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Abstract: Forest floor dead fuel moisture content (DFMC) is an important factor in the occurrence of
forest fires, and predicting DFMC is important for accurate fire risk forecasting. Large areas of forest
surface DFMC are difficult to predict via manual methods. In this paper, we propose an unmanned
aerial vehicle (UAV)-based forest surface DFMC prediction method, in which a UAV is equipped
with a multispectral camera to collect multispectral images of dead combustible material on the
forest surface over a large area, combined with a deep-learning algorithm to achieve the large-scale
prediction of DFMC on the forest surface. From 9 March to 23 March 2023, 5945 multispectral images
and 480 sets of dead combustible samples were collected from an urban forestry demonstration site in
Harbin, China, using an M300 RTK UAV with an MS600Pro multispectral camera. The multispectral
images were segmented by a K-means clustering algorithm to obtain multispectral images containing
only dead combustibles on the ground surface. The segmented multispectral images were then
trained with the actual moisture content measured by the weighing method through the ConvNeXt
deep-learning model, with 3985 images as the training set, 504 images as the validation set, and
498 images as the test set. The results showed that the MAE and RMSE of the test set are 1.54% and
5.45%, respectively, and the accuracy is 92.26% with high precision, achieving the accurate prediction
of DFMC over a large range. The proposed new method for predicting DFMC via UAV multispectral
cameras is expected to solve the real-time large-range accurate prediction of the moisture content of
dead combustible material on the forest surface during the spring fire-prevention period in northeast
China, thus providing technical support for improving the accuracy of forest fire risk-level forecasting
and forest fire spread trend prediction.

Keywords: unmanned aerial vehicle multispectral; forest surface dead fuel moisture content; image
segmentation; deep learning

1. Introduction

Forest fires are a common natural disaster that can cause significant damage to both hu-
mans and the natural environment. Globally, raging forest fires affect biodiversity, wildlife
habitat, and ecosystem attributes. About 84% of the world’s ecoregions are threatened
by forest fires, severely affecting biodiversity. Forests, which play an important role in
carbon sinks, may become a source of carbon to the atmosphere even after forest fires due
to the death of trees in fire-affected areas [1]. According to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC), annual carbon emissions from
forest fires range from 2.5 to 4 billion tons of carbon dioxide [2]. Forest burning degrades
air quality due to the emission of large amounts of particulate matter and trace gases [3].
The average concentrations of particulate matter (PM2.5 and PM10) and nitrogen dioxide
increase in areas affected by forest fires [4]. Land degradation due to forest fires is also
a common problem. As a result of forest fires, large amounts of ash, carbon, and toxic
substances are produced and contaminate the air, water, and soil, and the contaminated air,
water, and soil affect soil nutrients and microorganisms, altering the productivity of the
soil. Between 2000 and 2020, the average number of fires per year in China was 6283 (with
a range of 1153 to 14,144 fires), and the average area burned was 183,126 hectares (ranging
from 18,161 to 1,123,751 ha) [5].
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Forest fuels are materials that can be burned in forests with a source of fire and oxygen,
while dead forest surface fuels are fuels with a time lag of less than 10 h [6]. These include
mainly fallen fine dead leaves, of which fine dead fuels with a time lag of 1 h play an
important role in fire risk-forecasting systems as they dry out or become wet quickly [7].
The key to forest fire weather forecasting and fire behavior forecasting is the accurate
prediction of surface dead fuel moisture content (DFMC) [8]. Forest fuels are one of the
three main elements in the occurrence of forest fires and the material basis for forest burning.
When the moisture content of forest surface fuels is low, i.e., dry, flammable materials such
as dead leaves and branches burn easily and fires spread easily, thus increasing the risk of
forest fires [9]. On the other hand, when the moisture content of forest surface fuels is high,
the moisture in the burning material can stop the spread of fire, effectively reducing the
risk of fire [10]. Therefore, predicting the moisture content of forest surface fuels can help
predict the risk of forest fires and take timely measures to reduce the damage caused by
fire to humans and the natural environment.

Research methods for forest fuel moisture content have so far been lacking in terms
of techniques and methods for directly measuring the moisture content of forest ground
cover fuels, and there are many aspects that deserve study. At this stage, there are four
approaches to the study of moisture content in forest ground cover fuels, namely the
equilibrium moisture content method, the meteorological element regression method, the
process modeling method, and the remote-sensing estimation method [11].

The equilibrium moisture content method indirectly solves the moisture content by
modeling the relationship between the moisture content, equilibrium moisture content, and
time lag, combining meteorological factors with the equilibrium moisture content and time
lag. Catchpole developed a method for estimating the equilibrium moisture content and
fuel moisture-response time [12]. Nelson used the equilibrium moisture content to find that
in a combustible layer with needles placed vertically, the moisture loss is determined by
the particles [13]. For beds of flat needles, plots of the area drying rate versus the fuel load
illustrate a transition from control by individual particles to control by the bed structure
when the fuel loading is approximately 0.33 kg·m−2. Yu used the Nelson [14] and Simard
methods (which consider the equilibrium moisture content and the associated time lag)
and direct regression method (which allows for the direct attainment of the fuel moisture
content (FMC)). Both the Nelson and Simard methods predicted the hourly twig moisture
content more accurately than the direct regression method [15]. Zhao assessed how the soil
moisture content affects the DFMC by coupling the soil moisture as a boundary condition
with the physically based ”Koba” model [16,17]. The equilibrium moisture content method
is used to model the moisture content of fuels where the equilibrium moisture content of
the fuel is known, and this method is feasible in the laboratory for variations in a single
condition (temperature, relative humidity, wind speed, and rainfall). In the field, however,
the equilibrium moisture content is difficult to estimate and the number of uncertainties
affecting the fuel moisture content in the field make the use of the equilibrium moisture
content method somewhat difficult. The equilibrium moisture content method is relatively
suitable on small scales due to its reliability in physical methods [18], but on larger scales,
the accuracy decreases and the workload increases significantly. Not all observations of the
fuel moisture content are always available, especially for larger fuels [19].

The meteorological element regression method uses statistical models to construct
relationships between the FMC and input variables (weather, fuel, and site characteristics)
observed in the field [20]. Alves et al. tested the relationship between the FMC and
weather through an exhaustive comparison with the temperature, wind speed, and relative
humidity [21]. Sharples described a fuel moisture index that provides a simple and intuitive
way to assess the fuel moisture content. The method can be applied quickly and easily to
field settings to provide a dimensionless measurement of the fuel moisture content [22]. De
Dios V R described a semi-mechanical model that predicted a minimum daily fuel moisture
content based on an exponentially decreasing relationship between the fuel moisture
content and atmospheric vapor-pressure deficit [23]. Bilgili modeled the moisture content
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of surface fuels in forest stands in relation to weather conditions, i.e., temperature, relative
humidity, and wind speed, and developed models to predict the fuel moisture content
during the desorption and sorption phases for each fuel-type category [24]. Masinda used
the equilibrium moisture content function and meteorological regression method to predict
the DFMC in the Maoer Mountain forest ecosystem [25].

The process modeling method predicts the FMC by attempting to simulate the pro-
cesses occurring in fuels. Wittich proposed a refined fuel moisture model based on moisture
and heat transfer equations that require standard meteorological input variables at hourly
(or shorter) intervals to make the diurnal behavior of fuel moisture visible [26]. Qu used
differential equations to develop a model for forest fuel moisture prediction, statistically
analyzing the relationship between the uniform temporal variation in the moisture and fuel
time temperate front, relative humidity, and wind speed [27]. Fan used a long short-term
memory (LSTM) network and its combination with a validated physical process-based
model, the fuel stick moisture model (FSMM), to estimate dead fuel moisture content [28].
Fan determined the minimum processing time required for the process-based model to
use a series of initial DFMC values to estimate DFMC, and then divided a long time series
process into parallel tasks to provide a more time-efficient method of running previously
established process-based models [29]. Peng used a distributed prediction system based
on LoRa wireless sensors and a BP neural network to realize the remote real-time accurate
prediction of the DFMC of different forest stands [30].

These sample-specific empirical models have poor generalizability. Physical models
may generalize well, but they rely on an accurate assessment of the biophysical parameters
required to calibrate and parameterize the model [31]. Furthermore, samples and physical
parameters within dense forests are difficult and labor intensive to obtain, whereas data
can be obtained less easily by means of remote sensing.

The development of remote-sensing estimation methods has made it possible to predict
the water content of forest fuels on a large scale, which can be achieved through a broad
classification of the fuel moisture content and the strong absorption properties of liquid
moisture in the near-wave and short-wave infrared spectral regions, from which the fuel
moisture content can be directly estimated based on its reflectance [32]. Nieto used a
split-window algorithm to estimate the precipitable moisture content using the thermal
infrared band of a Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and vapor
pressure models were calibrated and validated using 2005 data from Spanish ground-based
meteorological stations, combining the air temperature and vapor pressure to calculate
the DFMC [33]. Nolan predicted the DFMC from the atmospheric temperature, total
precipitation, and surface temperature on vapor-pressure deficits from remotely sensed
data [34]. Dragozi used a satellite-based (MODIS DFMC model) and meteorological stations
(AWSs DFMC model) approach to estimate the DFMC using a fuel moisture model based
on the relationship between the fuel moisture and vapor-pressure deficit for fine fuels [35].
Quan retrieved the FMC of a two-layered forest in southwestern China using coupled RTM
and Landsat 8 OLI products [36].

Satellite remote-sensing estimation methods must ensure comparability with remote-
sensing data when conducting DFMC field measurements. Remote-sensing data suitable
for monitoring DFMC are usually collected at a spatial scale of 0.1 to 100 ha, while DFMC
is usually sampled at a smaller scale of 0.01 to 0.1 ha, and the location and date of DFMC
sampling needs to be ensured to be the same as the satellite remote-sensing data, making it
difficult to achieve real-time dynamic and accurate monitoring [32]. In addition, satellite re-
mote sensing is susceptible to weather conditions (e.g., cloud cover) and vegetation canopy
cover. These issues greatly limit the ability of satellite remote sensing to monitor DFMC.
In contrast, unmanned aerial vehicle (UAV) platforms carrying multispectral cameras
have a very high spatial resolution, which can reach the centimeter level, and are simple,
efficient, flexible, and real time, fully guaranteeing the comparability of in situ measured
DFMC with remotely sensed data. Correspondence between UAV remote-sensing data
and surface DFMC was established to assess the potential of estimating DFMC directly
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from UAV remote-sensing imagery. However, the images collected by UAV multispectral
cameras contain both surface and tree spectral information, and there is currently no set of
processing procedures and methods for UAV multispectral image data that are suitable for
the prediction of forest surface moisture content under vegetation cover conditions.

Remote-sensing data have multiple dependencies not only on DFMC but also on other
biological and geophysical parameters, and the relationship between ground-measured
DFMC and spectral bands is complex and indirect. In contrast, deep learning does not
require a priori conditions and can approximate the complex nonlinear relationships
between various biological and geophysical parameters and remotely sensed data through
multilayer learning. In particular, convolutional neural networks are capable of extracting
multilevel and multiscale features from remotely sensed data [37].

In summary, the equilibrium moisture content method, meteorological element regres-
sion method, and process modeling method cannot predict DFMC on a large scale, and the
data acquisition is difficult; while the satellite remote-sensing estimation method has low
accuracy, poor timeliness, and is easily affected by weather factors. To this end, this paper
proposes a new method to predict forest surface DFMC based on UAV multispectral images.
By carrying a multispectral camera on UAV, a large range of multispectral images of dead
combustibles on the forest surface can be collected in a short time and can be combined
with a deep-learning model to achieve the fast, accurate, and large-range prediction of
forest surface DFMC.

2. Materials and Methods
2.1. Study Area

The study area is located in the urban forestry demonstration base of Harbin, Hei-
longjiang province (126◦37′458′′ E, 45◦43′464′′ N), with a flat topography, a zonal black
calcium soil type, high humus content, deep soil layer, high accumulation of dead fuels
on the forest floor, and good soil fertility and moisture conditions. The area has a mid-
temperate continental monsoon climate, with an average annual temperature of 3.5 ◦C, a
maximum temperature of 38 ◦C, and a minimum temperature of −37 ◦C, and an average
annual precipitation of 534 mm. At present, the site has more than 40 hm2 of various types
of planted forests, with vegetation types mainly consisting of white birch (Betulaplatyphylla),
Mongolian oak (Quercus mongolica), walnut (Juglans mandshurica), water willow (Fraxinus
mandschu-rica), black-barked oil pine (Pinus tabuliformis var. mukdensis), camphor pine
(Pinus sylvestris var. mongolica), larch (Lar-ix gmelinii), etc. The above vegetation is widely
distributed and numerous in China, among which the accumulation of larch accounts
for 7.30% of the total forest accumulation in China, ranking fifth; the accumulation of
water willow and walnut accounts for 1.12% of the total forest accumulation in China,
ranking thirteenth; and the accumulation of camphor pine accounts for 0.53% of the total
forest accumulation in China, ranking twenty-first. The urban forestry demonstration base
in Harbin City has rich and typical vegetation types and a high accumulation of dead
combustibles in the understory surface. Therefore, choosing it as the study area can ensure
the representativeness of the experimental data, and the results of the study have a certain
reference value, providing a reference for the study in other similar areas (Figure 1).

2.2. Spectral Measurements of Dead Fuels

Dead fuel samples were taken from four species of trees (Mongolian oak, water willow,
white birch, and larch) of the same phenology in the Harbin Urban Forestry Demonstration
Base, and the sample collection method was referenced from Catchpole’s study. In order to
simulate the wet state of dead combustibles in the natural environment, all samples were
soaked in distilled water for 1 h, and control groups with different moisture contents of
the same dead combustibles were set up by controlling the difference in the drying time
of the samples. Then, the samples were measured by the Flame spectrometer of Ocean
Optics, with a spectral resolution of 1 nm, combined with a “Y” type optical fiber for visible
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reflectance spectroscopy, and the light source used was an HL-2000 tungsten halogen lamp
with a power of 5 W (Figure 2).
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Figure 2. Experiment of reflectance spectroscopy measurement of apoplast.

The spectrometer was connected to a computer, and the reflection spectra measured in
real time were displayed through OceanView 2.0.8 software, and the measurement results
are shown in Figure 3. From the figure, it can be seen that the intensity of the reflection
spectra of the dead fuel from different tree species differed after soaking for the same
time, with the highest intensity of the reflection spectra of the dead fuel material from the
Mongolian oak and the lowest intensity of the reflection spectra of the dead fuel material
from the larch. The peak reflectance spectra of different species are also different, such
as the peak wavelength of the reflectance spectra of the dead fuel from the water willow
being 641 nm, and the peak wavelength of the reflectance spectra of the dead fuel from the
Mongolian oak being 696 nm. The green and blue spectra are the reflectance spectra of the
same species of dead fuel, soaked for the same time and dried for different times, that is,
with different moisture content. Therefore, the intensity of the reflectance spectra of the
same kind of withered material with different water content is also different. The above
results provide a basis for the selection of spectral bands in the actual measurement and
provide the feasibility for the subsequent prediction of DFMC by multispectral imagery.
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Figure 3. Visible reflectance spectra of dead fuel.

2.3. Data Acquisition and Processing

In this paper, a DJI(DJ-Innovations) M300RTK UAV was used as the UAV platform,
and the multispectral camera model was an MS600Pro with six spectral bands, 450 nm,
555 nm, 660 nm, 720 nm, 750 nm, and 840 nm. The UAV was equipped with a multispectral
camera and conducted an eight-day cruise photography mission at the same time and on
the same route on 9 March, 10 March, 11 March, 13 March, 17 March, 18 March, 19 March,
and 23 March, flying at an altitude of 40 m, with a route speed of 5.5 m/s, a camera shooting
interval of 1 s, an overlap rate of 80%, a bypass overlap rate of 70%, and a shooting area
of 68,339 square meters, taking a total of 5945 groups of images. Each group contained
six single-band images with a resolution of 1280 × 960 and a spatial resolution of 2.88 cm.
The mission lasted for 20′47′′, consuming 57% of the power from two 5935 mAh batteries
(Figure 4).
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Figure 4. Diagram of the data acquisition equipment. In figure (a), the UAV is flying a mission
over the study area; figure (b) is the M300RTK UAV used in this paper; figure (c) is the MS600PRO
multispectral camera on board the UAV platform; figure (d) is a six-band image of the calibration
gray plate taken with a multispectral camera.

Using Yusense Map 2.2.3 software, the camera parameters were read from the images
to complete the image internal orientation and band alignment, and the six single-band
images were combined into a six-band multispectral image. Finally, the standard reflectance
was read from the captured calibration gray plate images to complete the radiometric
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calibration (Table 1), and finally, 5945 multispectral remote-sensing images with real surface
reflectance were generated (Figure 5).

Table 1. Reflectance of six wavelengths of light shining on the calibration gray plate.

Wavelength 450 nm 555 nm 660 nm 720 nm 750 nm 840 nm

Reflectance 0.65 0.62 0.61 0.61 0.60 0.59
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Figure 5. False color image synthesized from multispectral images of the forest floor. The left image
was taken on 13 March and shows snow in the white part of the image; the picture on the right was
taken on 19 March, the snow has all melted, the light outside is strong, the white part of the picture is
the glare from the tree canopy.

Surface dead combustible material samples were collected in the field in conjunction
with UAV filming, and 4 sites were selected to measure dead combustible material water
content, with 15 sampling points evenly distributed at each site (Figure 6), and the sample
collection methodology was referenced from Catchpole’s study.
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Figure 6. Diagram of the UAV’s flight path and dead combustible sample sampling points. The
green line in the left figure is the flight route of the UAV, the part surrounded by the red dotted line
in the right figure is the dead combustible sample sampling area, and the 15 red dots are the dead
combustible sample sampling points.

After measuring and recording the wet weight of the samples in the field, the samples
were sealed and preserved for transportation, and after drying in a drying box, the dry
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weight of the samples was measured and recorded, and the moisture content of the samples
was calculated by the formula:

DFMC =
mw −md

md
(1)

where mw is the wet weight of the sample and md is the dry weight of the same sample.
In order to correspond the captured forest surface multispectral images to the ground-
collected DFMC, this paper uses inverse distance weighting [38] interpolation to populate
the out-of-sampling point DFMC. The weather and measured DFMC for the experimental
area on the eight days of the experiment are shown in Table 2.

Table 2. Weather conditions and measured DFMC in the experimental area.

Date Maximum Temperature Minimum Temperature Weather DFMC

9 March 10 ◦C −2 ◦C Cloudy 40.07%
10 March 14 ◦C −4 ◦C Cloudy 29.97%
11 March 3 ◦C −8 ◦C Sunny 16.07%
13 March 0 ◦C −9 ◦C Sunny 7.69%
17 March 5 ◦C −6 ◦C Sunny 44.67%
18 March 9 ◦C −4 ◦C Cloudy 33.42%
19 March 14 ◦C −1 ◦C Cloudy 20.96%
23 March 1 ◦C −7 ◦C Cloudy 6.95%

2.4. K-Means

Deep-learning-based segmentation is a more widely used segmentation algorithm,
such as VGGNet [39], ResNet [40], R-CNN [41], FCN [42], etc. However, these algorithms
require a large amount of complex labeling information and are not suitable for the seg-
mentation of tree trunks and shadows [43]. K-means [44] is a clustering algorithm, one of
the most popular unsupervised algorithms for solving clustering problems, whose goal
is to divide a given dataset into K different groups or clusters such that the similarity (or
distance) between data points within the same group is as small as possible, while the
similarity (or distance) between data points between different groups is as large as possible.
The basic idea of the K-means algorithm is to first randomly select K points as the initial
cluster centers. Then, assign each data point to the group whose cluster center is closest to
it, then recalculate the cluster centers for each group, and repeat the above steps until the
cluster centers no longer change or a predetermined number of iterations is reached.

The steps of the K-means algorithm are as follows:

(1) First, select K points at random as the initial clustering centers;
(2) For each data point, calculate its distance from the K clustering centers and assign

that data point to the group in which the nearest clustering center is located;
(3) For each group, recalculate its cluster center, i.e., average the coordinates of all data

points within that group to obtain a new cluster center.

Repeat steps 2 and 3 until the clustering centers no longer change or a predetermined
number of iterations is reached.

Therefore, the K-means unsupervised segmentation algorithm was utilized, and K was
set to be 3, which enabled the clustering of tree trunks, shadows, and surface dead fuel into
three distinct clusters. As a result, the segmentation of trees and shadows was realized, and
the coverage of trees and shadows was removed, retaining only the multispectral image of
surface dead fuels.

2.5. ConvNeXt

Based on the structure of Swin Transformer [45], Zhuang Liu et al. [46] changed the
structure of ResNet [40] and proposed a pure convolutional neural network of ConvNeXt.
After experimental demonstration in the literature, the pure convolutional network (Con-
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vNeXt) outperformed Swin Transformer in a classification task, target detection task, and
image segmentation task with the same amount of computation.

The most important feature of ConvNeXt is the change in the original ResNet structure
by referring to the structure of Swin Transformer. The number of stackings in ConvNeXt is
adjusted from (3, 4, 6, 3) of ResNet 50 to (3, 3, 9, 3), which reduces the number of floating
point operations per second (FLOPs). ConvNeXt uses convolutional kernels of size 4 × 4
with 4 steps which constitute patchify and downsample by a factor of 4. ConvNeXt uses a
depthwise convolution structure, where each convolutional kernel has a channel number
of 1 and each convolutional kernel is responsible for only one channel of the input feature
matrix, reducing the amount of convolutional computation by a factor of 8 to 9 compared
to conventional convolution. The depthwise convolution module is moved up and the
size of the convolution kernel is changed from 3 × 3 to 7 × 7, reducing the FLOPs again.
The GELU activation function and layer normalization are used in the ConvNeXt Block,
while the activation function and normalization layer are reduced. The block structures of
ResNet, Swin Transformer, and ConvNeXt are shown in Figure 7.

Forests 2023, 14, x FOR PEER REVIEW 9 of 18 
 

 

2.5. ConvNeXt 

Based on the structure of Swin Transformer [45], Zhuang Liu et al. [46] changed the 

structure of ResNet [40] and proposed a pure convolutional neural network of ConvNeXt. 

After experimental demonstration in the literature, the pure convolutional network (Con-

vNeXt) outperformed Swin Transformer in a classification task, target detection task, and 

image segmentation task with the same amount of computation. 

The most important feature of ConvNeXt is the change in the original ResNet struc-

ture by referring to the structure of Swin Transformer. The number of stackings in Con-

vNeXt is adjusted from (3, 4, 6, 3) of ResNet 50 to (3, 3, 9, 3), which reduces the number of 

floating point operations per second (FLOPs). ConvNeXt uses convolutional kernels of 

size 4 × 4 with 4 steps which constitute patchify and downsample by a factor of 4. Con-

vNeXt uses a depthwise convolution structure, where each convolutional kernel has a 

channel number of 1 and each convolutional kernel is responsible for only one channel of 

the input feature matrix, reducing the amount of convolutional computation by a factor 

of 8 to 9 compared to conventional convolution. The depthwise convolution module is 

moved up and the size of the convolution kernel is changed from 3 × 3 to 7 × 7, reducing 

the FLOPs again. The GELU activation function and layer normalization are used in the 

ConvNeXt Block, while the activation function and normalization layer are reduced. The 

block structures of ResNet, Swin Transformer, and ConvNeXt are shown in Figure 7. 

 

Figure 7. Block design of ResNet, Swin Transformer, and ConvNeXt. 

The model used in this paper is a ConvNeXt-B in a ConvNeXt network with the num-

ber of channels C = (128, 256, 512, 1024) and the number of blocks B = (3, 3, 27, 3). The size 

of the multispectral image in the dataset used in this paper is 256×256×6. In order to input 

the data into the ConvNeXt model, the number of channels in the first convolutional layer 

of the ConvNeXt model needs to be changed to six. After the first convolutional layer and 

layer normalization, the image size becomes 64 × 64 × 128, and after 3 layers of the Con-

vNeXt Block and depth 128, the image size becomes 64 × 64 × 128; after another downsam-

pling, 3 layers of the ConvNeXt Block and depth 256, the image size becomes 32 × 32 × 

256; again, after another downsampling, 27 layers of the ConvNeXt Block and depth 512, 

the image size becomes 16 × 16 × 512; then, after one downsampling, 3 layers of the 
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The model used in this paper is a ConvNeXt-B in a ConvNeXt network with the
number of channels C = (128, 256, 512, 1024) and the number of blocks B = (3, 3, 27, 3). The
size of the multispectral image in the dataset used in this paper is 256× 256× 6. In order to
input the data into the ConvNeXt model, the number of channels in the first convolutional
layer of the ConvNeXt model needs to be changed to six. After the first convolutional
layer and layer normalization, the image size becomes 64 × 64 × 128, and after 3 layers of
the ConvNeXt Block and depth 128, the image size becomes 64 × 64 × 128; after another
downsampling, 3 layers of the ConvNeXt Block and depth 256, the image size becomes
32 × 32 × 256; again, after another downsampling, 27 layers of the ConvNeXt Block and
depth 512, the image size becomes 16 × 16 × 512; then, after one downsampling, 3 layers
of the ConvNeXt Block and a depth of 1024, the image size becomes 8 × 8 × 1024. The
feature-image output from the convolutional layer undergoes a pooling operation in the
global average pooling layer to obtain a global feature vector; after layer normalization
normalizes the global feature vector, the fully connected layer maps the global feature
vector to 8 output categories, outputs the confidence scores of the 8 categories, and converts
the outputs to probability distributions using the Softmax function. In the backpropagation
stage, the error term of the output layer is first calculated, then the gradient of the fully
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connected layer is calculated based on the error term and the weights of the fully connected
layer, then the gradient is passed back to the global average pooling layer, and finally,
passed back to the convolutional layer and the input layer to calculate the gradient of each
layer and update the parameters (Figure 8).
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In this paper, depending on the orientation of the UAV and the rotation angle of the
multispectral camera, different views of the same area may be acquired at different time
ranges. Using data-enhancement techniques, the multispectral images are randomly rotated
and randomly flipped horizontally or vertically. By loading the ConvNeXt pretrained model
for migration learning and then training the dataset, the first 10 epochs of training can
achieve high accuracy, which not only reduces the training time, saves computational
resources, and the cost of data collection, but also improves the generalization ability of the
model, avoids overfitting, and makes the model more robust.

2.6. ResNeXt

ResNeXt is a deep-learning model that is a variant of ResNet [47]. It uses a new
network structure called “cardinality” to improve model accuracy while maintaining com-
putational efficiency. In ResNeXt, the feature maps in each residual block are divided into
several subsets, or “cardinalities”. Each subset is then processed by a small branch network
in parallel, and the outputs are merged to obtain the output of the entire residual block.
This parallel processing approach improves the accuracy of the model while maintaining
the computational efficiency. ResNeXt50 has a depth of 50 layers and uses bottleneck
structures with 3 convolutional layers, where the 2nd convolutional layer has a kernel
size of 1 × 1 to reduce computational complexity. The model also uses techniques such as
batch normalization and residual connections to speed up training and improve accuracy.
ResNeXt101 is a deeper and more powerful version of the ResNeXt architecture, based on
the same “cardinality” concept as ResNeXt50. It has 101 layers and can achieve even higher
accuracy on various computer vision tasks.

ResNeXt has shown excellent performance in many computer vision tasks, such
as image classification, object detection, and semantic segmentation. It has become an
important model in the deep-learning field and is widely used in practical applications.

2.7. ResNeXt101-ECA

ResNeXt101-ECA is an improved version of the ResNeXt101 model that incorporates
the Efficient Channel Attention (ECA) [48] mechanism. It adopts the “cardinality” structure
like ResNeXt and adds the ECA mechanism to each residual block to enhance the feature
representation and generalization capabilities of the model.

The ECA mechanism can capture the inter-channel interactions more effectively and
enhance the feature representation capability of the model. Unlike traditional attention
mechanisms, ECA only needs to compute attention weights in local regions, greatly reduc-



Forests 2023, 14, 1724 11 of 17

ing the computational and storage overheads and improving the training and inference
speed of the model.

2.8. Swin Transformer

Swin Transformer [45] is a novel Transformer architecture that has achieved great
success in both natural language processing and computer vision fields. The main feature of
Swin Transformer is the introduction of a hierarchical window mechanism, which enables it
to handle inputs of arbitrary sizes and obtain better performance on high-resolution images.

The window mechanism of Swin Transformer is constructed based on nonoverlapping
image blocks. Between each block, Swin Transformer uses cross-block connections to
capture the information flow between blocks. Additionally, Swin Transformer introduces a
new deep-segmentation attention mechanism to aggregate features at different scales and
levels, enhancing the model’s representation power.

3. Results
3.1. K-Means Image Segmentation

The UAV platform is simple, flexible, and efficient, and is suitable for predicting
the moisture content of dead forest surface fuels on a large scale. However, due to the
occlusion by the forest vegetation canopy and its shadows, the forest surface images
captured by the multispectral camera on board the UAV platform cannot be directly used
for predicting the moisture content, and the multispectral images need to be segmented
and processed to extract the spectral image information of dead surface fuels. This paper
uses the unsupervised K-means algorithm to perform the clustering segmentation of UAV
multispectral images with a set initial K value of 3 to segment the images into three parts:
trees, shadows, and ground surface. A mask of the dead fuel part of the ground surface is
generated, and the original image is mask segmented to retain only the spectral information
of the dead fuel on the ground surface (Figure 9).
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tral images of tree masks segmented by K-means; (c,f,i) are multispectral images of surface dead fuel
masks segmented by K-means.



Forests 2023, 14, 1724 12 of 17

The 5945 multispectral images were segmented by K-means clustering to produce mul-
tispectral images containing only surface dead fuels. Part of the original tree and shadow
information in the image is segmented, and some blank areas appear. In order to reduce
the amount of modeling operations and increase the proportion of useful information in
the image, in this paper, the image with 1280 × 960 resolution is cut out of the image with
the highest gray value in the image and the resolution of 256 × 256 as the final dataset. The
dataset was divided into training, validation, and test sets according to 8:1:1.

3.2. ConvNeXt Predicts DFMC

In this paper, the ConvNeXt model, which is currently the best performing model
in the classification problem [46], was chosen as the model for this experiment. In total,
3985 images were used for the training set, 504 images for the validation set, and 498 images
for the test set, all of which were 6-channel multispectral images. The input to the ConvNeXt
model in this experiment is a 256 × 256 × 6 image, which is downsampled once by a
convolutional layer of size 4 × 4 and layout 4, turning the height and width of the image
into 1/4 of its original size, and then passed through four stages in turn; each stage is
composed of a series of ConvNeXt blocks, and the ratio of the four stages is 3:3:9:9. The
output of the last stage is subjected to global average pooling, layer normalization, and
finally, the confidence scores of the eight categories are output after a fully connected layer,
and the output is transformed into a probability distribution using the Softmax function.
The experimental model was trained using an AdamW optimizer with an initial learning
rate of 0.0001. In total, 200 epochs were trained and the model with the highest accuracy
was saved as the best model, with the final model having an accuracy of 92.26% (Figure 10).
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Figure 10. Accuracy results of ConvNeXt model training.

After the training was completed, this paper used a test set to evaluate the prediction
effect, using the mean absolute error (MAE) and root mean square error (RMSE) as the
evaluation metrics.

MAE =
∑n

i=1|yi − ŷi|
n

(2)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(3)

where yi is the true value, ŷi is the predicted value, and n is the number of samples. The
smaller the MAE and RMSE values, the smaller the error between the true and predicted
values, and the better the prediction (Figure 11).
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The ConvNeXt model has an MAE of 1.54% and an RMSE of 5.45% for the predicted
results on the test set.

A multispectral camera mounted on a UAV was used to capture 68,339 square meters
of forest surface multispectral images over the study area. The multispectral image was
subjected to K-means segmentation to remove the effects of trees and shadows, and the
trained ConvNeXt model was used to predict the surface DFMC in the study area, and the
visualization results are shown in Figure 12.
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Figure 12. Distribution of forest surface DFMC. The red part is mainly larch woodland with high
DFMC values; the dark blue part is mainly buff willow woodland with low DFMC values; and the
green part in the middle is mainly birch and Mongolian oak woodland.

4. Discussion

To evaluate the performance of neural networks for predicting DFMC, four convolu-
tional neural network models were used, ConvNeXt, ResNeXt50, ResNeXt101, ResNeXt101-
ECA (ResNeXt101 model with integrated ECA channel attention module), and one Trans-
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former model (Swin Transformer); the five models are outstanding in the current image
vision field. Training was performed on the dataset produced in this paper, all using the
AdamW optimizer with an initial learning rate of 0.0001. In total, 200 epochs were trained,
and the model with the highest accuracy was saved as the best model (Figure 13).
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Table 3 shows the predictions of the five models on the test set for DFMC. As can be
seen from the table, the model used in this paper (ConvNeXt) predicts a 2.68% reduction in
the MAE and 1.33% reduction in the RMSE for DFMC compared to the Swin Transformer,
a 30.19% reduction in the MAE and a 12.09% reduction in the RMSE for DFMC compared
to the ResNeXt50, a reduction in the MAE by 44.16% and RMSE by 18.39% compared to the
ResNeXt101-ECA-predicted DFMC, and a reduction in the MAE by 39.70% and RMSE by
23.43% compared to the ResNeXt101-predicted DFMC. All models have an MAE below
3% and RMSE below 7% in predicting DFMC on the test set, and the best performing
ConvNeXt model has a 92.26% accuracy, 1.54% MAE, and 5.45% RMSE in predicting DFMC
on the test set. The results showed that, on a forest area of 68,339 square meters, the use of
UAV to capture ground-level multispectral images, combined with ground sampling of
DFMC, can accurately predict forest surface DFMC through the training of a deep-learning
model in this study. This provides a new method for predicting forest surface DFMC over
large areas.

Table 3. Five model DFMC prediction results.

Model MAE RMSE

ConvNeXt 1.54% 5.45%
Swin Transformer 1.95% 5.52%

ResNeXt50 2.00% 6.11%
ResNeXt101-ECA 2.22% 6.45%

ResNeXt101 2.15% 6.73%

5. Conclusions

This paper presents a new method for predicting the DFMC of forest land surface
based on UAV remote sensing. The simple, flexible, efficient, and time-sensitive features of
the UAV platform are utilized to carry a multispectral camera to acquire high-resolution
multispectral images of the forest surface over a large area in a short period of time.
K-means clustering segmentation was performed on the multispectral images to obtain
5945 multispectral images containing only dead combustible material on the forest floor,
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which were made into a dataset together with the actual moisture content measured by the
weighing method to provide usable data for subsequent research on the UAV multispectral
prediction of DFMC. The dataset was trained by the ConvNeXt deep-learning model to
evaluate the performance of predicting DFMC from multispectral images. The results
showed that the ConvNeXt model predicts DFMC with a 92.26% accuracy, 1.54% MAE,
and 5.45% RMSE on the test set, achieving an accurate prediction of DFMC over a large
area based on multispectral images of the UAV forest floor. Future experiments will be
conducted on a larger scale and for a longer period in forest areas such as the Maoer
Mountains in northeast China to enrich the number and variety of datasets in order to
improve the generalizability and accuracy of the model.
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