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Abstract: Non-structural carbohydrates’ (NSCs) allocation pattern is closely related to environmental
factors, plant metabolism, and xylem function. At the same time, we know little about whole-tree
NSC allocation patterns in different seasons, especially the high-elevation species which suffer from
environmental stress. We examined the concentration of NSCs in various parts of Faxon fir trees
(needles, branches, trunks, and roots) at five elevations (2800 m, 3000 m, 3200 m, 3400 m, and
3600 m) over four months (July 2019, October 2019, January 2020, and April 2020). The goal was to
understand how NSC allocation patterns vary by location and time in high-elevation species and
what factors contribute to these variations. The results showed that the needles had the highest
concentration, followed by roots, branches, and trunks. The NSC concentration was highest in
January 2020 and lowest in July 2019. The total non-structural carbohydrates (TNSCs) and soluble sugar
concentrations of roots and needles were substantially higher in the cold (non-growing season) than
in the warm (growing season) season. At different elevations, the soluble sugar concentrations in the
needles and trunks remained the highest and lowest, respectively. Branches and roots’ soluble sugar
concentrations alternated and varied with the seasons at all elevations. Many factors, such as climate,
morphological traits, and carbon content, affected the spatial and temporal patterns of non-structural
carbohydrates, with temperature, plant moisture conditions, and carbon content being the main
driving factors. Various factors’ interaction mainly influenced NSCs’ spatial and temporal patterns.
Non-structural carbohydrates significantly improve the resistance of Faxon fir trees’ terminal organs in
adverse environments.

Keywords: non-structural carbohydrates; temporal and spatial pattern; driving factors; Faxon fir

1. Introduction

Photosynthesis produces and stores non-structural carbohydrates (NSCs) in plants, which
include readily usable soluble sugar and stored starch. These carbohydrates can support
future growth and metabolism by the plant [1,2]. Studies have shown that plant NSCs’
temporal and spatial dynamics occur with phenological changes. Several years ago, re-
searchers discovered that the non-structural carbohydrates (NSCs) of evergreen broad-leaved
leaves increased during the late summer and early fall seasons. However, broad-leaved
deciduous leaves did not exhibit the same increase in NSCs during this time. Additionally,
the concentrations of NSCs in different organs changed significantly with the seasons [3,4].
Researchers have recently found that several deciduous trees growing in temperate forests
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showed that starch on twigs was heavily consumed during spring germination, indicating
C storage’s importance for spreading spring leaves [5]. However, the characteristics of
species and their habitat may also cause their NSCs to exhibit different seasonal dynam-
ics [6,7], and in some cases, the seasonal effects on the concentrations of NSCs were more
significant than species effects [8].

In addition to the seasonal dynamic changes, there are also some studies on the internal
spatial changes of individuals. From the perspective of the whole tree, the differences
among different organs were relatively significant, especially in the branches [9]. Previous
studies of Chinese fir under diverse environmental conditions found remarkable differences
in NSCs concentration between above- and below-ground organs [10]. Organs of different
species have different NSCs responses under the same environmental conditions because
each plant organ has distinct functions [11]. Therefore, using a single organ to characterize
the concentration of the whole tree is unreasonable because the concentrations of the
individual organs vary during the season [1]. Current research on NSCs mainly focuses on
two or more organs in a season or the seasonal dynamics of two organs [12,13], while little
research has been conducted about the seasonal dynamics of all organs (leaf, branch, trunk,
and root) of big trees in the wild environment, especially the subalpine treeline.

It was found to be critical for woody plants to store NSCs because it allowed sessile,
long-living organisms to grow despite biotic and abiotic stresses [14,15]. The seasonal
dynamics of plant organs’ NSCs are influenced by many factors such as carbon starva-
tion, hydraulic dysfunction, pests and diseases, and the combined effects of all these
factors [13,16]. Hydraulic dysfunction is a problem that happens when plants do not
receive enough carbon, and it can affect how plants store carbohydrates. To avoid this
problem, plants need to consume non-structural carbohydrates, especially soluble sugars,
which help them maintain their hydraulic system and keep their structure intact [17].

Soluble sugar is released into the embolism xylem and creates a concentration gradient
between the embolism and the normal xylem [18]. These factors often appear together and
can deplete the non-structural carbohydrates (NSCs) stored by plants for future use [1,15,19].
If not managed, NSCs depletion can cause trees to die. It can even lead to ecosystem
degradation and affect plant functional processes directly or indirectly related to NSCs.
These functions include growth activity, osmoregulation, osmoprotection, pest and disease
resistance, water and nutrient transport, storage, and drought and cold resistance [9,20–23].
The higher ratio of soluble sugars and starches in plant organs explains the ability of some
species to grow in low-temperature stressed environments at high elevations [24].

Global climate change results in an increasing frequency and intensity of extreme
weather, which affects tree growth and forest ecosystem function [25–28] and also affects
trees’ morphological traits (such as leaf size and leaf mass per unit area) [29,30]. Trees
often store NSCs in the stem and roots and use them to support plant growth or resist
environmental stress in the future [31]. The growth of trees and NSCs reserves are strongly
correlated, and NSCs have a crucial role in trees’ resilience to extreme weather events in the
Mediterranean area [32].

Researchers used NSCs to improve predictions of a forest’s gross primary productivity
and promote further understanding of the complex relationship between the environment
and photosynthesis [33], showing that trees’ NSCs concentration was essential for the
stability of the forest ecosystem functions. Especially in an extreme climate, tree stems’
concentration of non-structural carbohydrates was a good indicator of tree mortality [34].
Global climate change induces carbon starvation, one of the causes of tree mortality, and is
expected to exacerbate forest vulnerability [35].

Global climate change has increased the frequency of extreme weather events, which
has affected the structure and composition of forests and the quality and structure of
habitats [36]. According to predictions, chronic temperature increases are responsible
for massive conifer mortality [37]. In stressful situations, trees’ carbon reserves play an
important role in resilience, and the different components of NSCs play different roles [32].
A recent study confirmed that Faxon fir radial growth is constrained by thermal and
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hydraulic factors, while hydrothermal conditions are highly affected by global climate
change [38]. Conversely, southwest China is one of the regions most vulnerable to climate
change, and the conifer forest vulnerability of this area showed an increasing trend with
global climate change [39,40]. Hence, there is a rising need to be expanded in both breadth
and depth to comprehensively assess typical conifer species NSCs allocation, storage,
and seasonal dynamics in southwest China better to understand the function of NSCs in
subalpine forest ecosystems.

In this paper, we study the NSCs of Faxon fir for four months (July 2019, October
2019, January 2020, and April 2020). We set five elevation gradients at intervals of 200 m
(2800–3600 m) in Wolong Nature Reserve in Sichuan province. We aim to reveal the
effects of seasonal variations on NSCs storage and consumption at different elevations
and the NSCs spatial–temporal distribution patterns. We also want to know which carbon
strategies Faxon fir adopts to cope with climate change and the main driving factors for
these distribution patterns. Specifically, we will test the following hypotheses:

1. The whole-tree allocation pattern will be as follows: the terminal organs contribute
more due to Faxon fir trees needing to store more energy to cope with environmental
stress during the cold season, and NSCs are significantly lower in the warmer season
than the cold season.

2. Faxon fir organs (especially the terminal organs) accumulate a higher concentration
of NSCs in winter to enhance tissue resistance to high-altitude low temperature so as
to successfully overwinter.

3. Due to its unique geographical environment, the distribution pattern of NSCs in Faxon
fir at high altitudes may be influenced by various factors.

2. Materials and Methods
Study Area

We carried out this experiment at Wolong Nature Reserve (WoNR, latitude 30◦53′ N,
longitude 102◦58′ E) in Sichuan province, southwest China. WoNR is located in the western
Sichuan Plateau, with a subtropical semi-humid climate characterized by dry, cold winters
and wet, cool summers [41,42]. The mean annual temperature is 4.06 ◦C, and the mean
annual precipitation is about 1026 mm. In WoNR, the dominant tree species are Faxon fir,
accompanied by Rhododendron faberi Hemsl, Rhododendron asterochnoum Diels, Picea purpurea
Mast, Betula albosinensis Burkill, and Rosa moyesii [41,43]. The Faxon fir grows in different
altitude ranges. It co-exists with understory bamboo (Fargesia spp.) at 2800–3100 m above
sea level and with Rhododendron spp. at 3200–3600 m above sea level [41]. According to
the Chinese Soil Taxonomy classification, the soil type is dark brown [44]. Faxon fir (Abies
fargesii var. faxoniana) survives in the cool and wet subalpine region of Sichuan province
in southwest China, and its distribution area is also the main habitat of Chinese giant
pandas (Ailuropoda melanoleuca David) [43]. It is the dominant tree species of the subalpine
coniferous forest [45]. It is naturally distributed from 2700 to 3900 m a.s.l in the subalpine
area of Sichuan province [41]. In the genus Abies, Faxon fir is an ancient species that has
survived through glacial and interglacial periods [46].

3. Field Data Collection
3.1. Climate Data

Using data from the observations of over 2400 stations in China, the average seasonal
temperature for the study sites was calculated from 1997 to 2016 using an interpolation
method [41,47]. We used topographic correction to calculate the air temperature at each
elevation, applying a lapse rate of 0.65 ◦C per 100 m [48]. Soil temperature was measured
using soil button thermometers (iButton, DS1922L) set in WoNR from 2018.5 to 2019.4
(Figure 1). The soil depth was 10 cm. Two soil button thermometers were set at each
altitude and recorded one reading each hour, and the average value was used to express
soil temperature [41]. The growing season shortens with increasing altitude. The growing
season lasts five months (May–September) at 2800 m above sea level (a.s.l). However, at



Forests 2023, 14, 1438 4 of 19

3600 m a.s.l, only two months, July and August, are included in the growing season, as
shown in Figure 1.
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3.2. Growing Season and Non-Growing Season Determination

During the growing season, tree line areas naturally have a mean temperature of
around 6 ◦C. However, as temperatures decrease below this threshold, tree species’ root
growth is limited [49]. The temperature controls the germination of species, and the
threshold for the air temperature to trigger germination is approximately 6 ◦C [50]. Thus,
we considered the growing season as the period when the average monthly temperature
was above 6 ◦C. The average monthly air temperature at the 2800 m a.s.l. research sites was
over 6 ◦C from May to September and below 6 ◦C between October and April. Meanwhile,
at the highest sites at 3600 m a.s.l, the mean air temperatures were higher than 6 ◦C only
in July and August. The months selected for this study were April, July, October, and
January, and we used July to indicate the growing season and April, October, and January
to indicate the non-growing season.

3.3. Sample Collection and Pre-Dawn Leaf Water Potential Measurement

We selected healthy adult individuals with similar diameters from each sample site and
selected branch samples with mature spreading leaves on the sunny side. In this experiment,
we measured pre-dawn leaf water potential (Ψ) with a pressure chamber (SKPM1400-50,
SKYE, UK). We took measurements on shoots from the four selected months and elevations
and collected samples for Ψ before sunrise (06:00–07:00 h). After cutting them from the
trees, we wrapped 1.5 m long branch samples in small plastic bags containing moist paper
towels. All the samples were sealed immediately in big black plastic bags containing moist
paper towels and sent to the laboratory for hydraulic traits measurement. We selected three
current-year shoots from the branches of the samples and measured all samples within an
hour of the samples leaving the tree.

3.4. Laboratory Measurement
3.4.1. Morphological Traits Measurement and Calculation

Morphological traits include LA/SA (the ratio of leaf area and sapwood area), LMA
(leaf mass per area), and tracheid lumen diameter (TLD); a detailed description is provided
in Pan’s study [51].

3.4.2. Non-Structural Carbohydrate Measurements

We simultaneously measured the non-structural carbohydrates of Faxon fir trees’ roots,
trunks, branches, and needles across five different altitudes in January, April, July, and
October. We also measured the hydraulic properties of the xylem. To collect data, we took
fine roots (with a diameter of less than 5 mm) from the topsoil at a depth of approximately
20 cm. At 1.35 m, we drilled two 5-mm diameter increment borer holes on opposing sides
of the trunk, and at each of the six heights, we obtained two tree cores from each of the trees.
We used a microwave oven at 600 W for 40 s to kill the samples in time for non-structural
carbohydrate analysis. Then, we dried them to a constant mass at 70 ◦C for more than 48 h.

We first weighed 0.1 g of the sample and placed it in a 10-mL centrifuge tube for
chemical analysis. Next, we added 5 mL of an 80% ethanol solution to the tube. The
mixture was then incubated in a boiling water bath at 80 ◦C for 30 min before being
centrifuged at 5000 r for 10 min. We collected the supernatant and extracted the pellet
twice with an 80% ethanol solution. Finally, we combined the supernatant and stored it at
−20 ◦C before determining the soluble sugar content using the Anthrone method [17,52].

To prepare the extract, we evaporated the alcohol in the precipitate to dryness. Then,
we added 2 mL of distilled water and shook it well. Finally, we gelatinized the mixture in a
boiling water bath for 15 min. Once the mixture was cooled to room temperature, we added
2 mL of 9.2 mol/L perchloric acid (HClO4) and stirred it for 15 min. After hydrolyzing
the starch, we added 4 mL of distilled water to the mixture and centrifuged it at 4000 r for
10 min. Then, we transferred the supernatant to a 50 mL volumetric flask. Next, we added
2 mL of 4.6 mol/L perchloric acid (HClO4) to the precipitate and stirred it. After 15 min,
we added 5 mL of distilled water and mixed it well. Then, we centrifuged the mixture
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for 10 min and transferred the supernatant to a 50 mL volumetric flask. We washed the
precipitate twice with distilled water and combined the supernatants before making the
volume constant. The resulting extract was used to determine the starch content [17].

3.5. Chemical Analyses

To analyze the carbon (C) concentration in our samples, we dried the needles, branches,
trunks, and roots in an oven and used an elemental analyzer (Vario EL III, CHNOS Elemen-
tal Analyzer; Elementar Analysensysteme GmbH, Frankfurt, Germany).

3.6. Data Manipulation and Statistical Analysis

This study analyzed the seasonal variations of non-structural carbohydrates among
different sites and the seasonal variations in each organ at each site. We used SPSS 18.0 to
analyze the changes in air and soil temperatures. To check if our data followed a normal dis-
tribution, we employed the Lilliefors test and the Shapiro–Wilk test. Additionally, we used
the F test and Levene’s test to assess whether the variances of our data were homogeneous.

We used a function called “Varpart” from the “Vegan” package to partition and
analyze the variation in the concentrations of soluble sugar and starch across different
organs (needles, branches, trunks, and roots) into components under four categories of
predictors (i.e., climate factors, the carbon content of organs, physiological trait factors, and
morphological trait factors) in R Studio with version 3.5.2.

We used a redundancy analysis (RDA) to determine the relationship between the
climate variables, carbon content of organs, and physiological and morphological factors
with non-structural carbohydrates (soluble sugar and starch) across all sites. We subjected
the results of the RDA to a Monte Carlo permutation test to determine their significance
level (999 permutations). We transformed the explain and response factors using either
Hellinger or standardized transformations in the RDA.

We used linear regression models to examine the relationship between soluble sugar
and starch concentrations, MAT, Ψ, LMA, and root C content across the study site. We used
a one-way analysis of variance (ANOVA) to examine the variations in soluble sugar and
starch concentration among needles, branches, trunks, and roots. We conducted multiple
comparisons using the LSD test.

4. Results
4.1. Spatio-Temporal Non-Structural Carbohydrate Pattern of Faxon Fir

The soluble sugar concentration of the whole trees reached the highest value in
January 2019 across all the sampling sites. According to Figure 2a, soluble sugar fol-
lowed a similar pattern to TNSCs, while starch remained stable with seasonal variations.
Figure 2b shows that the order of TNSCs concentrations in organs from highest to low-
est was needle > root > branch > trunk during the four selected months. In Figure 2c, the
concentration of starch in organs exhibits a “V”-shape variation with the seasons, with
root and needle concentrations being similar, as were branch and trunk concentrations.
Finally, Figure 2d demonstrates that the order of soluble sugar concentrations in organs
from highest to lowest was needle > root > branch > trunk during the four selected months.
The soluble sugar concentrations in the needles and roots showed similar seasonal trends.
In contrast, the maximum concentration in the branches and trunks occurred between
October 2019 and January 2020, with the highest in January 2020.

The seasonal pattern of soluble sugar concentration in Faxon fir organs was similar
at different elevations (Figures 3 and 4). The concentration of soluble sugar in needles,
branches, and roots increased with the elevation each season and stayed higher from Octo-
ber to April, but the concentrations in the trunk were stable (Figures 3a,c,e,g,i and 4a,c,e,g,i).
The spatial pattern of soluble sugar concentration was also consistent at different elevations,
from high to low as follows: needles > roots > branches > trunks. The starch concentra-
tion of Faxon fir showed different spatial and temporal patterns at different elevations
(Figures 3b,d,f,h,j and 4b,d,f,h,j). The starch concentration in needles was higher than that
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in other organs at 2800 m altitude, increasing with elevation. The starch concentration in
roots gradually increased as compared to needles, and the starch concentration in needles
and roots showed a “V” shape from July to April at all elevations. The value was lowest
in January.

The starch concentration in branches was lowest in July and highest in April at 2800 m,
3000 m, 3200 m, and 3600 m a.s.l, while it was lowest in October and highest in April at
3400 m a.s.l. (Figures 3b,d,f,h,j and 4b,d,f,h,j). The starch concentration in trunks showed
a “V” shape at 2800 m and increased with elevation, being significantly higher in April
than in other seasons (Figures 3b,d,f,h,j and 4b,d,f,h,j). Soluble sugar and starch showed
substantial organ variations across altitudes in the four selected months, and the combined
effect among seasons, organs, and altitude showed an influence (Table 1).
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organ’s total non-structural carbohydrates (TNSCs) variations with season; (c) each organ’s starch con-
centration variations with season; (d) each organ’s soluble sugar concentration variations with season.

Table 1. The effects of altitude, season, organ, and the interaction between altitude, season, and organ,
as analyzed using a three-way ANOVA.

Factors
Soluble Sugar Starch

d.f. F p d.f. F p

Season 3 596.68 <0.001 3 197.30 <0.001
Organ 3 3306.84 <0.001 3 409.15 <0.001

Altitude 4 87.88 <0.001 4 15.12 <0.001
Season × Organ 9 122.77 <0.001 9 45.70 <0.001

Season × Altitude 12 3.01 <0.001 12 6.12 <0.001
Organ × Altitude 12 42.96 <0.001 12 11.02 <0.001

Season × Organ × Altitude 36 5.76 <0.001 36 3.10 <0.001
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Data are presented as means ± SE. Different letters indicate significant differences among organs and
seasons based on an LSD test (n = 6, p < 0.05).
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4.2. Various Factors Influence the Temporal and Spatial Distribution Pattern of Non-Structural
Carbohydrates in Faxon Fir Organs

Values in the figure represent the detailed variations in each category of elements
and various interactions (Figure 5). Climate factors include soil temperature (Soil.T), mean
annual temperature (MAT), and mean monthly temperature (MMT) (Figure 1); Ψ represents
the pre-dawn leaf water potential, which showed a significant difference among study sites
at different measurement times and decreased with the increasing elevation in general
(Table 2). Carbon content includes the root, needle, trunk, and branch carbon content
(CNeedle, CBranch, CTrunk, and CRoot). Morphological traits include leaf area per unit sapwood
area (LA/SA), leaf mass per area (LMA), and tracheid lumen diameter (TLD); LMA showed
a trend of gradual increase with increasing elevation, LA/SA showed a significant difference
among study sites, and TLD exhibited a decreasing trend with increasing elevation (Table 3).

Table 2. Pre-dawn leaf water potential of Faxon fir in four experimental periods at different altitudes
(letters indicate significance with different traits at different altitudes).

Pre-Dawn Leaf Water Potential (Bar)

Altitude
(m)

July 2019 October 2019 January 2020 April 2020

Mean SE Mean SE Mean SE Mean SE

2800 −0.60 b 0.1732 −3.18 bc 1.5654 −7.85 c 0.3531 −5.35 c 0.9992
3000 −1.17 ab 0.1678 −1.95 c 0.3782 −8.69 c 0.7019 −12.99 b 0.9635
3200 −1.89 a 0.4151 −10.53 a 0.9933 −15.78 a 0.5680 −14.34 ab 0.8102
3400 −1.61 ab 0.1795 −3.83 bc 0.2083 −12.76 b 1.0176 −15.77 a 0.2856
3600 −1.10 ab 0.2470 −6.47 b 1.1349 −14.47 ab 0.6541 −14.97 ab 0.5028

Table 3. Morphological traits (LMA, LA/SA, and TLD) of Faxon fir at different altitudes (letters
indicate significance with different traits at different altitudes).

Morphological Traits

Altitude
(m)

LMA LA/SA TLD

Mean SE Mean SE Mean SE

2800 0.17 c 0.0052 0.58 c 0.0234 12.46 a 0.1005
3000 0.17 c 0.0042 0.70 a 0.0294 10.73 c 0.0822
3200 0.22 b 0.0060 0.65 ab 0.0235 10.31 d 0.0960
3400 0.24 a 0.0048 0.59 bc 0.0127 11.60 b 0.0915
3600 0.23 ab 0.0035 0.67 a 0.0188 9.59 e 0.0741

We found that climate factors, carbon content, and morphological traits primarily in-
fluenced needles’ soluble sugar concentration, showing 30% variance through the variance
partitioning analysis. Climate factors alone accounted for 28.9% of the variation, while the
combined effect of climate factors and morphological traits accounted for 26% (Figure 5).
The needle starch concentration was affected by the combined effect of climate factors
and carbon content with 52.5% variation; was jointly influenced by climate factors, carbon
content, and morphological traits, showing 13.2% variation; and was further affected by
the two factors with 14.7% and 12.1% variation (Figure 5).

Climate factors accounting for 43.2% variation primarily described the branch soluble
sugar concentration variance. The combined effect of morphological traits and climate
factors accounted for 21.1% of the variation. In contrast, the combined effect of morpholog-
ical traits, climate factors, and carbon content accounted for 15.3% of the variation. The
carbon content effect was 10.5% of the variation. The combined effect of climate factors and
carbon content on starch concentration showed 49.4% variation, and climate factors further
independently explained 17.7% of the variation (Figure 5).
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We interpreted the soluble sugar concentration variation of the trunk by the combined
effect of climate factors and carbon content, which accounted for 47.1%. Climate factors and
carbon content individually accounted for 19.9% and 11.8%, respectively (Figure 5). The
trunk starch concentration also showed 45.5% variance by the combined effect of climate
factors and carbon content, with climate factors further independently explaining 23.1% of
the variation (Figure 5).

We explained the variance of the root soluble sugar concentration by the combined
effect of climate factors and carbon content, with a 26.8% variance. Climate factors and
carbon content individually accounted for 19.9% and 19.7%, respectively, and the combined
effect of morphological traits, climate factors, and carbon content showed a 16.2% variance
(Figure 5). Variation in root starch concentration due to climate factors was 46.5%, that
from the combined effect of morphological traits and climate factors was 25.0%, that due to
climate factors and carbon content was 23.5%, and that further independently explained by
carbon content was 10.4% (Figure 5).

The results of the RDA explain the variations of Faxon fir organs’ soluble sugar and
starch concentrations across the sampling sites in four months, with 47% at axis 1 and 41%
at axis 2 (Figure 6). Based on the Monte Carlo test in the RDA, MMT (F = 759.5, p < 0.001),
Soil.T (F = 674.9, p < 0.001), Ψ (F = 264.5, p < 0.001), and CBranch (F = 114.2, p < 0.001) were
the dominant driving factors of Faxon fir organs’ soluble sugar and starch concentration
variations. The RDA ordination biplot (Figure 6) shows that carbon content (CNeedle, CBranch,
CTrunk, and CRoot) was an important factor that caused changes in the concentrations of
soluble sugar and starch in the Faxon fir organs. These changes occurred along RDA axis
1 and affected the starch concentration in needles, trunks, and branches and the sugar
concentration in roots and trunks.
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Figure 6 indicates that environmental factors (MAT, MMT, and Soil.T) and morpholog-
ical traits (LA/SA and LMA) significantly influenced soluble sugar and starch concentration
variations in the Faxon fir organs along RDA axis 2. This affected starch levels in roots and
sugar levels in branches and needles. The variables Ψ, Soil.T, CNeedle, CBranch, CTrunk, and
CRoot all displayed negative associations with starchNeedle, starchTrunk, starchBranch, sugarRoot,
and sugarTrunk and were positively associated with sugarTrunk (Figures 6, S2 and S3). The
variables Ψ, TLD, MAT, MMT, Soil.T, and LA/SA showed positive associations with
starchRoot and were negatively associated with sugarBranch and sugarNeedle. LMA was posi-
tively associated with sugarBranch and sugarNeedle but negatively associated with starchRoot
(Figures 6 and S1–S3). TLD and MAT were positively associated with starchNeedle, starchTrunk,
starchBranch, and sugarRoot but negatively associated with sugarTrunk (Figures 6 and S1).

Variables displayed in Figure 6 include the following: Ψ, pre-dawn leaf water potential;
Soil.T, soil temperature; MAT, mean annual temperature; MMT, mean monthly temperature;
starchNeedle, needle starch concentration; starchBranch, branch starch concentration; starchTrunk,
trunk starch concentration; starchRoot, root starch concentration; sugarNeedle, needle soluble
sugar concentration; sugarBranch, branch soluble sugar concentration; sugarTrunk, trunk
soluble sugar concentration; sugarRoot, root soluble sugar concentration; CRoot, carbon
content of root; CTrunk, carbon content of trunk; CNeedle, carbon content of needle; CBranch,
carbon content of branch; LA/SA, leaf area per unit sapwood area; LMA, leaf mass per
area; TLD, tracheid lumen diameter. The points with different colors and shapes represent
different elevations.

5. Discussion
5.1. Terminal Organs Needles and Roots’ NSC Concentration Is Higher than That of Branches
and Trunk

Our results show that the order of Faxon fir organs from high to low NSCs concentra-
tion is needle > root > branch > trunk (Figures 2–4). This difference probably resulted from
differences in the physiology of each organ [10] and also due to the dry density and activity
in the different tissues. Needles are photosynthesis organs that produce sugars, which
constitute a significant NSCs component (Figures 2–4). Previous research has confirmed
that photosynthesis rates positively correlate with leaf mass per unit area (LMA) [53], which
is consistent with this paper’s result of LMA showing a significant relationship with needle
sugar concentration (Figure 6). Soluble sugar’s contribution to LMA may differ in different
plant species. For example, in tomato, the contribution of soluble sugar to LMA was not sig-
nificant in a day’s growth, but the contribution of starch was very significant [54]. However,
in P-limited soil environments in tropical forests, it was found that higher concentrations of
NSCs may lead to a lower LMA; this may be due to the close correlation between leaf area
and NSCs [55]. In this study, the soluble sugar concentrations in leaves and branches were
closely correlated with LMA (Figure 6) due to the plant’s self-protection mechanism; in an
advanced environment, plants want to reserve more NSCs for enhanced resistance [56].

Kozlowski’s research showed that high NSCs concentrations in conifer leaves can be
essential in storage and cold tolerance [57]. On the other hand, a high NSCs concentration
in needles reflects their high metabolic rates, and needles need high NSCs concentrations
to maintain the turgor pressure of many living cells [58,59]. Roots had the second highest
NSCs concentrations across the sample sites in the four months (Figures 2–4). In contrast to
other organs, roots are believed to specialize as storage organs [57], so roots would contain
the most starch [9]; this agrees with our finding that roots stored the most starch with
seasonal variations, while storing less than the needles in April 2020 (Figures 2–4). The
osmotic and metabolic demands are intermediate in roots, which results in a medium NSCs
concentration [58]. In contrast, roots have a relatively high NSCs concentration and form
a concentration gradient between root and soil water, which plays a crucial part in roots
absorbing water from the soil [60].

Below-ground carbon allocation is an essential process of the terrestrial ecosystem
carbon cycle and couples the activity of sink organs [60]. Furthermore, in unfavorable
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conditions, plants invest C into storage pools (roots) to prepare for environmental condition
improvement. It enables plants to regrow and increase their resilience under adverse
environmental conditions [60]. The branch NSCs concentration was slightly lower than
that of the roots; the Faxon fir needle has a short petiole, and the resistance of energy
transport between needle and petiole is reduced. Leaf size affects the leaf photosynthesis
capacity and its nutrient acquisition and indirectly affects nutrient distribution in other
organs. Non-structural carbohydrates depletion in the branches and trunk, in addition
to affecting xylem growth and sap chemistry, could indirectly increase xylem hydraulic
vulnerability [61].

The stems had a lower NSCs concentration, which may affect their ability to refill
embolized xylem conduits [61,62]. For low-temperature environment species, NSCs, es-
pecially sugars, were positively related to cold tolerance in perennial organs and used
to adjust intracellular osmotic concentration [22,63]. This paper’s results on organ NSCs
distribution patterns were consistent with Martínez-Vilalta’s study showing that leaf NSCs
concentrations change according to biome and plant functional type. In contrast, root
NSCs concentrations were intermediate [58]. The NSCs storage and distribution patterns of
various plant organs resulted from a long-term adaptation of the species to the environment
and climate change. It is a true reflection of plant survival strategies [64].

5.2. Plant Organs Have Higher Concentrations of NSCs in the Low-Temperature Season than in
the Warmer Season

Faxon fir is mainly distributed at 2700 m to 3900 m a.s.l. The subalpine region has
a significant temperature difference between the growing season (May–September) and
the non-growing season (October–April). The length of the growing season decreased
with the increasing elevation (Figure 1). Lower soluble sugar and TNSCs concentrations
of needles and branches were found in July 2019 (growing season), while being higher
in October 2019, January 2020, and April 2020 (non-growing season); furthermore, a
higher starch concentration was found in July 2019 and April 2020. The NSCs seasonal
changes in our study were similar to those in Zhang’s previous study [65], which found a
significant reduction in NSCs concentration at the end of the growing season in branches
and trunks. Phenological changes were one of the trigger factors of NSCs allocations during
the year [66].

During the growing season, plants need newly produced sugars to support crucial
processes such as bud break and sprouting, as stated by previous studies [67,68]. As a result,
they have limited reserves for the rest of the growing season. However, evergreen species
begin photosynthesizing early in the spring, allowing them to accumulate some sugars.
The high leaf grafting and radial growth consumption impede NSCs accumulation in the
growing season, such as in L. decidua and P. cembra [20,66]. Our findings aligned with Hoch’s
study, which reported a high proportion of free sugars and TNSCs in Faxon fir during
the non-growing season. Hoch et al. suggested that the elevated concentration of NSCs
throughout the non-growing season prepared the trees for winter freezing tolerance [20].

Additionally, our results demonstrated that the NSCs concentration of Faxon fir organs
had a significant negative correlation with MAT and soil temperature, as shown in Figures
S1 and S2. Research has confirmed that when exposed to low temperatures, starch converts
into soluble sugars, which then act as osmoprotectants to improve the freezing tolerance
of overwinter organs [69]. Figures 2–4 and Table 1 indicate that the NSCs concentration
in the trunks varied with the seasons at partial elevation, which aligns with Martinez-
Vilalta’s findings. They discovered that seasonal changes in stems of all functional types
are statistically significant due to the large stem biomass of trees. Even though there may
be minor variations in concentration, stems play a crucial role in plants’ overall seasonal
carbohydrate dynamics [58].

Figures 2–4 and Table 1 indicate that the roots’ soluble sugar and NSCs concentrations
fluctuated with seasonal variations across all the sample sites. Roots are often considered
a long-term storage pool, only utilized during catastrophic events such as loss of above-
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ground biomass [9]. Our results showed that the starch concentration in needles and roots
exhibited a “V” shape, which means that the stored starch in needles and roots decreased
in the non-growing season but decreased with soluble sugar increase. This may be due to
the conversion of starch into soluble sugar to improve organs’ cold resistance [13,17]. For
high-elevation trees, temperature was an important driving factor of carbon storage states,
explaining slow growth and treeline formation [70] (Figures S1 and S2).

5.3. NSCs Improve the Resistance of Faxon Fir to Environmental Stress

Bush et al. confirmed that environmental factors affect plants’ composition and the
distribution of non-structural carbohydrates [71]. Furthermore, Swanson et al. found
that environmental disturbances are the main drivers shaping forest structure and succes-
sion [72]. Turco et al. predicted that the severity and frequency of abiotic disturbances
would increase due to climate change [73]. Piper and Paula suggested that this may lead
to an increased reliance on the allocation and storage of carbon by plants [74]. Similarly,
Figures 5 and 6 present related information. Besides moisture, temperature, and light
conditions, carbon content is essential in NSCs storage (Figures 5, 6 and S4) when carbon
gains are higher than demand, leading to NSCs storage [75]. Our results showed that root
carbon content negatively correlated with soluble sugar and starch concentrations. This
confirmed that a dynamic trade-off of photosynthesis products exists between NSCs and
C content [75]. As a result of organs not being resupplied with C quickly enough, plants
could starve and die [76].

Scientists predict that the temperature will rise to 4 ◦C by 2100, and these alterations
in precipitation patterns will make global climate change seem overwhelming [77]. The
impact of climate change is often slow and far-reaching, including increases in drought
stress, shifts in species’ geographical locations and modifications to their physiology and
seasonal behavior [77], and morphological adaptation to the environment, directly or
indirectly altering NSCs distribution patterns (Figures 5 and 6). High-elevation species
affected by global climate change will lose their habitats at a lower elevation of distribution
and need to migrate upward to recouple populations with the climates to which they are
adapted [78]. To get used to the new environmental conditions, species at high elevations
need to adjust or change their survival strategies.

6. Conclusions

Our results have important implications for understanding the high-elevation Faxon
fir NSCs allocation in different organs (spatial pattern) and according to seasonal variation
(temporal dynamics). Needles, branches, and roots had a high concentration of NSCs in the
non-growing seasons across all the sample sites. In contrast, the starch concentration in
each organ fluctuated with the season and accumulated in overwintering organs to improve
their cold resistance and prepare for growth in the non-growing season. Plants stored more
starch during early spring, whereas soluble sugar consumption was more significant.

The concentration of NSCs in roots followed a wave-like pattern over time, and it was
affected by various factors besides moisture and temperature. Many factors influenced
when and where the Faxon fir trees stored their NSCs. Biotic–abiotic factors such as
temperature, water status, and root carbon content influence the distribution of non-
structural carbohydrates (NSCs) in different organs of Faxon fir. These factors also prepare
the plant to use NSCs differently in different seasons. For instance, during the growing
season, the plant depletes a lot of soluble sugar but stores some starch. The combined
effect of these biotic–abiotic factors explains the allocation strategy of NSCs. This allocation
strategy resulted from Faxon fir’s adaptation to environmental changes.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14071438/s1, Figure S1: The linear relationships of soluble sugar
and starch concentration of Faxon fir organs with mean monthly temperature (MMT). Solid lines
indicate a significant relationship. Each point is a mean value (n = 6); Figure S2: Correlations between
soluble sugar and starch concentration of Faxon fir organs with Soil temperature. Each point is a mean
value. Figure S3: Correlations between soluble sugar and starch concentration of Faxon fir organs
with Pre-dawn leaf water potential. Each point is a mean value; Figure S4: The linear relationship
of soluble sugar and starch concentration of Faxon fir with needle carbon content. CBranch: needle
carbon content. Each point is a mean value; Figure S5: One-way analysis of variance of Faxon Fir
organ’s (Needle, a b; Branch, c d; Trunk, e f; Root, g h) soluble sugar and starch concentration among
five study sites. “*” means significant difference; “ns” means no difference.
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Abbreviations

NSC Non-structural carbohydrates
Ψ Pre-dawn leaf water potential
Soil.T Soil temperature
MAT Mean annual temperature
MMT Mean monthly temperature
starchNeedle Needle starch concentration
starchBranch Branch starch concentration
starchTrunk Trunk starch concentration
starchRoot Root starch concentration
sugarNeedle Needle soluble sugar concentration
sugarBranch Branch soluble sugar concentration
sugarTrunk Trunk soluble sugar concentration
sugarRoot Root soluble sugar concentration
CRoot Carbon content of root
CTrunk Carbon content of trunk
CNeedle Carbon content of needle
CBranch Carbon content of branch
LA/SA Leaf area per unit sapwood area
LMA Leaf mass per area
TLD Tracheid lumen diameter
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