the point number of point clouds processed
was reduced from 2.26× 107 to 1.76× 107. The comparison between the original data and
the denoised data is shown in Figure 4.
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2. Ground filtering

In order to carry out subsequent experiments more effectively, the ground points are
needed to separate. Therefore, the cloth filtering (CSF) algorithm proposed by Zhang et al. [24]
is selected. In traditional filtering algorithms, the difference between slope and elevation
changes are mostly considered to distinguish ground points from non-ground points. They are
not only vulnerable to the impact of terrain features (usually poor filtering effects in complex
scenes and steep terrain areas), but also often require users to have rich prior knowledge of
the data to set various parameters in the filter. In the cloth filtering algorithm, a completely
new concept is used to filter data. First, the point cloud is inverted, and then, it is assumed
that a piece of cloth falls from above under gravity so that the fallen cloth can represent the
current terrain. Here, the resolution of the cloth mesh is set to 0.2, the maximum number of
iterations is set to 500, and the threshold value is set to 0.8. The separated non-ground points
and ground points are shown in Figure 5.
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2.3.2. Individual Tree Segmentation

In order to recognize tree species at the single tree level, it is necessary to extract
individual tree point clouds using a segmentation algorithm. Most of the existing individual
tree point cloud segmentation algorithms are top-down. When using these algorithms,
the crown is segmented first, followed by the trunk which is determined through the
crown segmentation results, such as the watershed algorithm. This method has higher
segmentation accuracy in conic coniferous forests but lower segmentation accuracy in
broad-leaved forests with more complex structures [25]. Compared with the algorithm
based on the canopy height model (CHM) which describes the outer surface of a canopy,
the segmentation algorithm for the direct processing of ALS-derived point clouds is usually
more accurate [26].

The segmentation algorithm used in this paper was proposed by Shendryk et al. [27],
which is a lightweight, bottom-up, individual tree segmentation method. The final results
are shown in Figure 6.

This algorithm directly processes ALS point cloud files, and it is used to detect tree
trunks and depict single trees with complex shapes. In this study, this segmentation scheme
made use of the relatively pure non-ground point cloud obtained from the preprocessing
step described above. First, the threshold value was manually set to use the passthrough
filter to remove the crown. Then, the clustering algorithm based on Euclidean distance
was used to carry out vertical clustering to achieve trunk detection. After removing the
clustering results with inconsistent heights, the remaining trunk positions were retained
as seed points, and the graph-based random walk algorithm was used to complete the
delineation of the crown. For segmentation, a threshold value of point cloud width was set.
Point clouds smaller than this threshold value were determined to be under-segmented and
deleted. In this way, a total of 1109 trees were segmented as experimental data, providing
support for subsequent experiments.
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2.3.3. Data Set Creation

In the field of individual tree species classification, deep learning algorithms are often
considered as classifiers in the workflow. The data set currently widely used as a benchmark
for comparison in point cloud classification tasks is ModelNet40, which was proposed by
Princeton University [28]. In order to apply the data set to the popular framework, the
point cloud system of single trees segmented in this study was used as the ModelNet40-like
data set.

Considering the large amount of data required for deep learning to extract features,
these data were first enhanced, including rotation, mirroring, and other operations. After
calculating the normal vector, a total of 2000 files were obtained for three species of trees.
Additionally, in a neural network, each sample point cloud needs to have the same width,
and each file needs to be resampled to 104 points. Due to the penetration ability and
accuracy of the UAV LiDAR system, the widths of the segmented tree point cloud were
not all greater than 104, meaning that we needed to resample. Additional points from up
sampling were different from the original information obtained using LiDAR technology,
and the information was artificially supplemented. This type of information is not always
beneficial to feature extraction. In order to minimize the impact of these extra points, a
multi-scale up sampling method was adopted. The width of the breakpoint cloud was
determined. If the width was greater than 104, it would not be processed. If the width was
less than 104, we set an appropriate scale according to the value of the current file. Finally,
the point clouds with widths less than 104 were upsampled to just over 104. After up
sampling, down sampling was needed in order to reduce their width to 104 exactly. Here,
the method of random sampling points was used to make the point cloud more evenly
distributed. In order to make the network converge quickly, the coordinates of the point
cloud were normalized and limited to the interval of (−1.1). The files were converted to txt
format, saved in different folders according to different labels, divided into a training set
and test set according to an 8:2 ratio, and corresponding configuration files were generated
by using scripts. Finally, ModelNet3 was obtained, which belongs to us. The content and
division of the data set are shown in Table 2.

Table 2. Data set partition.

Quantity Tree Species Number of Each Species

Birch 320
Training Set 1600 Quercus mongolica 640

Sylvestris 640

Birch 80
Test Set 400 Quercus mongolica 160

Sylvestris 160
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2.3.4. Classifier
Based on Transformer

As the pioneer of the point cloud Transformer, the PCT network architecture is shown
in Figure 7. The encoder of PCT first embeds the input coordinates into the new feature
space. The embedded features are input into the four stacked attention modules, the rich
and discriminative representation of each point is learned, and then, the output features
are generated in the linear layer.
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Given an input point cloud P ∈ RN×d, where N points have d—dimensional feature
description, a de—dimension embedded feature Fe ∈ RN×de is first learned via being input
to the embedding module. The pointwise do—dimension feature from PCT is expressed as
Fo ∈ RN×do , which is formed by concatenating the output of each attention layer through
the feature dimension. The linear transformation formula is as follows:

F1 = AT1(Fe), (1)

Fi = ATi(Fi−1), i = 2, 3, 4 (2)

Fo = concat(F1, F2, F3, F4)·Wo, (3)

where ATi expresses the ith attention layer, which has the same output and input dimen-
sions. Wo represents the weight of the linear layer. To effectively extract global feature Fg,
the network applies max-pooling layer and average-pooling layer. For the classification
task studied in this paper, the global feature Fg was sent to the classification decoder, which
was composed of two cascaded feed-forward neural networks, LBRD (combining Linear,
BatchNorm (BN), ReLU layer, and Dropout layer). The drop probability of each LBRD was
0.5. Finally, a linear layer was applied to predict the final classification score C ∈ RNc and
to determine the tree species of the point cloud among three labels using the highest score.

To prove the superiority of the Transformer better in this field, our research also used
other two 3D-point transformer algorithms [29,30] proposed in the same year with PCT.
The network architecture point transformer proposed by Zhao [29] is shown in Figure 8.
The architecture also named point transformer proposed by Engel [30] is shown in Figure 9.
In order to distinguish the two networks better, the one proposed by Zhao [29] is called
PT1 and the one proposed by Engel [30] is called PT2 in the following part of this article.
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output features.
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Figure 9. The architecture proposed (PT2) by Engel [30]. rFF represents row-wise feed-forward
network, SortNet is a local feature generation module, ALG generate local-global attention by relating
global features with local features, and FC represents fully connected layer.

Based on MLP

As the first deep learning algorithm directly acting on the point cloud, PointNet uses
the global max-pooling method to extract features from all point clouds. It is effective but
also leads to some problems, such as the insufficient consideration of local features. The
author who proposed PointNet also proposed PointNet++, which uses PointNet to extract
local features through a new grouping method. The network structure of the classification
section of PointNet++ is shown in Figure 10. First, local features are extracted from small
regions to capture fine geometric structures; these local features are further grouped into
larger units and processed to generate higher-level features. This process is repeated until
the features of the entire point set are obtained.
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Figure 10. The classification section of structure of PointNet++.

The core module of PointNet++ is the SA (set abstraction) module, which mainly
includes the following three steps: random sampling, grouping, and feature extraction
using PointNet. The SA module first uses the farthest point sampling to randomly sample
points in the original point cloud and uses the sampled point as the center point to select
points in the sphere within the specified radius. These points are taken as a group, features
for each group are extracted via PointNet, and the global features of each group of points
are obtained with max pooling.

Random Forest

The random forest (RF) has gained popularity in the field of tree species classification.
RF is an integrated learning method based on decision trees, which is combined with many
ensemble-regression or classification trees [31,32]. It uses decision trees for classification
due to its observations. For the samples not chosen as training samples, each decision tree
gives a classification result. The class is determined by decision tree votes, and the final
result will be obtained by observing the maximum number of votes.

The random forest is different from the classical bagging algorithm in that it prevents
the correlation between decision trees. It does not consider all the input variables (features)
when building each decision tree, but only considers the random selection of these input
variables. The advantage of RF is that it has relatively fast training speeds and a high
level of accuracy [33]. In this study, RF was implemented in Python. As our study did not
involve auxiliary information from other devices, only the original point cloud information
was used as the feature of RF.

Training

The training platform used was Ubuntu 22.04, with NVIDIA GTX1080ti driven by
CUDA 10.1. The sampling points of several neural networks were set to 128, 256, 512, 1024,
2048, 4096, and 8192. The Adam optimization algorithm was adopted. The batch size was
set to 32, the initial learning rate was set to 10−3, and the weight attenuation was set to
10−3. A total of 600 epochs were trained.

2.3.5. Comparison and Evaluation

The separation of test and training data is very important for the evaluation of classifi-
cation results. Each tree point cloud in this research was extracted using the delineation
algorithm we mentioned in Section 2.3.2. Additionally, the final classification results were
obtained by applying several deep learning algorithms on the test set, which was com-
pletely independent of the training set, while RF was used for simultaneous comparison.
These results were then evaluated in terms of overall accuracy (OA), kappa coefficient (KC),
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producer’s accuracy (PA), and user’s accuracy (UA) using reference data and the confusion
matrix. Additionally, the indexes we needed were calculated using the formula as follows:

OA =
TP + TN

TP + FN + FP + TN
× 100% (4)

UA =
TP

TP + FP
× 100% (5)

PA =
TP

TP + FN
× 100% (6)

kappa =
po − pe

1− pe
(7)

where TP is the positive samples predicted by the model as positive classes, FP is the negative
samples predicted by the model as positive classes, FN is the positive samples predicted by
the model as negative classes, TN is the negative samples predicted by the model as negative
classes, po is equal to OA and pe is the sum of the product of the actual sample size, and the
predicted sample size is divided by the square of the total number of samples.

3. Results
3.1. Classification Results of Different Models

The models based on Transformer, MLP and random forest were used to classify
Quercus mongolica, birch, and sylvestris trees, respectively. The number of sampling points
was set to 4096, the most appropriate value we obtained through the experiment, and the
classification results of several algorithms are shown in Table 3. The overall accuracy and
kappa coefficients of different models were obtained as shown in Table 4 by analyzing the
confusion matrix. In these tables, PN refers to PointNet, SSG and MSG refer to single-scale
group method and multi-scale group method. The producer’s accuracy (PA) and user’s
accuracy (UA), obtained in the same manner as OA and KC, are shown in Figures 11 and 12.
It can be observed that when only original point cloud information was used, the deep
learning algorithm displayed obvious advantages over the traditional machine learning
algorithm, with a high level of accuracy when classifying tree species. When evaluating the
overall accuracy, the results of the three Transformer [23,29,30] point cloud classification
networks were very similar to each other, being 88.3%, 87.3%, and 87.8%, respectively,
slightly higher than the accuracies of 85.5% and 85.0% of the two PointNet++ grouping
methods, higher than 80.5% obtained using the original PointNet, and far higher than
63.3% obtained using RF. Among the seven algorithms implemented, PCT displayed the
best effect, with the kappa coefficient reaching 0.82, which was 0.12 and 0.39 greater than
PointNet and RF, respectively.
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Forests 2023, 14, 484 12 of 17

Table 3. The confusion matrix of detailed classification results of each algorithm on test set.

Model Predicted Class
True Class

Total
Birch Quercus

mongolica Sylvestris

Birch 70 5 2 77
PCT Quercus mongolica 8 138 13 159

Sylvestris 2 17 145 164

Birch 68 5 2 75
PT1 Quercus mongolica 8 138 16 162

Sylvestris 4 17 142 163

Birch 70 4 4 78
PT2 Quercus mongolica 6 142 17 165

Sylvestris 4 14 139 157

Birch 65 9 4 78
PN + MSG Quercus mongolica 10 134 13 157

Sylvestris 5 17 143 165

Birch 63 10 2 75
PN + SSG Quercus mongolica 9 134 15 158

Sylvestris 8 16 143 167

Birch 59 11 4 74
PointNet Quercus mongolica 15 127 18 160

Sylvestris 6 22 138 166

Birch 50 25 19 94
RF Quercus mongolica 16 98 36 150

Sylvestris 14 37 105 156

Table 4. Comparison of classification accuracy of seven models.

Model Overall Accuracy % Kappa Coefficient

PCT 88.3 0.82
PT1 87.3 0.80
PT2 87.8 0.81

PN + MSG 85.5 0.77
PN + SSG 85.0 0.76
PointNet 80.5 0.70

RF 63.3 0.43
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As the results of PA and UA showed, these algorithms performed differently in each
class. Considering the index of UA, the accuracy of birch was generally slightly lower than
that of Quercus mongolica, and the effect of identifying sylvestris was better. PCT performed
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best in the category of birch and sylvestris, reaching 87.5% and 90.7%. Point Transformer
proposed by Engle et al. [30] performed best in the category of Quercus mongolica, reaching
88.75%. Meanwhile, the same index performed worst using RF; this would make it difficult to
apply it to practical problems. On the other hand, producer’s accuracy values indicated that
there was no obvious difference in classification performance among the three tree species.
The PCT algorithm performed best in the classification tasks of the three tree species, and the
producer’s accuracy reached 91.0%, 86.8%, and 88.4%, respectively.

3.2. Classification Results of Different Sample Point Densities

For different sample point densities, the overall accuracy trends of the corresponding
classification with the number of sampling points are shown in Figure 13. It can be seen
that in the dimension of sample point density, with the increase in the number of sampling
points, the overall accuracy of several algorithms gradually increased and showed trends
of rapid growth and then slow growth. However, the growth trend slowed down when the
number of sampling points reached 4096, and the overall accuracy of PointNet++ using
MSG decreased slightly when the number of sampling points reached 8192.
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Figure 13. (a) Schematic diagram of farthest point sampling algorithm affected by point density;
(b) the overall accuracy of different deep learning algorithms increases with an increase in the number
of sampling points.

In addition, the differences in the overall accuracy among different algorithms was less
affected by the number of sampling points. Additionally, under other sampling points, they
were similar to the previous results; that is, three Transformer-based classification algorithms
had slightly higher overall accuracy values than several MLP-based PointNet families.

4. Discussion
4.1. Comparison of Different Models

After our test, it was shown that PCT achieved the best classification accuracy, and
the other two Transformer-based deep learning algorithms had similar effects. In addition,
the most primitive PointNet based on MLP performed worst in several models. Although
the max-pooling layer is used to solve point cloud disorder, due to the limitation of its
structure, it can only extract global features, not local features. It has limited ability in
detail processing and generalization to complex scenes [19]. In contrast, PointNet++ has an
additional multi-scale or multi-resolution grouping structure, which solves the problem of
uneven density distribution in a point cloud. In particular, the point cloud density of a tree
crown from the UAV LiDAR system was higher than that of the under forest [34], which
was more obvious. However, in the field of irregular domain and unstructured point cloud
learning, the Transformer-based PCT showed better performance [23], such as in the tree
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species classification task, with little morphological difference between classes. PCT was
shown to have the highest classification accuracy for each tree species (90% for sylvestris),
and each species showed similar accuracy because PCT is based on Transformer rather
than using a self-attention mechanism as an auxiliary module. The results show that PCT is
very suitable for tree species classification. For comparison, Liu et al. [18] used LiDAR data
and the neural network built by his team to classify the two species. The maximum OA
was 86.7%, slightly lower than the PCT we used. Our study area is located in a park with
flat terrain, and trees are planted and cared for by gardeners. In addition, compared with a
natural forest with rich species and disorder, the tree distribution in our study had a certain
pattern and was easy to classify. Therefore, the accuracy in artificial forest prediction will
be higher.

4.2. Comparison of Different Tree Species

Liu et al. [18] selected two trees with large morphological differences as experimental
objects: white birch, which is a broad-leaved tree, and larch, which is a coniferous tree.
Therefore, we selected sylvestris, birch, and Quercus mongolica in our research. Two of these
are broad-leaved trees, and one is a coniferous tree, which meant we could distinguish the
performance of broad-leaved forests in the same network. The classification accuracy of
PCT for each tree species was the highest and showed similar accuracy, being higher than
86%. However, according to the classification results of several models, there were slight
differences in the classification accuracy of different tree species, which generally showed
that the classification accuracy was lower than the others on Quercus mongolica, while it
performed better on sylvestris and birch. To explain this phenomenon, three tree point
cloud image samples are shown in Figure 14.
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The images show that the shape of sylvestris and birch are unique and show obvious
differences, but the difference between Quercus mongolica and the other two trees are not
obvious. Especially because of the dense planting and high canopy density within Quercus
mongolica forest, the airborne LiDAR technology could not penetrate the forest well, and the
trunk information density obtained was relatively low. Therefore, as the only coniferous
tree, sylvestris had the highest classification accuracy, while several algorithms on Quercus
mongolica generally performed relatively poorly. The features extracted from Quercus
mongolica by the network were similar to each other, and there were more misclassifications.
This finding is similar to the conclusions drawn in the field of tree classification using
2D images. Liu et al. [35] concluded that higher classification accuracy is achieved with
coniferous trees with obvious crown structures. Compared with coniferous trees, deciduous
tree crowns are denser, and the gaps between the tree crowns are smaller. Inaccurate crown
delineation will reduce the differences among the point cloud of three tree species and lead
to more misclassification.

4.3. Influence of Sample Point Density on Classification Results

For LiDAR data, the deep learning method we used contained sampling modules. We
used different sampling points during training, as shown in Figure 10. As the number of
sampling points increased from 128 to 4096, the classification accuracy gradually improved.
When the number of sampling points in each tree exceeded 4000, the classification perfor-
mance of the network tended to be saturated. The reason why the increase in point density
greatly improved the classification effect at the initial stage is that the similarity between
different tree species was high, and with the increase in point density more geometric struc-
ture information could be retained so that the network could learn more features. When
the number of sampling points increased to 8096, the classification accuracy of PointNet++
using multi-scale grouping decreased. This is because the point density was too large
and the extracted information was redundant, resulting in low classification accuracy. If
the point density was too large, the number of model parameters could not be increased
resulting in the slow convergence speed in model training, which affected the accuracy of
the test.

4.4. Comparison with Machine Learning Model

Spectral, texture, and shape features are usually extracted for tree species classification
using machine learning methods such as RF and support vector machines. These features
and classifiers have been widely used in similar research [36,37]. In our study, the RF
algorithm was adopted to classify the point cloud data based on the elevation information,
reflection intensity, curvature, and color. Two parameters were adjusted. The number of
trees, created by randomly selecting samples from the training samples, and the number of
variables, used for tree node splitting were modified for RF. The number of trees defaulted
to 500, and the number of variables defaulted to the square root of the number of input
features. Belgiu et al. [32] believed that the default parameter value was effective; therefore,
we adopted the default value. The results show that the effect of classification by using
the original point cloud information alone is very unsatisfactory. The overall accuracy
of RF was only 63.3%, which is far lower than several deep learning algorithms. This is
because the original point cloud contained too little information for machine learning and
required manual feature selection. Without the assistance of other equipment, such as a
hyperspectral camera, the task cannot be completed to a high standard by only using a
few features. On the contrary, deep learning algorithms abstract the features, simplify the
feature extraction, and can better classify the tree species.

5. Conclusions

In our study, airborne LiDAR point cloud data are used to explore the potential of
Transformer in the field of 3D tree point cloud classification in recent years based on the
delineation algorithm, and several existing classification methods were compared. Several
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deep learning models were evaluated using OA, KC, PA, and UA. The accuracy of several
models was also compared with the random forest algorithm, which only uses elevation
information, reflection intensity, curvature, and color features. In this paper, we used
the clustering algorithm to segment the preprocessed point cloud data into single trees,
and we took single tree point clouds obtained as the input of the classifier. Like other
scholars who used 3D deep learning algorithms, we showed that the method we applied
can directly train point cloud data samples to derive the model. This experiment proves
the validity of this method in 3D tree species classification. Considering the comparison
of the performance of different models on our own data set, the classification accuracy of
PCT was the highest, with the overall accuracy reaching 88.3% and the kappa coefficient
reaching 0.82.

In addition, the classification results of different tree species and the influence of different
sample density levels on classification accuracy were studied. Among Quercus mongolica, birch,
and sylvestris, the classification performance of Quercus mongolica was shown to be barely
satisfactory, while the performance of sylvestris was the best because the point cloud under
forest was too sparse due to the excessive canopy density in the forest area, and its features
could not be extracted well. With the increase in the sample point density, the classification
accuracy rate continually improved, but there was a critical value to this improvement. When
the number of sample points was set to 4096, the model performed best on our data set.
In future work, in order to solve these problems, we will attempt to combine multi-source
LiDAR technology to obtain better results; we will also attempt to apply our method to the
classification of natural forest species in more complex situations.
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