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Abstract: Plants can produce and release allelochemicals to interfere with the establishment and
growth of conspecific and interspecific plants. Such allelopathy is an important mediator among
plant species in natural and managed ecosystems. This review focuses on allelopathy and alle-
lochemicals in grasslands and forests. Allelopathy drives plant invasion, exacerbates grassland
degradation and contributes to natural forest regeneration. Furthermore, autotoxicity (intraspecific
allelopathy) frequently occurs in pastures and tree plantations. Various specialized metabolites,
including phenolics, terpenoids and nitrogen-containing compounds from herbaceous and woody
species are responsible for allelopathy in grasslands and forests. Terpenoids with a diversity of
metabolites are qualitative allelochemicals occurring in annual grasslands, while phenolics with a few
specialized metabolites are quantitative allelochemicals occurring in perennial forests. Importantly,
allelochemicals mediate below-ground ecological interactions and plant–soil feedback, subsequently
affecting the biodiversity, productivity and sustainability of grasslands and forests. Interestingly,
allelopathic plants can discriminate the identity of neighbors via signaling chemicals, adjusting the
production of allelochemicals. Therefore, allelochemicals and signaling chemicals synergistically
interact to regulate interspecific and intraspecific interactions in grasslands and forests. Allelopathy
and allelochemicals in grasslands and forests have provided fascinating insights into plant–plant
interactions and their consequences for biodiversity, productivity and sustainability, contributing to
our understanding of terrestrial ecosystems and global changes.

Keywords: allelopathic interference; autotoxicity; below-ground chemical interactions; plant
neighbor detection; plant–soil feedback; qualitative and quantitative allelochemicals

1. Introduction

Grasslands and forests are integral components of the global ecosystem, totally covering
about 70% of the earth’s terrestrial area. Both function as the crucial global pool of biodiver-
sity to supply a wide range of species, and their productivity and sustainability modulate
global changes [1–3]. Importantly, grasslands and forests play substantial roles in diverse
ecological services to generate tremendous benefits for humans, such as water conservation,
sand fixation, carbon sequestration, oxygen release and global biogeochemical cycles [4,5].
Understanding the biodiversity, productivity and sustainability of grasslands and forests and
their underlying mechanisms has been of great interest to ecologists for decades.

The biodiversity, productivity and sustainability of grasslands and forests are the
net outcomes of various biotic versus abiotic feedbacks between plants and their envi-
ronment. These can arise through a variety of mechanisms such as resource partitioning,
niche divergence, plant–soil and other species-specific interactions [6–8], but the central
driver must be interspecific and intraspecific plant–plant interactions that can be neutral
(consummation and recognition), positive (facilitation and kin selection) and negative
(competition and allelopathy) to allow local coexistence. The interactions, either beneficial,
harmful or commensal, eventually contribute to the biodiversity, productivity and sustain-
ability of grasslands and forests. While most studies have focused on resource competition,
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environmental factors and global changes, relatively little is known about the importance
of allelopathy in grassland and forest ecological processes [9].

A plant may interfere with the growth and establishment of neighboring plants
through competition, allelopathy or both. Differing from competition for resources,
allelopathy is an interference mechanism in which living or dead plants release
allelochemicals exerting an effect (mostly negative) on co-occurring plants [10,11], even
within a species (i.e., autotoxicity or intraspecific allelopathy). Four ecological processes,
volatilization, leaching, litter decomposition and root exudation, can bring allelochemicals
into air or soil. When allelochemicals contact or approach the associated plants, they directly
demonstrate allelopathic action by disturbing the systems of photosynthesis, respiration,
and metabolism, or indirectly affect target species by altering environmental conditions,
particularly for soil physicochemical properties and microbial communities [12–14]. In
fact, allelopathy originates from interspecific and intraspecific plant–plant interactions
in grasslands and forests. The first classical case is black walnut (Juglans nigra), which
produced and released a 1,4-naphthoquinone (juglone) to interfere with the growth of
understory plants thousands of years ago [15]. The allelopathic interference of shrubs in
grass through the release of volatile terpenes into southern California coastal grassland was
reported in the 1960s [16]. Subsequently, an increasing number of studies have shown that
many ecological events occurring in grasslands and forests are associated with allelopathy
and certain allelochemicals [9–11,17,18].

Allelopathy in grasslands and forests is key for understanding terrestrial ecosystems
and global changes. In recent decades, numerous control experiments and field investi-
gations have been conducted to estimate the functional consequences of allelopathy for
plant communities in natural and managed grasslands and forests. However, a comprehen-
sive allelopathy, particularly for allelochemical-mediated below-ground and above-ground
interactions in grasslands and forests, is rare. Understanding allelopathy with allelochemicals
and their consequences for biodiversity, productivity and sustainability in grasslands and
forests can provide new insight into terrestrial ecosystems and global changes. Hence,
capturing recent advances and applications in allelopathy and allelochemicals is becoming
valuable in advancing interdisciplinary research in grasslands and forests.

2. Allelopathy in Grasslands
2.1. Allelopathy Drives Plant Invasion in Grasslands

The occurrence of invasive plants threatens the structure and function of grassland
ecosystems, especially in biodiversity and stability [17]. Several plant species have been
confirmed to invade grasslands with an allelopathic mechanism. Spotted knapweed
(Centaurea stoebe), native to Europe and introduced into North America, is an exam-
ple of an invasive plant in western American grasslands. Spotted knapweed can take
advantage of root-secreted allelochemicals against local grassland species and alter nutri-
tion availability and underground microbial community composition [18,19]. However,
the allelopathy of spotted knapweed is conditional, and there is discrepancy between
geographical sites. Spotted knapweed does not exhibit allelopathic invasion in eastern
American grasslands [20]. Additionally, sufficient light or infection with fungal endophytes
can enhance the allelopathic invasion of spotted knapweed in American grasslands [20,21].

Allelopathic invasion of spotted knapweed in American grasslands results in the novel
weapons hypothesis (NWH) that the success of plant invasion can be attributed to the
allelochemicals of invaders [22]. Generally, allelochemicals of invasive species have little
effect on their original neighbors due to long-term mutual adaptation, but as they are novel
to the species of the invaded habitat, they exert a strongly allelopathic interference on the
native species [22]. Much evidence has demonstrated that allelochemicals appear to confer
a competitive advantage to the invasive plants [23–26]. However, some studies did not fully
support the NWH, and questioned the necessity of secondary metabolites for nonnative
species to ensure invasive success [27–29]. Another hypothesis, the biochemical recognition
hypothesis (BRH), postulates that plant seeds can adaptively detect phytochemicals re-
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leased from potential competitors and respond by extending their period of dormancy until
better establishment conditions occur [30]. Leachates from spotted knapweed reduced the
germination rate of grassland species. Importantly, they had no effect on seeding biomass,
implying that the allelochemicals in the leachates are non-phytotoxic and do not impede
plant growth [30].

Although both the NWH and BRH focus on plant-derived chemicals and predict
similar results that phytochemicals released from invasive plants inhibit the emergence of
native plants, their fundamental mechanisms are distinct. This can be explained either a
negative exposure to toxic chemicals by NWH or a positive recognition of facilitative chem-
icals by BRH [22,30]. Nevertheless, whether the success of invasive plants is attributed to
allelochemicals has been debated. Actually, allelopathy is pervasive in invasive plants [31].
Interestingly, allelopathy of native grassland communities seems to increase their resistance
to invasion by introduced plants [32], but there was no evidence that native plant com-
munities’ tolerance to allelopathy contributes to the degree of invasiveness of introduced
plants. A more vital linkage between allelopathic traits and invasive performance needs to
be explored in further studies.

2.2. Allelopathy Exacerbates Grassland Degradation

Grassland degradation is a phenomenon in which grass struggles to grow or hardly
survives, which usually leads to an irreversible reduction in grassland productivity and
biodiversity [33]. Many factors have been regarded as the drivers of grassland degradation,
of which the main factors are natural climate change and human disturbance [34,35]. One
early sign of degraded grassland is that the originally dominant species are gradually
replaced by other adaptable plants, such as toxic weeds with allelopathic traits [36–38].
Toxic weeds in degraded grassland are adapted to extremely harsh environmental condi-
tions and exhibit high aggression toward surrounding plants, even poisoning livestock or
humans [39,40].

In the process of grassland degradation, toxic weeds not only vigorously compete with
forage plants for water and nutrition resources, but also produce a wide range of secondary
metabolites to exert allelopathic effects on the establishment of the co-occurring plants,
subsequently reducing species richness and exacerbating grassland degradation [41–43].
Several studies have shown that extracts of toxic weeds, regardless of plant tissues or
growing soil, can reduce the seed germination rate and seedling biomass of the receiving
plants [38,44,45]. However, the allelopathic effects have distinct differences among the
extract concentration, extract source and tested species [44]. Many phytotoxic compounds,
such as coumarins, flavonoids and terpenoids, have been isolated and identified from toxic
weeds. These potential allelochemicals could jeopardize the photosynthesis, respiration,
and metabolic system of plants [46–48].

Stellera chamaejasme and Artemisia frigida are representatives of toxic weeds and generally
serve as bioindicators to characterize the degree of grassland degradation. S. chamaejasme is a
common toxic weed in the degraded grasslands of northern China, which can restrict the
growth of co-occurring plants via root exudates [38,49]. A. frigida, a perennial dicotyledonous
semi-shrub species, has a wide distribution range in the global temperate grasslands, covering
Eurasian steppes and northern mixed-grass prairies. Differing from the mainly allelopathic
pathway of S. chamaejasme, A. frigida can significantly decrease seed germination and seedling
growth by emitting volatile organic compounds (VOCs) as allelochemicals [50,51]. This
environmental disturbance may severely influence the composition and abundance of VOCs
emitted from A. frigida. Artificial damage can induce A. frigida to release more categories
and greater concentrations of VOCs [51]. In particular, grazing activity can enhance the
allelopathic effect on the growth of other grassland species, suggesting that allelopathy may
interact with over-grazing grassland to accelerate the grassland deterioration by frequently
simulating A. frigida [52].



Forests 2023, 14, 562 4 of 22

Overall, allelopathy is one of the critical factors driving grassland degradation. Compre-
hensively understanding of how allelochemicals from toxic weeds mediate intraspecific and
interspecific plant–plant interactions would be useful for rehabilitating degraded grassland.

2.3. Allelopathy in Pasture Management

A pasture is a piece of grassland that mainly grows forage grass for livestock. Its quan-
tity and quality are closely related to grassland ecosystem health and animal husbandry
development. Hence, the management of pasture, whether natural or managed, is essential
to ensure adequate forage grass and to support livestock production.

Allelopathy-based interspecific and intraspecific interactions have ecological conse-
quences for the productivity and biodiversity of a pasture. Particularly in a managed
pasture, pasture weeds can immensely decrease forage yield and quality, negatively af-
fecting livestock production. Fortunately, some forage species can take full advantage of
allelopathy and allelochemicals to retard the emergence and growth of co-occurring weeds,
from which they will obtain growing benefits [53,54]. For example, rye (Secale cereale) is a
cool-season forage species with high frost and drought resistance; it is generally planted in
infertile or acid soils due to its strong adaptability. Rye can produce and release benzoxazi-
noids to selectively inhibit broadleaf weeds, modifying the spectrum of weed species in the
pasture [55,56]. Therefore, some fine forage cultivars with allelopathic traits can be used
for weed control. In particular, natural allelochemicals released from allelopathic forage
cultivars may act as biological herbicides to a large extent, lowering the consumption of
chemical herbicides and the cost of pasture management [57,58]. Many studies have shown
that the application of allelopathic forage cultivars can effectively control pasture weeds
and increase pasture productivity [55,57,59]. Notably, allelopathic forage species such as
rye not only suppressed the pasture weeds but also succeeding forage species. To avoid
failure in rotation systems, it is warranted to select resistant succeeding forage species [60].

Autotoxicity (intraspecific allelopathy) is ubiquitous in pastures. Autotoxicity in pasture
has been well verified in alfalfa (Medicago sativa) [61–63]. Alfalfa is a major forage legume
used as a high-quality livestock feed and cultivated in pastures throughout the world. Several
phytotoxic phenolics, saponins and medicarpin in alfalfa can remarkably suppress their own
seed germination. To attenuate the autotoxicity, the most obvious solution is to develop a
new autotoxicity-tolerant alfalfa cultivar. A recent study has picked out the most autotoxicity-
tolerant alfalfa from 22 cultivars based on a technique for order of preference by similarity to
ideal solution analysis [64], which provides a theoretical basis for the breeding of autotoxicity-
tolerant alfalfa cultivars. However, a long-term and large-scale field verification is needed to
assess the tolerance of different alfalfa cultivars to autotoxicity.

A mixture of diverse forage species is considered as another option to experimen-
tally prove effectiveness in improving forage productivity [65,66]. Directly, some highly
allelopathy-tolerant forage seeds can be used as a subsequent alternative for restoring
sparse natural grassland caused by allelopathy [67]. Additionally, the pattern of mixing
species also has another benefit for pastures. The mixture of rye with berseem clover
(Trifolium alexandrinum) may promote rye pathogen-resistant capabilities [68]. In the coex-
istence system of Artemisia adamsii with Stipa krylovii, volatiles emitted by A. adamsii can
strengthen photosynthesis of S. krylovii by enhancing stomatal conductance even with water
deficiency [69]. When grown with the P-mobilizing species Filifolium sibiricum, Leymus
chinensis exhibited greater shoot and root P content [70]. These positive interactions are
prevalent in pastures and mostly attributed to plant–plant chemical communication.

3. Allelopathy in Forests
3.1. Allelopathy in Natural Forests

Natural forests usually possess plant diversity and stable productivity. The role of
allelopathy and the mechanisms underpinning it remain poorly resolved in species-rich
forests, but allelopathy does contribute to natural forest regeneration. Forest regeneration
is commonly considered as a critical ecological process that sustains resource reproduction
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through the establishment of saplings and the replacement of dead trees; it has profound
implications for the perpetuation of tree species in the temporal and spatial dimensions.
However, long-term exposure to allelochemicals from woody species may create a barrier
effect on the understory-regenerated saplings, resulting in forest regeneration failure. In
particular, endangered and rare plant species are inherently difficult to generate due to
their scarce propagules and low adaptability. Allelopathy additively reduces the likeli-
hood of the sapling establishment and probably leads to locally rare species’ extinction.
Cinnamomum migao and Metasequoia glyptostroboides are two endangered woody species.
Their regeneration is extremely restrained, and the natural population would be gradually
diminished over time without active management. Generally, most natural populations
only occasionally have 1~2 saplings in their understories [71,72]. Recent studies found
that leaf extracts or litters of C. migao and M. glyptostroboides dramatically impeded their
seedling growth by impairing the lipid structure of the cell membrane, suggesting that
autotoxicity might aggravate the obstruction of the natural forest regeneration among some
endangered tree species [72,73].

Apart from autotoxicity or self-inhibition, allelochemical-mediated interspecific in-
teractions also hinder natural forest regeneration and impact the plant community’s com-
position. In the context of forests dominated by two tree species, dominant tree species
may chemically inhibit the sapling regeneration of the others. For example, Kandelia obovate
and Aegiceras corniculatum are two dominant species in mangrove forests. Leaf litter
leachates of K. obovate are detrimental to the propagule germination and sapling growth
of A. corniculatum, ultimately modulating the natural regeneration of the whole mangrove
forest [74]. In the later successional forests of maple-beech codominance (Acer saccharum
and Fagus grandifolia), the abundance of beech progressively increases as maple decreases
with the years. This result, in part, can be explained by the allelopathic advantage of beech
leading to the regeneration failure of maple [75,76].

Monopolistic herbaceous plants grown in the floor layer may inhibit natural forest
regeneration. For example, the natural regeneration of sessile oak (Quercus petraea) is often
hampered by the dense moor grass (Molinia caerulea) understory [77]. When watered with
root exudates of moor grass, a significant decrease in oak biomass occurred, suggesting the
allelopathic interference of moor grass in oak growth. Even though this negative impact
was lower than that of resource depletion, it demonstrated the crucial contribution of
herbaceous allelopathy to natural forest regeneration [78].

Based on the understanding of the allelopathic mechanisms underlying natural forest
regeneration, some appropriate methods of forest management are proposed to alleviate
the adverse effects of allelopathy and promote long-term natural regeneration. One of
the most direct and efficient ways is to reduce the frequency of allelopathic interactions
by removing litter, or eradicating the allelopathic species. Prevention of saplings from
potential allelochemicals facilitates the sustainability of forest health [78,79]. In addition,
attempts to enhance the diversity of the shrub layer and floor layer may be an alternative
way to promote natural forest regeneration [80].

3.2. Allelopathy in Tree Plantations

A tree plantation is an artificial forest for the large-scale production of wood; usually,
easily established and fast-growing tree species are selected as a monoculture forest. The
productivity and sustainability of tree plantations intimately links the economic and ecolog-
ical benefits of forestry. However, successive rotations of some forestry species may cause
a replanting problem or soil disease, resulting in a decline in productivity and the loss of
biodiversity in plantations [81,82]. Although the underlying mechanism for this issue is
still being disentangled, a growing amount of evidence has shown that allelochemicals
enriched in soil are mainly responsible for this problem [83,84].

Eucalyptus is one of the most widely planted forestry genera on the planet, but it has
suffered from autotoxicity for a long time. Most studies have demonstrated that allelochem-
icals of Eucalyptus penetrate into the soil through the decomposition of litter and leachates,
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exerting an allelopathic effect on understory plants, thus limiting the regeneration of na-
tive vegetation [85,86]. However, Zhang et al. (2016) argued that the poor establishment
of indigenous vegetation on plantations mainly arose from Eucalyptus roots rather than
Eucalyptus litter. Retention of understory litter is more likely to facilitate the performance of
native species [87]. Whatever the case is, a consensus is that allelopathy is more crucial than
resource competition in the replanting problem of Eucalyptus plantations [88]. Chinese fir
(Cunninghamia lanceolata) is another tree plantation severely disrupted by autotoxicity. Re-
generation failure and poor establishment have remained critical problems in monocultural
plantations of this species [89]. However, root exudates contribute more to soil allelochemi-
cals than the litter in Chinese fir plantations. Root-secreted allelochemicals, therefore, are
considered a primary source leading to the decline in the plantation of Chinese fir [90].

The mixture of multiple tree species is an effective way to improve the self-inhibition
and soil deterioration caused by allelopathy and allelochemicals in plantations [91–93]. In
Eucalyptus plantations, Albizia lebbeck, an introduced N-fixing species, has been regarded as a
’good partner’ to Eucalyptus. Mixed-species plantations of Eucalyptus with A. lebbeck increase
productivity and maintain soil fertility compared with pure Eucalyptus stands [91]. Similarly,
the establishment and productivity of autotoxic Manchurian walnut (Juglans mandshurica)
can be improved in the presence of larch (Larix gmelini). Larch root exudates and soil in
mixed-species plantations greatly stimulated the growth of Manchurian walnut seedlings
and rapidly degraded the allelochemical juglone [92]. The growth and regeneration of
Chinese fir is improved in Michelia macclurei and Chinese fir mixed-species plantations. One
of the explanations for this beneficial promotion is that there may be interspecific facilitation
mediated by the root exudates from M. macclurei, which not only attenuate the release
of allelochemicals from Chinese fir roots but also induce a microbial shift to accelerate
the decomposition rates of allelochemicals [93]. These studies illustrate the importance of
mixed-species stands in plantations. However, most successful mixtures were empirically
established from traditional practices, or were assessed from haphazard experimental
combinations. We lack effective strategies for a priori selection of mixtures to achieve
relevant benefits. Therefore, understanding intraspecific or interspecific allelopathy will be
a key step in screening appropriate combinations of tree species to design plantations.

3.3. Tree-Understory Vegetation Allelopathic Interactions

The canopy position and soil occupancy of dominant forest trees remarkably reduce
light and soil nutrient availability for understory vegetation. Even so, some shrub and
herbaceous species in understory vegetation can adapt to these diverse conditions and
coexist with trees. Apart from competition for resources, the allelopathy of the trees is an
interference mechanism for the growth of understory vegetation [94,95]. The allelopathic
trait of some trees is highly associated with forest abundance and biodiversity, particularly
for woody invasive species. The presence of allelopathic tree species in forests can reduce
the abundance of understory vegetation, ultimately becoming dense monospecific stands
and extending to the whole forests [96–98]. In this process, allelochemicals may act as a
meditator [99].

For the allelopathic effect of trees on understory plants, leaf litter and leachates have
long been considered the main source [100,101]. Leaf litter and leachates from trees
falling into the ground may prevent the colonization and development of understory
vegetation [102,103]. This suppression is mainly attributed to their physical and chemical
effects [104,105]. However, allelochemicals from leaf litter and leachates also have a mea-
surable effect on understory vegetation [106–108]. Through the decomposition of leaf litter,
allelochemicals can be gradually liberated into the soil and come into effect by altering soil
pH, nutrient availability, the nitrogen cycle and microbial community structures [109,110].
Especially intriguing is leaf litter and leachates that may modify plant coexistence in the
grass layer. For example, spotted knapweed and Bromus tectorum exhibit strong compe-
tition with each other, while leaf litter and leachates of Pinus ponderosa can mitigate the
competitive effect of spotted knapweed on B. tectorum. In other words, the presence of
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P. ponderosa shifted competitive outcomes through physical and allelopathic effects, thereby
indirectly facilitating B. tectorum by more strongly inhibiting spotted knapweed [111].

In some cases, leaf litter and leachates cannot solely show allelopathic potential. It
must unite other biotic or abiotic factors to jointly impact the ecological process [102,112].
Prosopis juliflora is one of the world’s most aggressive invasive species, the leaf litter of which
causes the increase of total phenolics in soil and toxifies understory vegetation [113]. When
incubated with similar levels of leaf leachate from P. juliflora, the content of allelochemicals
varies in different soil textures. Sandy soil accumulates higher levels of phenolics than
sandy loam soil due to the greater absorption of inactive phenolics fettered in sandy loam
soil [112]. In addition, the allelopathic effect of P. juliflora is also limited by soil moisture
because their water-soluble allelochemicals in the soil are more likely to be washed away by
rain. Therefore, P. juliflora could not manifest their allelopathic potential in humid soil. Only
in dry environments, P. juliflora can create a depressive impact on understory plants [114].

Dense understory species with highly allelopathic potential, in turn, may directly
slow the growth of trees and indirectly cause trouble by dissolving the fungal hyphae of
trees. Garlic mustard (Alliaria petiolata) is a typical understory invasive species that may
suppress fungal mutualists via allelochemicals, leading to significant declines in a series
of physiological and metabolic functions [115–117]. Nevertheless, arbuscular mycorrhizal
fungi (AMF) strains can be quickly selected by the allelopathic stress from garlic mustard.
After the initial decline in AMF abundance, resistant AMF strains gradually displace
sensitive AMF strains and the abundance rises again after the long-term invasion of garlic
mustard [118,119]. Moreover, as an invader, the novelty of allelochemicals to resident
species, regardless of the plant or microorganism, diminishes over time. Ultimately, garlic
mustard may enter a new coevolutionary relationship with native competitors and slowly
be integrated into the native community [120,121].

4. Allelochemicals in Grasslands and Forests
4.1. Category of Allelochemicals

All the occurrences of allelopathic phenomena can be attributed to a certain or a set
of allelochemicals. Allelochemicals and their properties largely determine the allelopathic
effectiveness. In the past decades, numerous old and new allelochemicals have been
detected and identified from herbaceous and woody species in grasslands and forests.
These allelochemicals involve a diversity of plant secondary metabolites, but are mainly
divided into three categories of phenolics, terpenoids and nitrogen-containing compounds.

Phenolics have a wide distribution in plants and represent a diverse group of com-
pounds with an aromatic ring possessing at least one hydroxyl group and possibly other
substituents, including simple phenolic acids, coumarins, flavonoids and quinones. In
forests, a tremendous amount of lignin from litter is decomposed into a variety of phenolic
acids. These lignin-derived phenolic acids are main allelochemicals in forest soil, leading
to a decline in forest species’ abundance and biodiversity. For example, the soil of the
Eucalyptus urograndis plantation contains high levels of hydroxybenzoic, vanillic, coumaric
and ferulic acids (Figure 1), resulting in autotoxicity of E. urograndis [85]. However, the
allelopathic effect of phenolic acids is concentration-dependent. In particular, individual
phenolic acids are insufficient to effectively suppress the growth of co-occurring plants, but
their mixtures exhibit phytotoxic effects [122].
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Many coumarins possess phytotoxicity and act as potential allelochemicals in grass-
lands and forests. Coumarin exacted from the leaf of Gliricidia sepium was identified as
an allelochemical to inhibit the growth of plants [123]. Umbelliferone and daphnoretin
(Figure 1) are two coumarin allelochemicals in Stellera chamaejasme [38]. Umbelliferone can
inhibit plant growth by inducing membrane lipid peroxidation and retarding cell division,
while daphnoretin inhibits plant growth by arresting the mitosis process [124].

Flavonoids generally perform a broad range of ecological functions. Several flavonoids
have proved to be allelochemicals in grasslands and forests. Isoliquiritigenin (Figure 1) is
a flavonoid allelochemical in Glycyrrhiza uralensis. It is able to trigger a chain of reactions
in plant cells, including the overproduction of reactive oxygen species, lipid peroxidation,
and a decline in cell vitality and chlorophyll content, ultimately resulting in seedling
growth inhibition [125]. Another flavonoid, kaempferol-3-O-β-D-glucoside (Figure 1), is an
allelochemical of Solidago canadensis [126]. Catechin (Figure 1) is a controversial flavonoid
allelochemical secreted by spotted knapweed. Many studies have found high catechin
concentrations in spotted knapweed soils [127,128] and proposed that catechin acts as a
novel allelochemical of spotted knapweed, which contributes to growth limitation of the
native plants [18]. However, several studies pointed out that catechin was hardly present
in the bulk soils of spotted knapweed, and possessed low phytotoxicity to a variety of plant
species [27,28].

Quinones are the classical allelochemicals in forests. Juglone (Figure 1) is an exclusive
allelochemical of Juglandaceae family and represents one of the best-known members of
quinones [129]. Initially, juglone is stored in leaves, barks and roots in the form of non-toxic
naphthol O-glycoside. When released from plant living tissues to the environment, it is
hydrolyzed into a less phytotoxic naphthol, and subsequently oxidized into phytotoxic
juglone. The allelopathic mechanisms of juglone are associate with the disruption of leaf
photosynthesis, transpiration, respiration and stomatal conductance. Additionally, juglone
has high stability in soil. The toxicity of juglone can maintain for up to a year in spite of the
removal of the walnut trees [130].

Terpenoids, including monoterpenes, sesquiterpenes, diterpenes, triterpenes and
steroids, are a class of compounds derived from the 5-carbon isoprene. Monoterpenes
and their derivatives possess strong volatility and may interact with neighboring plants
in their gaseous phase. Volatile allelochemicals emitted by donor plants generally impact
surrounding plants through two main pathways, either forming ’terpene clouds’ of directly
impacted target plants [16], or leaching into the soil of indirectly affected target plants. The
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volatiles of A. frigida contain a copious quantity of terpenoids, among which monoterpene
camphor is a key allelochemical affecting the neighboring species [36]. Another monoter-
pene, (−)-α-thujone, emitted from Thuja occidentalis (Figure 2), can display phytotoxic
activities against seed germination and seedling growth of Taraxacum mongolicum and
Arabidopsis thaliana [131]. β-Caryophyllene (Figure 2), a sesquiterpene within the needle
litter of Pinus halepensis, exerts a deleterious effect on the germination and growth of
herbaceous target species [132]. Dihydromikanolide (Figure 2) is another sesquiterpene
allelochemical from Mikania micrantha, which contributes to promoting soil bacterial diver-
sity but reduces fungal diversity [133]. Two diterpenes, ent-kaurene and phyllocladane
(Figure 2), isolated from senescent needles of Araucaria angustifolia can act as allelochemi-
cals to inhibit the germination and seedling growth of neighboring plants [134]. Similarly,
diterpene allelochemicals, 7-oxodehydroabietic acid and 15-hydroxy-7-oxodehydroabietate
(Figure 2), were found in the understory soil of Pinus densiflora. Both allelochemicals may be
the underlying cause of sparse understory vegetation within the P. densiflora canopy [135].
Besides, some pentacyclic triterpenoids may function as allelochemicals, such as betulinic,
oleanolic and ursolic acids (Figure 2) within the litter of Alstonia scholaris, limiting the
growth of co-occurring species by inhibiting seed germination, radicle growth and the
functioning of photosystem II [136].
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Nitrogen-containing compounds mainly include alkaloids, non-protein amino acids,
benzoxazinoids and cyanogenic glycosides. Compared with phenolics and terpenoids,
nitrogen-containing allelochemicals are relatively unknown. However, several specialized
nitrogen-containing metabolites have been identified as allelochemicals that have signifi-
cant ecological implications for grasslands and forests. Hexadecahydro-1-azachrysen-8-yl
ester (Figure 3), identified as a potential alkaloid allelochemical in Imperata cylindrica, can
reduce root growth and mycorrhizal colonization [137]. There are many non-protein amino
acids involving allelopathic interferences with co-occurring species in grasslands (Figure 3).
meta-Tyrosine of fine fescue grasses (Festuca rubra) can interfere with the root development
of competing plants [138]. Mimosine of Leucaena leucocephala can retard plant growth
by blocking the cell division of protoplasts and disturbing the associated enzyme activ-
ity [139]. L-Canavanine of Vicia villosa not only exerts the phytotoxic effect by disrupting



Forests 2023, 14, 562 10 of 22

the arginine metabolism in the plants but also significantly alters the microbial community
composition and diversity in soil [140,141]. A novel cyclic dipeptide (6-Hydroxy-1,3-
dimethyl-8-nonadecyl-[1,4]-diazocane-2,5-diketone) (Figure 3) has been found in Chinese
fir; it is a highly active allelochemical to be responsible for serious replanting problems
in plantations [142]. Benzoxazinoids are a class of well-known nitrogen-containing al-
lelochemicals, among which 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)
and 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) (Figure 3) can be released by
rye and exert strong suppression of plant growth [143,144]. Cyanogenic glycosides are
specialized metabolites derived from amino acids. Sinigrin (Figure 3), as an allelochemical
of cyanogenic glycosides from garlic mustard and broccoli (Brassica oleracea); it can lead to
the poor establishment of North American forests by disrupting the AMF symbionts [145].
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4.2. Identification and Detection of Allelochemicals

Allelochemicals can be either unknown or known in plants and their environments.
Unknown allelochemicals have to be identified by non-targeted analysis, while known
allelochemicals can be detected by targeted analysis. The identification of unknown allelo-
chemicals first isolates pure individuals from sample components, and then the individuals
can be determined and analyzed by mass spectrum, infrared spectrum and nuclear mag-
netic resonance [11]. Such non-targeted analysis may investigate which allelochemicals
are responsible for the allelopathic interactions in a given system. Therefore, applying
non-targeted analysis for identification of unknown allelochemicals has been key to under-
standing the ecological role of allelopathy in grasslands and forests.

Compared with the identification of unknown allelochemicals, detection of known
allelochemicals is straight forward. Targeted analysis of known allelochemicals is usu-
ally conducted by means of gas or liquid chromatography coupled with tandem mass
spectrometry (GC-MS/MS, LC-MS/MS). GC-MS/MS is the most preferred technique for
qualitative and quantitative assessment of volatile allelochemicals. In contrast, non-volatile
allelochemicals with relatively high molecular weight, mainly produced and released from
root exudation and plant decomposition, can be analyzed with LC-MS/MS.

Understanding the functional significance of allelopathic plant–plant interactions
and processes occurring in grasslands and forests requires accurate information about the
quantity, quality and spatiotemporal dynamics of allelochemicals. The best way to trap and
detect allelochemicals in vivo, in situ and real time from living plants and their environ-
ments remains a problem. Accordingly, it is warranted to develop analytical methods that
are more realistic or closer to the actual field situation [146]. Phillips et al. (2008) designed
an experimental system employed to trap root exudates from intact tree roots in situ. This
method can account for the spatial heterogeneity and temporal dynamics of forest soils and
root systems [147]. A recent study has developed quick and in situ detection of allelochem-
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icals in Taxus soil by microdialysis combined with UPLC-MS/MS [148], providing a more
finely tuned picture of allelochemical dynamics in grasslands and forests.

4.3. Activity-Concentration Relationship of Allelochemicals

The action of allelochemicals is concentration-dependent. Thus, the activity–concentration
relationship is crucial for allelochemical interference, particularly for their presence at the
phytotoxic level in the soil. Although soil abiotic factors such as pH, enzyme activities, organic
matter and nutrient availability contribute to the change of allelopathic activity, microbial effects
are undoubtedly the most crucial factor that affect allelochemicals in the soil. Soil microbes
determine the below-ground transportation and intensity of allelochemicals. Accordingly, the
fate and dynamics of allelochemicals are mainly attributed to soil biological processes, and
potential abiotic controls. For instance, flavonoid allelochemicals have high persistence in soil
because they are decomposed very slowly and last a long time in soil, which favors suppression
of the emergence and growth of plants and modification of the soil’s properties, even at the low
levels [149]. However, a recent study has found that soil organic carbon decreases the lifetime
of flavonoids underlying plant–microbe interactions. In particular, the dissolved organic carbon
in soils can repress flavonoid bioavailability and attenuates the efficacy of flavonoid-based
plant–microbe communication [150].

Allelochemicals in grasslands and forests have differential concentrations, activi-
ties and categories. Most phenolics at a high concentration show allelopathic activities.
Terpenoids and nitrogen-containing allelochemicals may impact plant species at a low con-
centration (Table 1). Accordingly, the action of phenolics involved in allelopathy requires a
considerable amount of them, representing quantitative allelochemicals. In contrast, the act
of terpenoids and nitrogen-containing allelochemicals greatly depends on their category
rather than their amounts, representing qualitative allelochemicals. In addition, qualita-
tive terpenoids with a diversity of allelochemicals frequently occur in annual grasslands,
while quantitative phenolics with a few specialized allelochemicals occur in perennial
forests. This is due to the production and release of allelochemicals in perennial forests by
large-scale litter decomposition.

Table 1. The phytotoxic level of important allelochemicals in grasslands and forests.

Allelochemicals Class Targeted Species IC50/µM * Sources

Vanillic acid Phenolic acids Lactuca sativa 950.2 [151]
Hydroxybenzoic acid Phenolic acids Lactuca sativa 2470.0 [152]

Coumaric acid Phenolic acids Lepidum sativum 1120.0 [153]
Ferulic acid Phenolic acids Arabidopsis thaliana 1099.0 [154]

Juglone Quinones Lactuca sativa 50.0 [155]
Coumarin Coumarins Lactuca sativa 23.3 [55]

Umbelliferone Coumarins Lactuca sativa 430.0 [124]
Daphnoretin Coumarins Lactuca sativa 1558.3 [124]

Isoliquiritigenin Flavonoids Lactuca sativa 823.4 [125]
Camphor Monoterpenes Lactuca sativa 50.0 [156]

(−)-α-Thujone Monoterpenes Taraxacum
mongolicum 140.2 [131]

Betulinic acid Triterpenes Lactuca sativa 78.8 [136]
Oleanolic acid Triterpenes Lactuca sativa 94.2 [136]

Ursolic acid Triterpenes Lactuca sativa 101.6 [136]

Cyclic dipeptide Nonprotein amino acids Cunninghamia
lanceolata 12.5 [141]

meta-Tyrosine Nonprotein amino acids Lactuca sativa 17.0 [138]
Mimosine Nonprotein amino acids Lactuca sativa 300.0 [155]
DIMBOA Benzoxazinoids Lepidium sativum 542.3 [157]
DIBOA Benzoxazinoids Lepidium sativum 493.1 [157]

* Half-maximal inhibitory concentrations.

In many studies, the applied concentrations of allelochemicals were greater than those
detected in the environment. This issue was because the concentrations of allelochemicals
detected would be locally much higher in intact soils. Extractions would have diluted the
allelochemicals over large soil volumes. Additionally, frequent allelochemicals provided
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over a long term at low concentrations can have powerful effects. Thus, even if the actual
concentration of allelochemicals in the environment was still substantially lower than
the necessary concentration to impact neighboring plant species, an effect would still be
expected, because in the environment, there would be a constant release of allelochemicals.

5. Allelochemicals Mediate Below-Ground Interactions and Plant–Soil Feedback
5.1. Below-Ground Chemical Interactions

The action of allelochemicals requires their presence in the environment. Environmental
factors such as temperature, light, soil nutrients and microorganisms may strengthen or alle-
viate the allelochemical activity. This adjustment of the action of allelochemicals in response
to the environment reflects the adaptability of the allelopathic plants [9]. Most allelochemi-
cals shift from plants into the soil following root exudation, decomposition, volatilization
and leaching. These allelochemicals dispersing in the soil inevitably interact with a variety
of below-ground components particularly for root placement pattern [158], soil nutrient
availability, microbial community structure, mycorrhizal fungi colonization, and subsequent
plant–soil feedback [8]. Therefore, the biodiversity, productivity and sustainability of grass-
lands and forests may be driven by allelochemical-mediated below-ground interactions and
plant–soil feedback. Such a conceptual framework is outlined in Figure 4.
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Figure 4. Allelochemical-mediated below-ground interactions and plant–soil feedback.

The root is a vital organ interacted with soil. In response to the soil environment, a
plant may place its roots in intrusive (approaching), avoidant (repelling) or unresponsive
patterns [159]. Such root placement patterns, particularly for intrusive and avoidant
patterns, may be driven by allelochemicals [160,161], altering below-ground ecological
interactions and ultimately affecting plant performance and productivity (Figure 4). A
recent study has revealed that pairwise allelopathic plant–plant interactions generate
all possible combinations of intrusive, avoidant and unresponsive root placement [158].
Allelopathic species showed a general tendency toward root intrusion, while most target
species adjusted root placement to avoid root-secreted allelochemicals from allelopathic
species [158]. Similar allelochemical-mediated root responses have been observed in forage
grass and tree species, such as avoidant response of annual ryegrass (Lolium rigidum) roots to
neighboring allelopathic canola (Brassica napus) [162], and root avoidance in mixed-species
plantations of Chinese fir and Michelia macclurei [93].
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Allelochemical-mediated root placement patterns may contribute to plant–microbe
interactions that control vital below-ground processes [158,163]. Allelochemicals are im-
portant carbon sources of soil microorganisms that determine the changes in microbial
composition and community, and then affect the activation and circulation of soil nutrients
(Figure 4). Cinnamic acid can significantly alter soil microbial community functional diver-
sity and genetic diversity [164]. The hyphal branching of AMF is induced and stimulated
by flavonoids, and flavonoid-associated microorganisms can colonize the roots of a very
wide range of plants in order to increase nutrient uptake, especially that of P, and enhance
the plant health [165]. Allelochemicals also directly participate in the activation and cycling
of soil nutrients. p-Hydroxybenzoic acid can alter the form of soil N, causing Chinese fir
seedlings to shift their N uptake preference from NO3

− to NH4
+ [166].

In grassland ecosystems, allelochemicals exuded by toxic weeds may trigger a series
of changes in soil enzyme activities, pH, nutrient availability and mycorrhizal fungal
colonization [12,13,167]. In particular, the exudate-induced alteration of the soil microbial
community heavily promotes the expansion of toxic weeds by supplying higher rhizosphere
nutrients [14,45]. Compared with the soil free of toxic weed Stellera chamaejasme, the
soil infested with S. chamaejasme exhibited lower nutrition, organic matter, fungal alpha
diversity, and relative abundance of AMF, but a higher abundance of pathogenic fungi [13].
Moreover, S. chamaejasme root exudates were alkalescent (pH = 9.28) and had a negative
effect on the rate of mycorrhiza infection and spore density of the AMF [167]. Together,
allelochemicals exuded from S. chamaejasme might increase the soil pH, reduce the soil
nutrient availability, damage the AMF of other plants and recruit more pathogenic fungi,
thereby posing a great threat to grassland vegetation [167].

In forest ecosystems, the roots of most tree species are extensively infested with obli-
gately soil-borne fungi and mycorrhizas that assist plants in nutrient acquisition, pathogen
resistance and carbon transportation [168,169]. Several studies found the critical role of
soil microorganisms in the maintenance of Eucalyptus plantations, which may mitigate
the allelopathic effect of E. grandisis leachates [170]. Specifically, a lower content of total
phenolics occurred in nonsterile soils than in sterile soils when both were exposed to the
E. grandisis leachates [171]. In addition, root-associated fungi probably utilize Eucalyptus
allelochemicals as a carbon source to decompose, ultimately alleviating the allelopathic
effect of Eucalyptus. AMF colonized in Eucalyptus roots could better protect woody species
from the allelopathic interference of Eucalyptus [172,173]. Allelochemicals of Chinese fir not
only exert a direct phytotoxic effect on plant roots but also indirectly disturb the soil micro-
bial community’s composition and structure. Compared with the first rotation plantation,
allelochemicals of Chinese fir probably suppress beneficial mycorrhizal species while pro-
moting harmful fungi in the second rotation plantation, resulting in the deterioration of the
soil microbial community [174]. Interestingly, the hyphal network enables allelochemicals
of Juglans nigra to extend their bioactive zone and promote the effectiveness of allelopathy,
indicating the importance of AMF in the movement of allelochemicals [175,176]. In another
example, the leaf litter of nonmycorrhizal willows (Salix glauca and Salix brachycarpa) cannot
reduce AMF colonization of understory herbaceous plants, but transplanted ectomycor-
rhizal willows can suppress AMF colonization of herbaceous hosts through the interaction
of leaf litter and ectomycorrhizal fungi [177]. In addition, some soil fungi function as a
’shield’ to protect plant roots from the attack of allelochemicals. E. urophylla root-associated
fungi have the ability to partly offset the autotoxicity of phenolic acids [172].

On the other hand, allelochemicals are able to either promote or reduce the abundance
and diversity of soil microbes. The leachate of Acacia dealbata can modify the soil microbial
community’s assembly, leading particularly to a prominent decline in bacterial richness and
diversity in pine forest soil [109]. Likewise, extracts of Eupatorium adenophorum, especially
from its leaves, can reduce bacterial richness and diversity in soils, [178]. Additionally, root
exudates of V. villosa can shift the soil microbial community’s composition, particularly
increasing the abundance of Firmicutes and Actinobacteria while decreasing that of Pro-
teobacteria and Acidobacteria [141]. In contrast, the litter of P. juliflora benefits the growth
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and reproduction of some soil microbes and can stimulate the soil microbial biomass carbon
and soil metabolic quotient [179]. Similarly, the litter of Mikania micrantha can increase
soil bacterial richness, yet decrease fungal richness, which enhances immediate nutrient
availability and provides ecological advantages to M. micrantha [133]. Plus, allelochemicals
may facilitate the reduction of soil pathogens. Aqueous root extracts of Diplotaxis tenuifolia
can inhibit the activity of Phytophthora cinnamomi [180], illustrating that D. tenuifolia can
be exploited for biological control in pathogen suppression. These studies indicate a shift
in bacterial diversity, or a shift from fungal richness toward bacterial richness. However,
there is a lack of data on the functional shifts’ impact on the affected grasslands and forests,
which calls for further studies.

5.2. Below-Ground Chemical Interactions Drive Plant–Soil Feedback

Plant–soil feedbacks (PSFs) are interactions among plants, soil organisms, and abiotic
soil conditions that influence plant performance, plant species diversity and community
structure, ultimately driving ecosystem processes [8]. Allelochemical-mediated below-
ground interactions may alter PSFs and their potential consequences for ecosystem func-
tioning. Allelochemicals influence PSFs through the performance of interacting species and
altered community composition resulting from changes in species distributions. Allelo-
chemicals affect plant inputs into the soil subsystem via litter and rhizodeposits. Further,
root-exuded and litter-decomposed allelochemicals modulate microbial succession. These
interactive effects may cause specific PSFs where the match between the species identity of
living roots and litter can modify decomposition and feed back to plant nutrition [7,8].

Allelochemical-mediated below-ground interactions drive plant–soil feedback in grass-
lands and forests (Figure 4). In grasslands, S. chamaejasme exudes allelochemicals that incur
the change of soil pH and nutrient availability, which partly contributes to the inhibition of
adjacent L. chinensis [165]. Similarly, spotted knapweed can reduce the total soil carbon and
nitrogen content and alter the soil elemental composition via allelochemicals, subsequently
impacting soil ecosystem function and impeding the native plant growth [181]. Allelochem-
icals of M. micrantha can enhance the abundance of soil ammonia-oxidizing bacteria and
promote the N cycling process. This plant–soil feedback by which M. micrantha improves
soil N transformation facilitates its invasion in natural environments [182]. In forests, litter
of Robinia pseudoacacia through allelopathy decrease understory soil nutrient availability,
especially of P, and then hinder the growth of Phytolacca americana. This negative plant–soil
feedback might underlie the limiting factors in the invasion of exotic plants [183]. Likewise,
Juniperus virginiana exudes allelochemicals into the soil that allow the collapse or transfor-
mation of soil microbial communities, followed by inhibiting the growth of certain grass
species through negative plant–soil feedback [184].

Importantly, many of these plant–soil feedback are species-specific and are greatly
affected by the identity of co-occurring plant species. The presence of co-occurring plant
species can alter the direction of plant–soil feedback as a result of long-lasting effects on
below-ground interactions and plant responses to subsequent allelochemicals (Figure 4). In
successful mixed-species tree plantations, an appropriate species can enhance autotoxic
species growth through below-ground chemical interactions. For example, the presence
of larch and M. macclurei can improve the establishment and productivity of autotoxic
Manchurian walnut and Chinese fir in their mixed-species plantations. This is due to the fact
that root exudates of larch and M. macclurei can facilitate the growth of autotoxic species and
increase the degradation of allelochemicals from autotoxic species [92,93]. Accordingly, the
allelochemical context alters the consequences of the below-ground ecological interactions,
resulting in positive plant–soil feedback in mixed-species plantations.

6. Challenges and Opportunities

The importance of allelopathy and allelochemicals cannot be overemphasized in grass-
lands and forests. Recent efforts have made considerable progress toward understanding
allelopathy and allelochemicals in grasslands and forests. Nevertheless, the functional
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consequences of allelopathy for plant communities in natural and managed grasslands and
forests remain unsolved.

To confirm whether plant–plant allelopathic interactions occur in a grassland or a
forest, there are four steps: (1) to find and select ecologically relevant plant species through
field observation and investigation; (2) to determine that the selected plant species can
produce and release allelochemicals into the environment through appropriate pathways
(volatilization, leaching, root exudation or/and residues decomposition); (3) to qualify and
quantify allelochemicals and their migration and transformation in soil; (4) to verify the
effect of allelochemicals at effective states and concentrations on neighboring plants. These
steps and processes involve multiple biotic and abiotic factors, but the focus and central
driver must be allelochemicals. However, identifying when and how plant species produce
and release allelochemicals is challenging.

An increasing number of studies have shown that the production of allelochemi-
cals depends on the identity of neighboring plants. Allelopathic plants are capable of
discriminating between their neighboring competitors and collaborators, adjusting their
production of allelochemicals accordingly [185]. In particular, allelopathic plants may
detect competing neighbors and respond by increasing allelochemicals to inhibit them,
thereby maximizing their own growth. Accordingly, allelopathic interference involves two
inseparable processes of plant neighbor detection and allelochemical response via signaling
interactions [185], and even intraspecific kin recognition [186,187]. Particularly intriguing
is intraspecific kin recognition’s contribution to interspecific allelopathy and improving
plant productivity [188]. (–)-Loliolide, jasmonic acid and several chemicals are responsible
for these signaling interactions [161,189–191]. Importantly, these signaling chemicals are
ubiquitous in plant species. Such plant neighbor detection and allelochemical response, as
well as their underlying mechanisms, will provide a wealth of research opportunities in
grasslands and forests.

In fact, plant species occurring in grasslands and forests can take advantage of both
allelochemicals and signaling chemicals released by neighbors, regulating intraspecific
and interspecific interactions. Allelochemicals and signaling chemicals synergistically
interact to influence plant coexistence, diversity and community structure in grasslands
and forests. Plant neighbor detection and allelochemical response have been found in sev-
eral mixed-species tree plantations [90,91]. Interestingly, kin recognition could even help
forests regenerate. A family of firs may grow faster than unrelated trees by tracing flows of
nutrients and chemical signals between trees connected by underground fungi [186,192].
Therefore, revealing the intraspecific and interspecific interactions mediated by allelochem-
icals and signaling chemicals in grasslands and forests can not only broaden our insight
into the key processes and mechanisms of the land surface, but also enhance our ability to
predict terrestrial ecosystems’ responses to global changes.
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