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Abstract: The accurate leaf-wood separation of individual trees from point clouds is an important yet
challenging task. Many existing methods rely on manual features that are time-consuming and labor-
intensive to distinguish between leaf and wood points. However, due to the complex interlocking
structure of leaves and wood in the canopy, these methods have not yielded satisfactory results.
Therefore, this paper proposes an end-to-end LWSNet to separate leaf and wood points within the
canopy. First, we consider the linear and scattering distribution characteristics of leaf and wood
points and calculate local geometric features with distinguishing properties to enrich the original
point cloud information. Then, we fuse the local contextual information for feature enhancement
and select more representative features through a rearrangement attention mechanism. Finally, we
use a residual connection during the decoding stage to improve the robustness of the model and
achieve efficient leaf-wood separation. The proposed LWSNet is tested on eight species of trees with
different characteristics and sizes. The average F1 score for leaf-wood separation is as high as 97.29%.
The results show that this method outperforms the state-of-the-art leaf-wood separation methods
in previous studies, and can accurately and robustly separate leaves and wood in trees of different
species, sizes, and structures. This study extends the leaf-wood separation of tree point clouds in
an end-to-end manner and demonstrates that the deep-learning segmentation algorithm has a great
potential for processing tree and plant point clouds with complex morphological traits.

Keywords: leaf-wood separation; convolutional neural network; contextual information fusion;
rearrangement attention mechanism

1. Introduction

The phenotyping of plant morphological traits is important in plant breeding and
intelligent forest management. Trees, with superior environment-protecting functions, are
ecologically important to the living conditions of the residents; their spatial structure and
corresponding vegetation parameters are the main objectives of forest resource surveys and
ecological environment simulations [1]. Trees are composed of photosynthetic materials
(leaves) and a non-photosynthetic active material (wood). Because the physiological
functions of leaves and woody parts are different, the separation of leaves and wood
in individual trees is a prerequisite and basis for many studies (i.e., phenotypic trait
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extraction and leaf area index estimation) [2]. Traditionally, optical image is the widely
used data for leaf-wood separation task. However, most optical images are devoid of
important spatial information, restricting the leaf-wood separation task in several trees
with a complex structure [3]. By contrast, many emerging 3D sensors (i.e., laser scanning
system, structured light, and light detection and ranging (LiDAR)) can quickly collect high-
precision point clouds, characterizing the complete 3D spatial information. In the recent
years, laser scanning point clouds have been widely used for high-precision phenotyping in
the forest, agriculture, and grass, which shows great potential in the leaf-wood separation
of individual tree. However, the point clouds acquired by LiDAR are often large and
disordered, and contain significant noise interference, which makes leaf-wood separation
based on point clouds more challenging. In the dense vegetation distribution areas, the
data occlusion and overlapping problems can easily cause over-segmentation or under-
segmentation, restricting lots of traditional feature-engineering methods on the leaf-wood
separation from tree point clouds. Therefore, it is important to explore accurate, efficient,
and robust leaf-wood separation methods for practical and production applications.

Many studies have been proposed to separate leaves and wood in the terrestrial laser
scanning (TLS) of point clouds [4–11]. The existing methods for leaf-wood separation are
based on [2] (1) the geometric features of point clouds; (2) backscattered intensity as the
primary or complementary data source; and (3) machine-learning methods. However,
they are still relatively immature and face challenges in performing leaf-wood separation
in TLS point clouds. As shown in Figure 1, TLS-acquired point clouds have an uneven
distribution, holes caused by inter-canopy occlusion, different tree sizes and canopy shapes,
and complex and diverse internal canopy structures. Most methods rely on laborious
manual work or user input of specific data features. These potential drawbacks make the
application to different data quality and different tree species datasets less generalizable [8].
In particular, when the internal structure of tree canopies is complex, it is not possible to
accurately classify leaves and wood that are close to each other.
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Recently, benefitting from the advances in convolutional neural network architectures,
deep-learning-based methods have shown better performance in object recognition and
semantic segmentation. They can extract abstract, high-dimensional features with a high
generalization ability from a large number of datasets [12,13]. Qi et al. [12] were the first to
propose a network model that acts directly on point clouds to propagate features through
an isotropic multilayer perceptron, laying the foundation for a single wood point cloud
leaf-wood separation. On this basis, many scholars have investigated leaf-wood separation
using deep-learning methods [14–16], which typically use disorderly operations for local
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feature aggregation. Despite these early efforts, the contextual information of point clouds
is not fully utilized in the leaf-wood separation from point clouds. Specifically, the existing
deep-learning networks still lack generalization ability on the leaf-wood separation of
different tree species with diverse leaf shapes and canopy structures [1].

In summary, this paper aims to propose a point-based leaf-wood separation model
that uses the geometric features of wood and leaf points to enrich the original point cloud
information, fuses contextual information by a rearrangement attention mechanism to
enhance the features, and adds residual connections to robustly and efficiently distinguish
between leaves and wood of different tree species in different environments. The main
contributions of this paper are as follows:

• Enriching the original point cloud information by analyzing the structure of leaf and
wood points in the canopy and combining local geometric features and point cloud
location information;

• Implementing a point-based local context information fusion module, extracting repre-
sentative local features through a rearrangement attention mechanism, and improving
the robustness of the model using a residual connection during the decoding stage to
achieve efficient leaf-wood separation;

• Demonstrating that the average F1 score of leaf-wood separation on eight tree species
with different features and sizes is as high as 97.29%—it has better performance
compared with leaf-wood separation methods in previous studies.

2. Related Work

To separate the leaves and wood in tree point clouds, geometric-feature-based [11] and
intensity-feature-based [4] approaches are commonly used. A common geometric-feature-
based strategy is a machine-learning classifier that relies on feature descriptors. Knowledge-
able and discriminative features are extracted from the spatial arrangement of neighboring
points using chunk-based methods [17,18], voxel-based methods [19,20], KD-tree-based
methods [21], K-nearest-neighbor search algorithms [22], or spherical neighborhood-search-
based methods [23]. Studies have shown that machine-learning methods using geometric-
feature-based approaches [7,24,25] can effectively distinguish between leaves and wood.
Although methods such as random forest (RF) algorithms [26], Gaussian mixture models
(GMM) [27], and support vector machine (SVM) algorithms [28] are independent of forest
type and data quality, they require the computation of a large number of feature descriptors.
Unsupervised learning methods based on clustering of specific geometric attributes, such
as the DBSCAN algorithm [29] and the LeWos model [30], obtain the geometric structures,
such as planarity and linearity, of leaves and wood and set debugging thresholds to separate
leaf and wood points based on experience.

In general, wood points are regular with high spatial continuity while leaf points
are irregular with low spatial continuity. Wang [31] first decomposed the point cloud
into semantically homogeneous superimposed points using the perpendicularity and
density features, and then classified the overlapping wood and leaf points using the
orientation characteristics and linear features. Wan et al. [32] propose a segmentation
classification strategy by using a point cloud local curvature and connection-component-
labeling algorithm. Tan et al. [2] remove leaf points from wood points by successively
using geometric quantities derived from curvature features, calibration density, and salient
features. Zhang et al. [9] use the principal component analysis method and minimization
information entropy criterion to achieve the optimal neighborhood scale selection, and then
adopt the DBSCAN algorithm to achieve the accurate extraction of tree trunk points. The
main drawback of these geometric-data-based methods is their computational intensity and
time-consuming nature, particularly when dealing with a large number of TLS point clouds.

Intensity-based methods [4] operate on the assumption that tree components possess
distinctive optical properties at the laser scanner’s operational wavelength. Tan et al. [33]
use a polynomial model to correct for intensity values and then apply a k-means cluster-
ing method to obtain two classification categories. However, there are limitations to the
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intensity-based approach, which presupposes that leaves and wood have distinct optical
properties at the normal operating wavelength of the laser scanner. This wavelength is fre-
quently influenced by factors such as distance, local laser exposure, and angle of incidence
and must be calibrated specifically for each instrument. If calibrated, the intensity data may
be merged with geometric features, potentially offering advantages over utilizing a single
method [26]. Furthermore, in the future, the study of multi-band LiDAR systems [34,35]
could be employed to distinguish between leaf and wood points.

In recent years, there are also some scholars based on the graph method for the
separation of wood and leaf points. This approach is based on the principle that tree
points can be arranged into a connected topological network, and wood–leaf separation is
performed by applying the shortest path analysis [10]. Xu et al. [36] design new topological
geometric features in the learning process and a new least-cost path model to further
separate wood and leaf points. Tian et al. [37] propose an automatic and robust GBS
method using only point cloud xyz information based on the point cloud segmentation,
cluster recognition, and region growth. However, such methods have poor performance
when encountering large number of points and small branches.

Currently, more and more researchers are turning to deep-learning-based point-cloud-
processing methods. Hugues et al. [38] define a kernel point-based display convolution
kernel to improve the performance of semantic segmentation of point clouds. Wang
et al. [39] combine semantic and instance segmentation to extract individual roadside
trees from vehicle-mounted mobile laser scanning point clouds. Ao et al. [40] perform
automatic segmentation of maize monocots based on convolutional neural networks, while
Li et al. [41] develop a plant point cloud segmentation technique, DeepSeg3DMaize, incor-
porating high-throughput data collection and deep learning. However, these methods have
not been tried on wood–leaf separation. Dai et al. [16] propose a directionally constrained
and a-priori-assisted neural network for separating wood and leaves from terrestrial laser
scanning, but the method does not take the rich contextual information into account. There-
fore, this paper considers feature enhancement by fusing contextual information through a
rearrangement attention mechanism to improve the performance of wood–leaf separation.

3. Materials and Methods
3.1. Experimental Datasets

Separating leaf and wood from tree point clouds is examined in this study. To validate
the effectiveness of the leaf-wood separation algorithm, we selected a dataset of 61 large
trees from eastern Cameroon, as presented in the work of Wang et al. [30]. These data
were used to calculate the tree biomass and calibrate the anisotropic growth model. The
dataset covered a total of 15 different tree species, with trees ranging from 8.7 m to 53.6 m
in height (mean value of 33.7 ± 12.4 m) and from 10.8 cm to 186.6 cm in diameter at breast
height (mean value of 58.4 ± 41.3 cm). The leaf and wood points of each tree were marked
manually, which took 1–15 h and required a significant amount of manual handling time.
For this paper, we selected eight of these trees, with the species being Soyauxii, Frake,
Scleroxylon, Sapelli, Baphia nitida, Pygeum oblongum, Macrocarpa, and Barteri. One to
three trees of the same species were selected to train the network model, and the details of
the eight trees are shown in Table 1.

Table 1. Information about the eight species of trees.

Specie Height (m) Diameter at Breast Height (cm)
Tree 1 SO 49.2 50.5
Tree 2 FR 48.3 80.5
Tree 3 SC 49.7 108.5
Tree 4 SA 47.3 153.4
Tree 5 BN 26 51
Tree 6 PO 21.8 17.8
Tree 7 MA 40.6 98.5
Tree 8 BA 29.4 26.7
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3.2. Overview of the Proposed Method

The proposed method directly employs point cloud co-ordinates (i.e., xyz) and distinct
geometric features (e.g., linear) as inputs to predict the semantic label of each point in an
end-to-end manner. Figure 2 illustrates the overall architecture of the proposed LWSNet,
which employs a downsampling and upsampling U-Net as the backbone network. During
the downsampling stage, the features are gradually mapped to a high-dimensional feature
space, and the receptive field is gradually enlarged to acquire higher-level, more abstract
features. During the upsampling stage, the original spatial resolution is restored layer by
layer, and richer high-dimensional features are extracted through residual connections,
enhancing the model’s robustness. The proposed LWSNet comprises three key compo-
nents: (1) local geometric feature extraction; (2) local contextual feature enhancement via a
rearrangement attention mechanism; and (3) residual connection optimization during the
upsampling stage.
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3.3. Local Geometric Feature Extraction

Branches and leaves exhibit distinctly different geometric features in their natural
state, with trunk points generally having linear geometric features and leaf points having
a discrete distribution. To enhance the distinguishability of leaf and wood points, the
proposed LWSNet calculates the local geometric feature vectors of the point cloud by
computing the covariance tensor formed by each point and its neighboring points, as shown
in Figure 3. In this study, five geometric feature vectors (linearity, planarity, scattering
properties, surface variability, and feature entropy) are selected to enrich the original
point cloud information. For a given 3D co-ordinate point P̂, the points within a certain
radius distance are selected to form its neighborhood point set S = {P1, P2, . . . Pi}. This
neighborhood point set is then used to calculate the covariance tensor C, which is computed
using Equation (1):

C =
1
k

Σk
i=1(pi − p̂)(pi − p̂)T , (1)

where k is the number of 3D points in the neighborhood, pi is the co-ordinates of the
points in the neighborhood, and p̂ is the mean value of the co-ordinates of all points in the
neighborhood.

After obtaining the symmetric positive definite matrix C, it is decomposed to obtain
three eigenvalues λ1 > λ2 > λ3 and their corresponding eigenvectors e1, e2, e3. The
three eigenvalues are then normalized so that λ1 + λ2 + λ3 = 1. As shown in Table 2, the
five geometric features mentioned earlier are then calculated based on these normalized
eigenvalues. By using these five geometric features and the 3D co-ordinates of each point as
initial features, a training model is built using the dataset that contains marker information.



Forests 2023, 14, 1303 6 of 19

Forests 2023, 14, x FOR PEER REVIEW 6 of 20 
 

 

where 𝑘 is the number of 3D points in the neighborhood, 𝑝௜ is the co-ordinates of the 
points in the neighborhood, and 𝑝̂ is the mean value of the co-ordinates of all points in 
the neighborhood. 

 
Figure 3. Schematic diagram of the 𝑝௜ neighborhood and its eigenvalues. 

After obtaining the symmetric positive definite matrix 𝐶, it is decomposed to obtain 
three eigenvalues λ1 > λ2 > λ3 and their corresponding eigenvectors e1, e2, e3. The three 
eigenvalues are then normalized so that λ1 + λ2 + λ3 = 1. As shown in Table 2, the five ge-
ometric features mentioned earlier are then calculated based on these normalized eigen-
values. By using these five geometric features and the 3D co-ordinates of each point as 
initial features, a training model is built using the dataset that contains marker infor-
mation. 

Table 2. Geometric features based on eigenvalues. 

Eigenvector Formula 
Linearity 𝑉ଵ = (𝜆ଵ − 𝜆ଶ)/𝜆ଵ 
Planarity 𝑉ଶ = (𝜆ଶ − 𝜆ଷ)/𝜆ଵ 

Scattering properties 𝑉ଷ = 𝜆ଷ/𝜆ଵ 
Surface variability 𝑉ସ = 𝜆ଷ 

Characteristic entropy 𝑉ହ = − ෍  ଷ
୧ୀଵ 𝜆௜ × ln (𝜆௜) 

3.4. Local Contextual Feature Enhancement Via a Rearrangement Attention Mechanism 
Given the input point set 𝑋௜௡ ∈ 𝑅ே×ଷ and the corresponding local geometric features 𝐹௜௡ ∈ 𝑅ே×ହ, the local high-dimensional feature representation space of the modeled point 

set is 𝑋 ∈ 𝑅௅×ଷ. The local context features of the point cloud are represented as 𝑓 ∈ 𝑅௅×஽; 
this part considers local feature augmentation for a point location, while the local feature 
aggregation method is applicable to the whole point set. p denotes the point location and 
f denotes the corresponding feature. The process of contextual feature enhancement is 
shown in Figure 4. 

Figure 3. Schematic diagram of the pi neighborhood and its eigenvalues.

Table 2. Geometric features based on eigenvalues.

Eigenvector Formula

Linearity V1 = (λ1 − λ2)/λ1
Planarity V2 = (λ2 − λ3)/λ1

Scattering properties V3 = λ3/λ1
Surface variability V4 = λ3

Characteristic entropy V5 = −
3
∑

i=1
λi × ln(λi)

3.4. Local Contextual Feature Enhancement via a Rearrangement Attention Mechanism

Given the input point set Xin ∈ RN×3 and the corresponding local geometric features
Fin ∈ RN×5, the local high-dimensional feature representation space of the modeled point
set is X ∈ RL×3. The local context features of the point cloud are represented as f ∈ RL×D;
this part considers local feature augmentation for a point location, while the local feature
aggregation method is applicable to the whole point set. p denotes the point location and
f denotes the corresponding feature. The process of contextual feature enhancement is
shown in Figure 4.
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3.4.1. Local Contextual Feature Fusion

Before each feature fusion, the neighbors of each point in each downsampling point set
are first grouped as contextual feature aggregation units N (p) using the K-nearest-neighbor
(KNN) algorithm. K points continued to be sampled on top of the previous layer in an
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attempt to slightly expand the sensory field. It is important to note that the searched
neighborhood points are queried in the point set Xin before downsampling. The local
contextual features of the fused point cloud include the original spatial location, the relative
position between points in the neighborhood, and the geometric relative features. For
each point p, the original spatial information constituted by its neighborhood point set is
expressed as Equation (2):

Lij = pi ⊕ pi,j, (2)

where ⊕ is the concatenation operation, pi,j are the xyz co-ordinates of the points in the
neighborhood, and pi is the xyz co-ordinates of the current point. The relative spatial
position is encoded as Equation (3):

Lrj =
(

pi − pi,j
)
⊕ ‖ pi − pi,j ‖, (3)

where ‖ · ‖ calculates the Euclidean distance from the neighboring points to the center
point. The geometric relative characteristics are expressed as Equation (4):

fi,j = f in
i − f in

j , (4)

where fi,j is the relative geometric feature between the local neighborhood points computed
above or the high-dimensional relative feature obtained from the intermediate layer. To
encode the contextual features of point p for the final concatenation as Equation (5):

xij = MLP
(
Lij ⊕Lrj ⊕ fi,j

)
, (5)

where xi,j ∈ RDin and Din is the dimensionality of the feature. For each point, the construc-
tion Xi = {xi,0, xi,1, . . . , xi,K−1} ∈ RDin×K is used for the convolution operation.

3.4.2. Rearrangement Attention Mechanism

Most deep neural networks for point cloud segmentation typically adopt weight-
sharing multilayer perceptron to encode point features directly. However, when it comes to
tree canopy points, which have a scattered distribution, it becomes difficult to differentiate
between leaf and wood points through weight sharing alone. Therefore, anisotropic convo-
lution is better suited for learning the differentiated high-dimensional features between
leaf and wood points. This approach is inspired by traditional convolution on Euclidean
structured data. The local neighborhood points are rearranged and assigned correspond-
ing weights based on the relationship between the magnitude of the angle between each
point’s local neighborhood and a fixed set of kernel points. Representative features of each
point are then extracted by applying the generated attention matrix, similar to traditional
convolutional neural networks.

For each point P = {p1, . . . , pN} in a point cloud, a feature f ∈ RD is associated with
it, where D and N represent the dimensionality of the feature and the number of points,
respectively. The Euclidean space co-ordinates of each point are represented by a three-
dimensional vector pi = [xi, yi, zi]

>. The feature of each point can contain information such
as color, normal vector, or high-dimensional embedded semantic features learned through
deep neural networks.

The local neighborhood information Ni of the point cloud is obtained through nearest-
neighbor search, where Ni = {pi, pi,1, . . . , pi,K−1} represents the nearest K-neighbor points
of the i-th point. A fixed set of kernel points is first generated by mapping the Fibonacci
lattice [20] onto the sphere using equal area projection, resulting in uniformly distributed
kernel points on the surface of the sphere, denoted as K = {k0, k1, . . . , kL−1}. Here,
k0 =

[
0, 0, 0]> represents the position at the origin and L denotes the number of kernel

points. The relative position information between the i-th point and its neighboring points
is obtained as

∼
pi,j = pi − pi,j, where pi,j ∈ Ni,

∼
pi,0 =

[
0, 0, 0]> represents the position at

the origin. The rearrangement attention matrix is generated by encoding the dot product
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between the local neighborhood co-ordinates and the kernel points using the Softmax
function, with the expression of Equation (6):

Hi = f (
∼
PiK>), (6)

where
∼
Pi ∈ RK×3, K ∈ RL×3,Hi ∈ RK×L, and f (·) is the Softmax function. For each kernel

point, the dot product ensures that neighboring locations with smaller angles to the kernel
point are assigned larger weights. The Softmax function allows the generated attention
weight matrix to be expressed as probabilities. When the local neighborhood co-ordinate
points have smaller angles to the kernel point, they are assigned higher probability values
and vice versa. Figure 4 illustrates this phenomenon, where

∼
pi,1 and

∼
pi,3 have relatively

higher probability values when they are closer to the kernel point k1, and the darker the
color of the attention matrix, the higher the probability value. Since k0 =

∼
pi,0 =

[
0, 0, 0]> ,

the dot product of these two vectors is zero. Therefore, it is necessary to set H[0, 0] = 1 so
that the point itself is selected as the first point in the resampled convolution neighborhood.

As the point cloud is scattered and disordered, directly applying isotropic filters to the
disordered neighborhood points would reduce expressiveness of the proposed LWSNet. To
this end, corresponding weights are assigned based on the magnitude of the angle between
the local neighborhood points and the kernel points, generating an attention matrix. The
attention matrix is then rearranged to resample the neighborhood of each point and select
more representative features, as described in Equation (7):

∼
Xi = XiHi, (7)

where
∼
Xi ∈ RDin×L. The weights between the central point and its neighboring points

are assigned corresponding weights based on the rearrangement of the magnitude of the
angle with the kernel points. Based on this, a weight-sharing MLP (multilayer perceptron)
filter can be applied to each point in the point cloud, and the operation is the same as the
conventional convolution, expressed as Equation (8):

yi = g(vec(
∼
Xi)
>W + b), (8)

where W ∈ R(Din ·L)×Dout , containing Dout anisotropic filters. The bias term is denoted by
b ∈ RDout . The output feature point yi ∈ RDout corresponds to the input feature point
xi ∈ RDin . The vec(·) function converts a matrix into a column vector. The function g(·) is
an activation function that introduces nonlinearity (e.g., ReLU).

3.5. Residual Connection Optimization during the Upsampling Stage

Although the anisotropic convolution-based contextual feature enhancement module
extracts rich, high-level semantic features from the point cloud during the downsampling
stage, it ignores the geometric detail information of the input point cloud, which hinders the
distinction between leaf and wood points that are close to each other. To address this issue,
the original spatial resolution of the point cloud is recovered through nearest-neighbor
interpolation on the high-dimensional semantic feature information. While inverse distance
weighting and trilinear interpolation upsampling methods are commonly used in deep neu-
ral networks, they are computationally inefficient and memory-intensive. To improve the
model’s efficiency, this paper employs the simple nearest-neighbor interpolation sampling
method. However, this method tends to select duplicate points, leading to redundancy of
information and reduced model accuracy. To mitigate this issue, the rich high-dimensional
semantic features generated through forward propagation are connected to the original
abstract features using residual connections during the upsampling stage, compensating for
the information redundancy problem caused by nearest-neighbor sampling and improving
the robustness of the model.



Forests 2023, 14, 1303 9 of 19

The flow of residual connections is shown in Equation (9). Based on the semantic
feature information FoutεR1×2d output by the local contextual feature fusion module and
the rearrangement attention module, the input information is upsampled using nearest-
neighbor interpolation. The upsampling point cloud is then non-linearly operated upon
using a simple multilayer perceptron (MLP) with ReLU and sigmoid activation functions.
Finally, the result is connected with the input features for residuals to output the final
feature FehanceεRk×2d:

Fehance = Sigmoid{MLP[Relu(MLP(Fout))] + Fout}, (9)

3.6. Implementation and Evaluation Metrics

The programming language used for the proposed LWSNet is Python 3.6, and the
deep neural network is built using the Tensorflow framework. The operating system used
was Ubuntu 16.04, with a RAM of 32G and a GPU Quadro GP100 graphics card model.
The network training settings were as follows: batch size of 4, epoch set to 50, initial
learning rate set to 0.001, optimization of network parameters performed using Adam’s
algorithm, and momentum set to 0.9. The evaluation metrics used in this paper are Precision
(Equation (10)), Recall (Equation (11)), and F1 score (Equation (12)), which are defined
as follows:

P =
TP

TP + FP
× 100%, (10)

R =
TP

TP + FN
× 100%, (11)

F1 =
2PR

P + R
× 100%, (12)

where TP (true positive case) refers to the number of actual positive samples that were
correctly predicted as positive, while FP (false positive case) refers to the number of actual
negative samples that were incorrectly predicted as positive. FN (false negative case)
refers to the number of actual positive samples that were incorrectly predicted as negative,
while TN (true negative case) refers to the number of actual negative samples that were
correctly predicted as negative. The precision rate indicates the percentage of correctly
predicted positive samples to all predicted positive samples. The recall rate, on the other
hand, indicates the percentage of correctly predicted positive samples to the actual positive
samples. The F1 score is the harmonic mean of the precision rate and recall rate. A higher
F1 score indicates a more robust classification model.

4. Results
4.1. Results and Analysis of Leaf-Wood Separation

To demonstrate the effectiveness of the proposed LWSNet, we visually inspect the
leaf-wood separation results using several representative tree point clouds. The displayed
eight tree point cloud samples in Figure 5 are chosen with diversified spatial structures and
under different growth environments to show the exceptional leaf-wood separation ability
and accuracy of our LWSNet. In the Figure 5, the first row represents the ground-truths,
the middle row shows the leaf-wood separation results of the LeWos [30], and the bottom
row is the leaf-wood separation results of the proposed method. Visually, the leaf-wood
separation results of the proposed method are in good agreement with the ground-truths,
showing that the proposed method is better at detecting the main trunk of trees.
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Figure 5. Leaf-wood separation results of the eight trees (green: leaves and brown: wood): (a) Tree 1;
(b) Tree 2; (c) Tree 3; (d) Tree 4; (e) Tree 5; (f) Tree 6; (g) Tree 7; and (h) Tree 8. (Top) Manual separation;
(middle) LeWos algorithm; and (bottom) proposed method.

By comparing various results, we can find that the proposed LWSNet has a high
sensitivity to detecting small branches and leaves. The main reason is some branch and
trunk points are often misclassified as leaf points in the complex and diverse internal
structure of the canopy. Specially, the proposed method compares favorably with the
LeWos method, which mainly distinguishes leaf points and wood points based on linear
structural features. In order to provide a more obvious comparison, the wood point



Forests 2023, 14, 1303 11 of 19

separation results are further visualized in this paper. As shown in Figure 6, both the
LeWos and the proposed method show good results for tree trunk differentiation, mainly
because both the LeWos and the proposed method introduce linear geometric features,
which are better suited for data with more obvious linear features such as rootstocks.

Forests 2023, 14, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 5. Leaf-wood separation results of the eight trees (green: leaves and brown: wood): (a) Tree 
1; (b) Tree 2; (c) Tree 3; (d) Tree 4; (e) Tree 5; (f) Tree 6; (g) Tree 7; and (h) Tree 8. (Top) Manual 
separation; (middle) LeWos algorithm; and (bottom) proposed method. 

By comparing various results, we can find that the proposed LWSNet has a high sen-
sitivity to detecting small branches and leaves. The main reason is some branch and trunk 
points are often misclassified as leaf points in the complex and diverse internal structure 
of the canopy. Specially, the proposed method compares favorably with the LeWos 
method, which mainly distinguishes leaf points and wood points based on linear struc-
tural features. In order to provide a more obvious comparison, the wood point separation 
results are further visualized in this paper. As shown in Figure 6, both the LeWos and the 
proposed method show good results for tree trunk differentiation, mainly because both 
the LeWos and the proposed method introduce linear geometric features, which are better 
suited for data with more obvious linear features such as rootstocks. 

 
Figure 6. Wood point separation results: (a) ground-truth, (b) the result of LeWos, and (c) the result 
of the proposed method. 
Figure 6. Wood point separation results: (a) ground-truth, (b) the result of LeWos, and (c) the result
of the proposed method.

When distinguishing the locations of tree canopies, it can be found that the accuracy
of the proposed method in distinguishing leaf and wood points within a canopy is better
than that of the LeWos method, whether it is distinguishing leaf and wood points in
complex or simple canopies. LeWos assumes that wood points are linearly distributed
at different scales, while leaves are usually flat or dispersed, but in the face of a complex
structured canopy, the branch points within it are more likely to be misclassified into leaf
points, leading to a decrease in overall classification accuracy. In contrast, the proposed
method introduces several geometric features in the input stage to further enrich the feature
information and learn more robust contextual features through the network, which is more
helpful in distinguishing leaf and wood points in more complex canopies. Figure 7 shows
the heat map of the classification accuracy of the proposed method for eight different trees’
leaves and wood, and the numbers on the diagonal line are the segmentation accuracy for
leaf and wood points. It can be found that the proposed LWSNet has similar accuracy for
the leaf-wood separation of eight trees, which shows LWSNet has better robustness. From
Figure 7h, we can find that the classification accuracy of leaf points of the eighth tree is
lower, and more leaf points are misclassified as wood points. On the one hand, it is because
Tree 8 has a complex canopy structure and multiple canopies are stacked together, which is
challenging. On the other hand, Tree 8 has only one tree in the training set, and the training
sample is not rich enough to make the model fit better. From the classification results, we
can find that there is always a misclassification of leaf and wood points inside the canopy,
which is the challenge that most algorithms face in distinguishing wood and leaf points
inside the canopy.

The above visualization compares the classification results between the deep-learning
methods proposed in this paper and traditional clustering methods based on prior knowl-
edge. To provide further evidence, representative classification methods in this field were
validated based on this dataset in this paper. Table 3 presents the accuracy classification
results of feature-engineering-based machine-learning methods [42], the unsupervised
learning LeWos algorithm [30], the supervised deep-learning KPconv network [38], and
the methods proposed in this paper.
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Table 3. Quantitative evaluation of leaf-wood separation of eight tree species.

Method Precision (%) Recall (%) F1 Score (%) Mean F1 Score (%)

Random forest [28] Leaf 94.38 66.52 77.98 77.12Wood 80.52 88.04 76.25

LeWos [30] Leaf 90.69 92.00 90.85 86.98Wood 86.30 85.25 83.10

KPconv [38] Leaf 94.48 98.62 96.98 95.12Wood 97.12 88.04 93.25

Ours Leaf 97.57 98.95 98.25 97.29Wood 97.77 94.94 96.33

The leaf and wood point mean F1 score of this paper’s method reached 97.29%, which
are the highest accuracy, recall, and F1 score among these four methods. Compared with the
random forest algorithm, which requires the design of a large number of manual features,
the leaf point F1 score is improved by 20.27 points and the wood point F1 score accuracy is
improved by 20.08 points. The KPconv algorithm, which has better performance in point
cloud classification, has slightly lower classification accuracy than the method proposed
in this paper. The KPconv training is set to 200 iterations, while the method proposed in
this paper is set to only 50 iterations. This method also outperforms KPconv in terms of
time and efficiency. An analysis of the classification accuracy in the table shows that the
wood points have lower accuracy than the leaf points due to the complex canopy structure
and the quality of the scanned data. Vicari et al. [34] argue that data quality is one of the
main prerequisites for the successful separation of leaf and wood, and for tall trees with
complex canopies, this challenge is even more severe. Data quality depends on a variety of
factors, such as laser scanner characteristics, scan settings, alignment accuracy, and degree
of occlusion. To overcome these challenges, Vicari et al. [34] suggested the use of an optimal
scanning domain and high-resolution TLS. Another strategy proposed in Paynter et al. [43]
is the application of dynamic adjustment to control the TLS data quality.

The accuracy of the method in this paper is comparable to or better than the state-of-the-
art leaf and wood separation methods in previous studies. Moorthy et al. [42] proposed a
leaf-wood classification method combining geometric features defined by radially bounded
nearest neighbors on multiple spatial scales in a machine-learning model with an average
overall accuracy of 94%. Ma et al. [7] proposed an improved salient feature-based leaf and
wood separation method, which achieved an overall accuracy of 95%. Wang et al. [30]
proposed an unsupervised geometry-based dynamic segmentation method for separating
leaf and wood points with an average overall accuracy of 88%. Zhu et al. [26] combined
geometric and radiometric features and used an adaptive radius nearest-neighbor search
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algorithm for leaf and wood material identification with an overall accuracy of 84%, where
the relatively low accuracy may be because the intensity data were not corrected for the
effects of incidence angle and distance. Since the applicable scenarios and data sources are
different from the methods in this paper, the methods in this paper are compared with the
commonly used random forest classifier, LeWos method, and KPconv deep neural network
on the test dataset. The results show that the accuracy of the method is comparable to
existing methods for branch and leaf classification, providing a new alternative method for
separating leaves and wood of single trees from a different and new perspective.

4.2. Ablation Analysis

To further analyze the effectiveness of the proposed module for deep neural networks,
ablation experiments were conducted on the test dataset of this paper:

• The local context feature fusion module (LCFM), which enables each point to obtain its
local geometry explicitly, was removed. After removing this module, the simple local
point features were directly passed to the subsequent rearrangement attention module.

• The rearrangement attention module (RAM), which assigns attention weights to the
disorderly arrangement of the point cloud, was removed. After removing this module,
more representative information about each point was not selected.

• The residual connection optimization module (RCOM), which compensates for the
lack of spatial information caused by nearest-neighbor upsampling, was removed.
After removing this module, the features of the downsampled layer were directly
interpolated by the nearest neighbor to recover the original spatial resolution.

Table 4 compares the Precision, Recall, and F1 score of all ablation networks. It can be
seen that:

• Removing the fusion of local contextual features had the greatest impact on the
overall performance of the network. The fusion of features effectively resolved the
misclassification of stem and leaf points within the complex canopy.

• Removing the rearrangement attention module had the second-highest impact on the
performance because it could not effectively retain representative features.

• Removing the residual connection optimization module reduced the performance
because it could not effectively resolve the problem of information redundancy due to
sampling.

Table 4. Network performance of the network at different settings.

Precision (%) Recall (%) F1 Score (%)

Remove LCFM 92.21 91.63 91.92
Remove RAM 93.11 93.10 93.10

Remove RCOM 96.64 96.32 96.60
The full framework 97.64 97.63 97.63

From this ablation study, it can be seen that the modules complement each other to
enhance each other, achieving the best performance of the model.

5. Discussion
5.1. The Number of Downsampled Points

The number of downsampled points may affect the leaf-wood separation performance
of the proposed LWSNet. Following the work of [1], the limited number of downsampled
points is insufficient to represent structural details, so complicated tree point clouds usually
have unsatisfactory leaf-wood separation results. However, increasing the number of down-
sampled points costs more computational time without a great performance improvement.
To avoid this situation, we increase the number of downsampled points of each tree point
cloud while satisfying the limit of the computation capacity. Simply put, we explore the
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influence of the number of downsampled points on the leaf-wood separation performance
of the proposed LWSNet.

According to our observations, the convergence ability of a network relies on the
number of downsampled points. To evaluate the impact of the number of downsampled
points on the leaf-wood separation performance, the number of downsampled points
should ensure that a tree point cloud is included without too many background points.
Accordingly, we perform some comparison experiments with the number of downsampled
points empirically defined as 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, and 5120,
respectively. The quantitative evaluation results obtained using the different number of
downsampled points are provided in Table 5. We can find that the leaf-wood separation
performance increases with the number of downsampled points. When the number of
downsampled points is less than 2048, the evaluation indicators of the leaf-wood separation
task are low since insufficient input points may result in difficulty in the local semantic
connectivity learning. When the number of downsampled points increases from 2048 to
4096, the leaf-wood separation performance increases significantly. When the number of
downsampled points is 4096, all evaluation indicators are above 97%. Within the range
4096–5120, the leaf-wood separation performance growth is slow. Although the larger
number of downsampled points brings in better leaf-wood separation results, we must
consider the trade-off between accuracy and efficiency for leaf-wood separation in tree
point clouds. Therefore, 4096 downsampled points not only obtain satisfactory leaf-wood
separation results for LWSNet, but also consume a lower processing time.

Table 5. Quantitative evaluation results obtained by different numbers of downsampled points.

Precision (%) Recall (%) F1 Score (%)

512 94.87 94.93 94.90
1024 95.31 95.09 95.22
1536 96.24 96.12 96.20
2048 97.08 97.15 97.10
2560 97.40 97.42 97.41
3072 97.46 97.51 97.48
3584 97.60 97.58 97.59
4096 97.64 97.63 97.63
4608 97.65 97.65 97.65
5120 97.67 97.66 97.66

5.2. Generalization Capability on Different Types of Plants

In order to prove that the proposed method is robust enough to be applied to different
types of plants, generalization experiments were conducted on two different types plant
point cloud datasets. We used our LWSNet trained on the tree point clouds to predict
labels for the Pheno4D dataset [44] directly without retraining. The Pheno4D dataset
has two crops (i.e., maize and tomato) scanned by LiDAR, including about 260 million
manual annotated 3D points. We visualize the qualitative segmentation results of the
proposed LWSNet on the Pheno4D dataset in Figure 8. As can be seen, the proposed
LWSNet successfully distinguishes the exact junction between the leaf and the stem. Note
the tomatoes have more complex canopy structures (e.g., more leaves) compared with
the maize in the Pheno4D dataset. Specifically, leaf-stem separation on tomato crops is
regarded as a challenging task because they have large variances in the spatial structure
and the degree of the leaf curvature. However, the proposed LWSNet has satisfactory
leaf-stem separation results, which shows that our segmentation method can be used to
process crop point clouds. Meanwhile, the numerical comparisons are also provided in
Table 6. KPconv [38] and Eff-3DPSeg [45] are selected for comparison with the proposed
LWSNet, and we used recommendations from their original configuration selection. It can
be seen that our LWSNet has the best leaf-stem separation performance across all methods
compared in Table 6. The Precision, Recall, F1–score, and Intersection over Union (IoU) (leaf
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and stem) of LWSNet are all followed by Eff-3DPSeg [45] with gaps of around 1%, while
the KPconv [38] is slightly inferior to Eff-3DPSeg [45] by about 0.1%/1.4%, 0.5%/1.1%,
0.3%/2.1%, and 0.6%/2.4%, respectively. The proposed LWSNet has balanced advantages
on both maize and tomato plants, showing excellent adaptability in different plant species.
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Table 6. Quantitative evaluation of leaf-stem separation on Eff-3DPSeg [45] dataset.

Method Precision (%) Recall (%) F1 Score (%) IoU (%)

KPconv [38]
Leaf 98.7 97.0 97.5 94.9
Stem 86.2 91.3 88.2 80.1

Eff-3DPSeg [45] Leaf 99.4 99.2 99.3 98.6
Stem 94.7 95.9 95.3 91.0

LWSNet
Leaf 99.5 99.7 99.6 99.2
Stem 96.1 97.0 97.4 93.4

Moreover, the above tree point clouds and Pheno4D dataset were collected by the
laser scanner, which is expensive, and the data acquisition process is time-consuming.
Thus, we hope to check out whether the pre-trained LWSNet can work directly on the
leaf-stem separation task of crop point clouds captured from the multi-view stereo (MVS)
technique. In this generalization experiment, two ornamental plants—Codiaeum variegatum
and Hibiscus rosa-sinensis Linn.—are constructed by the MVS technique, which is very
different from LiDAR point clouds [46]. A total of 45 and 50 phone images with a resolution
of 4032 × 3024 are collected for a Codiaeum variegatum and a Hibiscus rosa-sinensis Linn.,
respectively. Then, MVS is applied to obtain two plant point clouds shown in Figure 9a.
Figure 9b shows the leaf-stem separation results on Codiaeum variegatum and Hibiscus rosa-
sinensis Linn. by the pre-trained LWSNet, respectively. As can be perceived, the proposed
LWSNet can also generate satisfactory leaf-stem separation results for crop MVS point
clouds, showing LWSNet is also good at recognizing different crop species with varied
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shapes and orientations. The quantitative comparison results for two MVS point clouds are
listed in Table 7; all quantitative measures are larger than 90%, which again demonstrates
that the proposed LWSNet is versatile enough to produce good leaf-stem separation results
for different plant species of point clouds.
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stems and leaves. Note that the left point cloud is Codiaeum variegatum, and the right point cloud is
Hibiscus rosa-sinensis Linn.

Table 7. Quantitative evaluation of leaf-stem separation on two plant MVS point clouds.

Precision (%) Recall (%) F1 Score (%) IoU (%)

Codiaeum variegatum Leaf 95.1 95.4 95.2 94.1
Stem 92.3 92.8 92.5 90.7

Hibiscus rosa-sinensis Linn.
Leaf 94.3 95.2 94.6 93.9
Stem 91.7 92.2 91.9 90.2

5.3. Future Improvements

Due to the massive nature of point cloud data, the available hardware devices have
limitations in terms of computational memory storage and capacity [47]. Therefore, a
random sampling approach is often used to reduce the number of point clouds. How-
ever, this approach can result in the loss of accurate contextual information, despite the
presence of specific modules designed to compensate for this. As technology continues to
evolve, the development of robust and efficient sampling methods will lead to significant
improvements in the application of deep learning to point clouds. Additionally, different
tree species with varying heights and interlaced canopies present a significant challenge
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to leaf-wood separation. Although this paper has achieved some results in the algorithm,
it still struggles to distinguish between severe overlapping canopies, and when there is
too little distance between leafy trees. Therefore, further research that incorporates eco-
logical theory is necessary to address these complex cases of trees and integrate them into
deep-learning processing.

6. Conclusions

Existing algorithms based on the traditional feature descriptors still have their limita-
tions in the face of challenges in the leaf-wood separation task. Therefore, we propose a
novel deep-learning method, named LWSNet, to make full use of the geometric features
of point clouds and enhance the expressiveness of local contextual features. Meanwhile,
the robustness of the proposed LWSNet is enhanced by nearest-neighbor interpolation and
residual connections, thus improving the classification accuracy of leaf-wood separation.
The proposed LWSNet is validated on eight trees of different species and sizes, achieving
the highest average F1 score of 97.29% and outperforming three existing methods (i.e.,
random forest [28], LeWos [30], and KPconv [38]). The ablation experiments show that the
geometric features have the greatest impact on the leaf-wood separation performance of
tree point clouds. Our study further demonstrates the potential of the rearrangement atten-
tion mechanism in leaf-wood separation, and future work should focus on its application
in tree model reconstruction.

Although the proposed LWSNet achieves reasonable leaf-wood separation perfor-
mance in experimental sets, it still has difficulty in distinguishing between the cases of
severely overlapping canopies and leaves with distances that are too small between them.
To better solve this problem, further research is necessary to combine ecological theory
and fully exploit the potential features of leaf and wood point clouds. Furthermore, we
will enrich the plant point cloud datasets by using different 3D sensors and reconstruc-
tion techniques to add more new species to the dataset to form a more robust leaf-wood
separation network.
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