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Abstract: Canopy fuels determine the characteristics of the entire complex of forest fuels due to
their constant changes triggered by the environment; therefore, the development of appropriate
strategies for fire management and fire risk reduction requires an accurate description of canopy
forest fuels. This paper presents a method for mapping the spatial distribution of canopy fuel
loads (CFLs) in alignment with their natural variability and three-dimensional spatial distribution.
The approach leverages an object-based machine learning framework with UAV multispectral data
and photogrammetric point clouds. The proposed method was developed in the mixed forest
of the natural protected area of “Sierra de Quila”, Jalisco, Mexico. Structural variables derived
from photogrammetric point clouds, along with spectral information, were used in an object-based
Random Forest model to accurately estimate CFLs, yielding R2 = 0.75, RMSE = 1.78 Mg, and an
average Biasrel = 18.62%. Canopy volume was the most significant explanatory variable, achieving a
mean decrease in impurity values greater than 80%, while the combination of texture and vegetation
indices presented importance values close to 20%. Our modelling approach enables the accurate
estimation of CFLs, accounting for the ecological context that governs their dynamics and spatial
variability. The high precision achieved, at a relatively low cost, encourages constant updating of
forest fuels maps to enable researchers and forest managers to streamline decision making on fuel
and forest fire management.

Keywords: fuel loads; spatial distribution; photogrammetry; multispectral; Random Forest

1. Introduction

Forest fires play a crucial role in ecological disturbances in environments covered
by vegetation, serving as natural shapers of forest ecosystems [1]. Three basic elements
are required for a forest fire to occur: an ignition agent, oxygen, and forest fuels. Forest
fuels encompass materials that have the potential to burn when exposed to an ignition
source and consist of both dead organic matter and living vegetation [2]. According to
the United States Department of Agriculture [3], forest fuel components can be grouped
as ground (duff), surface (litter, herb, woody, and biomass within 2 m above ground),
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and canopy fuels (shrub, trees, and biomass above the surface). Forest fuel components
are spatially distributed in three dimensions based on their inherent spatial variability
and they are rarely correlated. Moreover, these components dynamically interact with
the environment through complex biophysical processes [2]. Therefore, the necessity
for accurate and updated fuel load maps becomes imperative for effective forest fuel
management, demanding periodic measurements incurring high economic costs.

Wildfires are classified into three categories: ground, surface, and crown fires [4]. A
crown fire is characterized as a fire typically initiated by a surface fire that ascends into
the forest canopy, spreading through it. This type of fire proves challenging to control,
often leading to catastrophic effects and demanding human intervention [5]. Reducing
crown fire risk requires accurate description of canopy fuel loads (CFLs). Moreover, canopy
fuels exert a significant influence on the characteristics of other fuel layers as they undergo
constant changes, depending on the environment, weather, disturbances, and vegetation
phenology. These factors condition fuels’ production, deposition, and decomposition [2].
Thus, CFLs synthesize many tree characteristics in an area with load, i.e., biomass, as its
main indicator [6,7].

Recently, fire behavior models have included crown fire behavior predictions, allowing
forest managers to make accurate decisions. Predictions are formulated to provide guidance
for operational fire prevention and suppression responses, with a focus on prioritizing
areas for hazardous fuel reduction management [8]. Several studies around the world have
estimated CFLs, mainly through field measurements [9].

Thus, the estimation of CFLs is often conducted through field measurements, which are
known to be highly expensive, time consuming, and labor intensive. Consequently, the liter-
ature frequently refers to the use of small sampling plots with limited re-measurements [10].
This approach is also difficult to apply in large areas and errors caused by human conditions
tend to increase [11]. Prichard et al. (2019) [12] suggest plot-size units within the range of
0.04 to 0.10 ha to characterize and classify forest fuels, while Chávez-Durán et al. (2014) [13]
and Ortíz-Mendoza et al. (2017) [14] have used plots of 0.05 ha. However, the small size of
the plots did hamper the accurate estimation of CFLs, producing errors due to edge effects
and the limited capacity to capture landscape variability [15].

Remote sensing offers a sound alternative to complement field measurements, especially
over large and remote areas. The integration of spaceborne remote sensing with field inventory
data has prompted the development of several techniques for estimating CFLs [16]. Multi-
spectral passive satellite images have been demonstrated to be an effective and accessible tool.
Passive sensors detect energy emitted or reflected from the objects and the environment. How-
ever, their primary limitation lies in their restricted sensitivity to forest structures, including
fuel load, attributed to saturation at relatively low biomass levels. Active sensors provide their
own source of energy to observe objects and are better suited for CFL estimation due to their
higher sensitivity in capturing forest structures. In particular, Light Detection and Ranging
(LiDAR) technology captures the vertical structure of forest data, allowing sharp precision
and three-dimensional model generation [17]. Several studies have shown the suitability of
LiDAR data to estimate canopy fuel properties from different platforms including terrestrial
systems [18] and airborne [17] and spaceborne applications [19].

Several studies have proved the potential of combining active and passive remote
sensors for the estimation of CFLs. Jiang et al. (2022) [20] used LiDAR and Sentinel-2
images with different Machine Learning techniques. Moran et al. (2020) [21] combined
LiDAR data with Landsat through the Gradient Boosting Machine technique. García et al.
(2017) [17] combined airborne LiDAR and Landsat OLI Data to extrapolate forest canopy
fuel properties using Least-Squares Support Vector Machine techniques. A drawback
associated with the previous studies is their coarse resolution. The spatial coverage of field
plots corresponds to either a single pixel or a fraction, making it impractical to precisely
estimate the variability within each plot [22]. Moreover, the overall variance tends to
decrease as the pixel size increases, resulting in elevated determination coefficients that do
not represent high fuel variability in the field [23].
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Technological advances have paved the way for the emergence of platforms capable
of transporting multiple types of sensors. LiDAR sensors have been attached to multiple
airborne platforms, including conventional aircrafts and, recently, to Unmanned Aerial
Vehicles (UAVs) [24]. Nevertheless, despite LiDAR’s advantages, its utilization remains
expensive and the availability of UAV LiDAR sensors is still low. Instead, several algo-
rithms have recently been developed to process conventional Red, Green, Blue (RGB)
images through digital photogrammetry techniques for three-dimensional point clouds
generation [25]. Furthermore, UAVs can carry sensors, allowing the acquisition of high
spatial resolution images, temporal flexibility, and reliability [26].

Current advances in data collection equipment, processing techniques, and computing
capability enable the development of novel methods for forest fuel management [27].
Moreover, data from diverse remote sensors as UAV high-resolution RGB and multispectral
imagery, combined with field measurements and artificial intelligence techniques, are
promising elements for appropriate the monitoring and management of forest fuels. Here,
we present a novel approach: a cost-effective and easily replicable method which enables
the monitoring of CFLs.

The aim of this paper was to devise a method for mapping the spatial distribution of
CFLs in mixed forests. This was achieved by geospatial data: UAV RGB and multispectral
imagery. The working hypothesis proposed that the devised method enables the consistent
mapping of CFLs, considering their variability and three-dimensional spatial distribution.
The results of this study offer several advantages, including optimizing time and costs
involved in CFL assessment compared to traditional fieldwork. This approach enables
researchers and forest managers to expedite decision-making processes for forest fire and
fuel management.

2. Materials and Methods
2.1. Study Area

This research was conducted in the natural protected area “Sierra de Quila”, located
in west–central Mexico, in the state of Jalisco (Figure 1); the altitude ranges from 1350 to
2540 m asl. “Sierra de Quila” hosts many flora and fauna species that maintain important
ecological processes enclosed in 15,192.50 ha [28]. Vegetation is mainly composed of mixed
temperate forest with the following species: Pinus douglasiana, Pinus devoniana, Quercus
resinosa, and Quercus obtusata. Potential fire regime is characterized by frequent surface
fires of low severity [29]. However, a devastating crown fire occurred in 1986, resulting
in both forest fighter and ecosystem property losses [30]. The study area is also prone
to natural and human disturbances, such as insect outbreaks, firewood production, and
timber harvesting. Previous studies have classified the area according to Homogeneous
Response Areas (HRAs), where field information collected in situ can be extrapolated to
areas with similar characteristics [31].

Forests 2024, 15, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. Map showing the study area location. Sampling plots and Homogeneous Response Area 

(HRA). Projection coordinate system Universal Transverse Mercator Zone 13 North (UTM 13N). 

2.2. Materials, Data and Methods 

The estimation of the spatial distribution of CFLs involved three key stages: data col-

lection, data processing, and CFL mapping. The data collection phase encompassed both 

direct tree measurements in permanent sampling plots and data from UAV remote sen-

sors. The processing phase involved estimation of both CFLs from field data and UAV 

imagery processing including digital photogrammetry methods, multispectral analysis, 

and three-dimensional data segmentation. Finally, the mapping phase comprised the ap-

plication of Machine Learning techniques, specifically Random Forests, to estimate CFLs 

from remotely sensed data (Figure 2). 

 

Figure 2. Flowchart for the estimation of the spatial distribution of CFLs. 

2.2.1. Field Data 

Three square sampling permanent plots 1 ha (100 × 100 m) each were established in 

the study area. The plot’s corners were marked with 2 cm accuracy, using a Ruide Total 

Station RTS-833 georeferenced with a Topcon GR-5 Global Navigation Satellite System 

Figure 1. Map showing the study area location. Sampling plots and Homogeneous Response Area
(HRA). Projection coordinate system Universal Transverse Mercator Zone 13 North (UTM 13N).



Forests 2024, 15, 225 4 of 18

2.2. Materials, Data and Methods

The estimation of the spatial distribution of CFLs involved three key stages: data
collection, data processing, and CFL mapping. The data collection phase encompassed
both direct tree measurements in permanent sampling plots and data from UAV remote
sensors. The processing phase involved estimation of both CFLs from field data and UAV
imagery processing including digital photogrammetry methods, multispectral analysis,
and three-dimensional data segmentation. Finally, the mapping phase comprised the
application of Machine Learning techniques, specifically Random Forests, to estimate CFLs
from remotely sensed data (Figure 2).
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Figure 2. Flowchart for the estimation of the spatial distribution of CFLs.

2.2.1. Field Data

Three square sampling permanent plots 1 ha (100 × 100 m) each were established in
the study area. The plot’s corners were marked with 2 cm accuracy, using a Ruide Total
Station RTS-833 georeferenced with a Topcon GR-5 Global Navigation Satellite System
(GNSS). Reference coordinate system was the Universal Transverse Mercator Zone 13 North
(UTM 13N) (Figure 1).

In each plot, all living trees with normal diameter (ND) greater than 5 cm [32] were
measured and tagged in May 2022 (Figure 3. Field measurements and tree canopies
overview). For each individual tree, its genus and species was recorded; the relative
spatial location of each tree within the plot was mapped using a Suunto Tandem compass®

(Suunto Oy, Vantaa, Finland) and a Truper® tape measure (Truper, Mexico City, Mexico).
ND at 1.30 m above the ground was measured using a diameter tape Forestry Suppliers®

(Forestry Suppliers Inc., Jackson, MS, USA). Crown diameter was determined with a
Truper® tape measure (Truper, Mexico City, Mexico); total height was measured with a
Suunto clinometer® (Suunto Oy, Vantaa, Finland).
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Figure 3. Field measurements and tree canopies overview. (A) Tree diameter measurement. (B) Tree
height measurement. (C) Tree tagging. (D) UAV RGB image from plot P1. (E) UAV RGB image from
plot P2. (F) UAV RGB image from plot P3.

CFLs for each tree were estimated using the allometric equations proposed by Rojas-
García et al. (2015) [33], as described in Table 1. In addition, the following structural
variables were estimated by tree genus by plot: mean height, sum of basal area, sum of
ground crown cover, and mean square diameter [34]. Previous studies have shown that
differences in tree spatial distribution patterns impact the accuracy of modeling the spatial
distribution of above-ground biomass [35]. Therefore, in order to assess the effect of spatial
patterns on CFL estimation, Moran’s Index was used; this index ranges from 1 (strong
clustering) to −1 (strong dispersion), with 0 indicating a random pattern with no spatial
autocorrelation. Tree location and CFLs were used to determine spatial patterns, according
to Equation (1) [36].

I =
n
W

∑n
i=1 ∑n

j=1 Wi,jzizj

∑n
i=1 z2

i
(1)

where I is Moran’s Index; n is number of observations; W is the sum of weights Wi,j, zi

is the difference of attribute in position i with respect to its mean
(
Xi − X ), and zj is the

difference of attribute in position j with respect to its mean
(
Xj − X ).

Table 1. Allometric equations used for the estimation of CFLs, from Rojas-García et al. (2015) [33].
Normal Diameter (ND) and Total Height (TH).

Species Equation

Pinus devoniana 0.182·ND1.936

Pinus douglasiana
Pinus lumholtzii 0.084·ND2.475

Pinus oocarpa 0.058·(ND2·TH)
0.919
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Table 1. Cont.

Species Equation

Quercus laeta 0.0333·ND2.6648

Quercus candicans
Quercus coccolobifolia
Quercus obtusata
Quercus resinosa

0.0342·ND2.7590

Quercus rugosa 0.0890·ND2.5226

Arbutus tessellata
Arbutus xalapensis

(
0.3764·ND2

)
− (2.3146·ND)− 1.9106

2.2.2. Remote Sensing Data

UAV data were collected using a Sensefly Ebee® drone (AgEagle Aerial Systems Inc.,
Wichita, KS, USA), equipped with a Parrot Sequoia+® multispectral camera (Parrot, Paris,
France) in September 2022. The sensor records spectral information in four bands: green
(530–570 nm), red (640–680 nm), red edge (730–740 nm), and near-infrared (770–810 nm).
Flight height was set to 212 m above the ground, resulting in a spatial resolution of
20 cm. Twenty-five images were captured per plot with 80% forward overlap and 60%
side overlap. Prior to each flight, a target calibration panel was used to radiometrically
correct the images [37]. Each multispectral flight was followed by a collection of RGB
images, using a senseFly S.O.D.A 3D® camera (AgEagle Aerial Systems Inc., Wichita, KS,
USA) (Figure 3D–F), using the same flight height above the ground, which resulted in
a spatial resolution of 7 cm. Forward and side overlap was 60% and 70%, respectively,
with twenty-two images captured per plot. For all flights, a set of ground control points
(GCPs) were established along with flight plans through eMotion 3.5.0® software using
grid flight missions for all flights [38]. The temporal lag between field and remote sensing
data collection was based on tree species phenology [39,40].

2.2.3. Photogrammetric Point Clouds Generation

A Structure-from-Motion (SfM) algorithm was implemented to obtain three-dimensional
data from S.O.D.A 3D® camera (AgEagle Aerial Systems Inc., Wichita, KS, USA), which
enabled the reconstruction of the three-dimensional structure of a scene from a set of
two-dimensional images [41]. This algorithm was executed using the Agisoft Metashape
1.6.4® software, which comprises three stages: (1) pre-processing, (2) densification, and
(3) output generation.

The internal and relative orientation of individual images was applied based on their
metadata spatial reference. Densification involved the assignment of descriptors to key
points, which were matched using nearest-neighbor approximations and random sample
consensus algorithms. Triangulation methods were used to estimate three-dimensional
point positions and scene geometry reconstruction [41]. Point cloud, the three-dimensional
collection of points in space representing the structure of the scene, was refined through the
clustering stereoscopic multi-views algorithms [42]. Subsequently, relative coordinates were
transformed into absolute coordinates by GCPs, achieving horizontal and vertical average
RMSE values less than 0.50 m and 0.80 m, respectively. Point clouds were processed
by linear triangulation resampling [43] and results were exported as point clouds and
orthomosaic at the original spatial resolution.

2.2.4. Point Clouds Segmentation

Once the photogrammetric point clouds were generated, we attempted the identifi-
cation of trees using a watershed-based approach. A point height normalization was first
applied using the CloudCompare 2.12.4® software. The Cloth Simulation Filter (CSF) tool
was used to filter point clouds into ground and non-ground data [44]. Ground returns were
subsequently used to create a digital elevation model (DEM) and non-ground returns were
used to generate digital surface models (DSM). The restricted ability of passive sensors
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to penetrate the canopy led to a scarcity of ground points, impeding the generation of
a precise DEM. Therefore, it was necessary to use the National Institute of Statistic and
Geography of Mexico (INEGI) DEM, with 15 m spatial resolution [45], to carry out point
height normalization. The average ground slope was relatively constant, with values below
10% in each plot; with these values, it was feasible to use the DEM from INEGI, applying
the nearest-neighbor resampling method [46] and using 1 m spatial resolution.

Subsequently, a Canopy Height Model (CHM) was generated, portraying the height of
the crown trees in relation to the ground at a spatial resolution of 1 m. CHM segmentation
(automatic delineation of trees in the scene) was performed using TREETOP, a Shiny-based
application which was originally developed for the extraction of ecological information
from airborne LiDAR data [47]. TREETOP detects individual trees and delineates crowns
from CHM using the local maximum algorithm; this algorithm assumes that CHM local
maxima represent the highest point of each tree [48]. Crown edges were segmented using
the Voronoi Tessellation-based algorithm [49]. The segmented outputs did not align with
individual trees, but they represented clusters of intermingled trees. After segmenting the
tree crowns, the Canopy Volume of each segment (CV) was calculated based on the area
and the height, derived from the CHM of the polygons [25], using the Python programming
language [50].

2.2.5. Multispectral Analysis

Twelve vegetation indices (Table 2), together with homogeneity texture for each
spectral band, were estimated; the moving window size considered in the analyses was
5 × 5 pixels. Spectral indices were used to estimate canopy fuel properties, including
canopy fuel load [16]. Vegetation indices and textures were generated by multispectral
orthomosaics [51]. One of the most efficient and widely used texture methods is the Gray
Level Co-occurrence Matrix (GLCM) [52], whose features are based on neighboring pixel
pair occurrence. This method produced different indicators such as contrast, correlation,
energy, entropy, or homogeneity, among others. Homogeneity texture is widely used for its
great importance in vegetation data due to its high level of detail [53]. Vegetation indices
provide spectral insights linked to vegetation photosynthetic activity, vigor, status, and
cover [54], and all are considered as valuable predictors of ecosystem features. To reduce
the number of variables and to avoid collinearity of vegetation indices and texture variables,
a principal components analysis (PCA), along with its factorial matrix, was carried out [55].

Table 2. Equations used to estimate vegetation index. Reflectance of near infrared ( NIR); Reflectance
of red ( R); Reflectance of green (G); Reflectance of red edge ( Rededge); Soil adjustment factor (L) = 0.5;
α = 0.96916.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index (NDVI) NIR − R
NIR + R Rouse et al. (1974) [56]

Soil Adjusted Vegetation Index (SAVI)
[

(NIR − R)
(NIR + R + L)

]
·(1 + L) Huete (1988) [57]

Modified Soil Adjusted Vegetation Index (MSAVI) 2·NIR + 1 −
√

(2·NIR + 1)2 − 8(NIR − R)
2

Qi et al. (1994) [58]

2-band Enhanced Vegetation Index (EVI2) 2.5·
( NIR − R

NIR + 2.4·R + 1

)
Jiang et al. (2008) [59]

Difference Vegetation Index (DVI) NIR − αR Richardson & Everitt (1992) [60]

Green Normalized Vegetation Index (GNDVI) NIR − G
NIR + G Gitelson et al. (1996) [61]

Green Ratio Vegetation Index (GRVI) NIR
G Sripada et al. (2006) [62]

Green Difference Index (GDI) NIR − R + G Gianelle and Vescovo (2007) [63]

Green Red Difference Index (GRDI) G − R
G + R Gianelle and Vescovo (2007) [63]

Red edge normalized difference vegetation index (NDVIre) NIR − Rededge
NIR + Rededge

Gitelson and Merzlyak (1994) [64]

Red edge simple ratio (SRre) NIR
Rededge Gitelson and Merzlyak (1994) [64]

Datt4 R
G·Rededge Datt (1998) [65]
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2.2.6. CFL Spatial Distribution

Segments extracted using TREETOP were aligned with field-acquired CFL data to
derive reference values for CFLs. Descriptive statistics were estimated for all variables
(i.e., CV, vegetation index, and texture metrics) for each segment. Differences among
plots were tested by the non-parametric Kruskal–Wallis test as homoscedasticity was not
fulfilled [66,67]; according to the Levene test, there was no homogeneity of variances among
plots (p-value < 0.05).

The spatial distribution of CFLs was estimated by the Random Forest (RF) algo-
rithm [68] using Python programming language [50]. RF is one of the most efficient
Machine Learning algorithms [69], which implements a regression technique through bag-
ging and random subspace methods [70]. The CFL was considered the response variable
and CV, vegetation index, and textures as the explanatory variables. Segment metrics of
the three plots were pooled and split into training data (70% of the sample) and validation
data (30% of the sample). To train the model, 400 decision trees, bootstrap resampling, and
square error were used [71]. The importance of each explanatory variable was evaluated
through the mean decrease in impurity index (MDI) [72]. The algorithm was calibrated and
applied using the following libraries: numpy [73], pandas [74], matplotlib [75], scikit [76],
and GDAL OSGeo [77] for spatial data management.

The performance of the model was evaluated through the determination coefficient
(R2) and Root Mean Square Error (RMSE) using validation data [68]. The RF-trained model
was also applied over the total number of segments by plot; the R2 coefficient and absolute
and relative CFL Bias were used to validate the accuracy across plots. The absolute Bias
was calculated to evaluate the behavior of the RF-trained model on each plot and the
relative Bias was used to compare plots [78]. Both estimations were performed according
to Equations (2) and (3).

Biasabs = ∑N
i ĈFi − ∑N

i CFi (2)

Biasrel =
∑N

i ĈFi − ∑N
i CFi

∑N
i CFi

·100 (3)

where Biasabs and Biasrel correspond to absolute and relative Bias, respectively; ĈFi is the
estimated CFL for each segment and CFi is the CFLs estimated from the field data.

Statistical analyses were carried out using the following R libraries “readr, northest,
car, FactoMineR, and ggplot2” [79–83] available in R-project 4.3.0 [84].

3. Results
3.1. Plots’ Forest Structure

Three genus and twelve species were recorded within the plots (Table 1). The largest
number of trees was recorded in P1, with 541 individuals, followed by P3, with 332 and P2
with 236. Pinus, followed by Quercus, was the dominant genus in all plots; Pinus exhibited
the largest Quadratic Mean Diameter, Basal Area, Total Height, and Surface Crown Covered
(Table 3). Pinus douglasiana and Quercus resinosa were the most abundant species in both
genus. The highest CFL value was recorded in P1, with 163.47 Mg, followed by P2 and P3,
with 151.07 Mg and 101.31 Mg, respectively. Pinus contributed the greatest amount of CFL
in all plots, reaching values greater than 74% in each plot.

Distinct spatial distribution patterns were observed among the three plots (Table 4). In
P1, both Pinus and Quercus exhibited clustering, whereas in P2, only Pinus formed clusters,
with Quercus individuals displaying random distribution. In contrast, all trees in P3 were
randomly distributed.
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Table 3. Tree genus structural variables: Quadratic Mean Diameter (Dg), Basal Area (BA), Ground
Crown Cover (GCC), Canopy Fuel Loads (CFLs), and mean value for Total Height (TH) (Standard
error). To BA, GCC, and CFL, the values in each column correspond to the sum of the respective
variable in each plot.

Plot Genus Number
of Trees

Dg
cm

BA
m2

TH
m

GCC
m2

CFL
Mg

1 Pinus 202 35.88 20.42 19.74 (1.06) 8078.60 134.37
1 Quercus 339 15.81 6.65 12.92 (0.51) 3913.88 29.10
2 Pinus 129 46.66 22.05 25.37 (1.52) 6451.49 120.57
2 Quercus 107 25.28 5.37 16.02 (1.17) 3537.99 30.50
3 Pinus 156 40.73 20.32 25.38 (1.21) 7097.84 75.52
3 Quercus 166 21.18 5.85 11.21 (0.80) 3123.20 25.07
3 Arbutus 9 17.92 0.23 8.79 (3.07) 131.160 0.72

Table 4. Spatial distribution patterns of tree individuals by genus. Moran’s Index (MI) where +1
indicates strong clustering, −1 indicates strong dispersion and 0 indicates random pattern. (*) pattern
tendency with significance of 0.05.

Plot Genus MI p-Value

P1 Pinus +0.177 <0.05 *
P1 Quercus +0.077 <0.05 *
P2 Pinus +0.209 <0.05 *
P2 Quercus +0.033 0.51
P3 Pinus +0.032 0.45
P3 Quercus +0.012 0.61
P3 Arbutus +0.107 0.42

3.2. Remote Sensing Estimates

A set of multispectral orthomosaics and CHMs were obtained as a product of digital
photogrammetry and point clouds processing. The mean CHM values were 17.84 m,
21.95 m, and 20.73 m in P1, P2, and P3, respectively. The segmentation analysis identified
31, 28, and 28 segments, covering 7883 m2, 8104 m2, and 8782 m2 in P1, P2, and P3,
respectively (Figure 4).
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Figure 4. Spatial distribution of trees and segments in the plots, where each segment represents a
group of trees identified through TREETOP analysis.

The number of trees identified using TREETOP was 511, 229, and 322 for P1, P2, and
P3, respectively. These values represented a detection rate of 94.5%, 97%, and 97.3% for P1,
P2, and P3. The absence of certain trees within each plot led to a minor underestimation of
CFLs at the plot level when focusing solely on the fuel load of the trees correctly detected
(161.02 Mg, 147.60 Mg, and 98.61 Mg in P1, P2, and P3, respectively), as indicated in Table 3.
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P1 had the lowest omission in terms of CFL, despite the lowest detection rate, with 1.50%,
followed by P2 with 2.29% and P3 with 2.67%.

According to the factorial matrix from the PCA, four variables were uncorrelated,
exhibiting a robust relationship with the first three principal components: Normalized
Difference Vegetation Index (NDVI), 2-band Enhanced Vegetation Index (EVI2), Red band
homogeneity texture and Red edge band homogeneity texture.

The median CFL values per segment were 4.54 Mg, 5.09 Mg, and 3.35 Mg in P1, P2, and
P3, respectively (Figure 5A), with no significant differences according to the Kruskal–Wallis
test: H(2) = 3.64, p = 0.16. There were statistically significant differences for CV, vegetation
index, and textures among plots. For CV, H(2) = 11.96, p < 0.05, with median values of
4000.66, 6740.58, and 6590.29 m3 for P1, P2, and P3, respectively (Figure 5B). Finally, for the
NDVI, EVI2, Red band texture and Red edge band texture, the results were H(2) = 56.73
with p < 0.05, H(2) = 33.00, p < 0.05, H(2) = 36.96, p < 0.05, and H(2) = 12.48, p < 0.05,
respectively (Figure 5C–F).
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Figure 5. Boxplot showing median and quartiles for Canopy fuel loads (Mg); Canopy volume (m3);
Normalized Difference Vegetation Index (NDVI); 2-band Enhanced Vegetation Index (EVI2); Red
band texture (Red texture) and Red edge band texture (Red edge texture).

3.3. Spatial Distribution of CFLs

According to validation data, our RF model achieved a strong performance with
R2 = 0.75 and RMSE = 1.78 Mg. At the plot level, P1 reached R2 = 0.98, Biasabs = −17.12 Mg,
and Biasrel = 10.63%; P2 yielded R2 = 0.85, Biasabs = 28.06 Mg, and Biasrel = 19.01%; and
P3 offered a performance of R2 = 0.72, Biasabs = 25.85 Mg, and Biasrel = 26.21%. (Figure 6).
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Therefore, the modeled CFL per plot was 143.90 Mg, 175.66 Mg, and 124.46 Mg for P1, P2,
and P3, respectively (Figure 7D–F).
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The most significant variable was CV, at 80.67%, followed by Red band texture at
7.00%, Red edge band texture at 5.99%, NDVI at 4.15%, and EVI2 ay 2.19%.

4. Discussion

The spatial distribution of the CFL, estimated through a combination of digital pho-
togrammetry, segmentation, multispectral analysis, and Machine Learning, yielded robust
results, according to R2, RMSE, and Bias. The study of CFLs in mixed forests with struc-
tural complexity and different spatial distribution patterns was conducted through the
integration of various techniques. These techniques allowed for a more comprehensive
analysis and understanding of the CFL in the complex nature of mixed forests of the “Sierra
de Quila”.

4.1. Plots Forest Structure

The Pinus genus exhibited the highest CFL values, contributing to over 70% in each
plot. This aligns with the findings of a previous study by Villavicencio-García et al.
(2005) [85], which investigated the entire altitudinal gradient of “Sierra de Quila” and
identified species from the Pinus genus as dominant. Typically, Pinus species occupy the
upper canopy, while Quercus species tend to dominate the middle canopy, with tree crowns
in close proximity or even overlapping [86]. In many regions, including areas like “Sierra
de Quila”, most Pinus species in Mexico rely on fire, with these regions characterized by
frequent surface fires of low severity [29,87].

In the present study, the Pinus genus presented the highest values in structural vari-
ables such as quadratic mean diameter, basal area, tree height, and vegetation cover. This
result is highly relevant as values of the CFL depend on tree structural variables [33]. Pre-
vious studies by Figueroa-Navarro et al. (2023) in “Sierra de Quila” [88] obtained similar
results to those achieved in the present work, with average densities of 556 trees per ha and
a mean basal area of 20 m2/ha, with Pinus douglasiana being the most dominant species,
regarding Pinus genus and Quercus resinosa as the most dominant species of the Quercus
genus.

Tree spatial distribution patterns differed among the three plots according to Moran´s
Index. Moreover, differences among the plots also occurred in terms of CFLs. Thus,
the highest degree of clustering was present in P1, showing the greatest values of CFLs
(median value of 16.98 kg/m2). Conversely, the greatest random pattern was observed in
P3, presenting the lowest CFL values (median value of 10.71 kg/m2). These differences
limit the use of linear and allometric model regression because tree spatial distribution
patterns prevent generalizable models from being obtained [89,90]. Other studies have
identified that mixed forests tend to present random distributions following a disturbance
occurrence and they are reverted to clusters over time [91]; therefore, these may be the
cause of differences in the spatial distribution patterns of trees in our study area.

4.2. Remote Sensing

Information derived from the photogrammetric point clouds provided valuable results
by capturing significant three-dimensional information on trees, despite the fact that LiDAR
data lack penetration ability [92]. Mixed forests in Mexico make it difficult to accurately
estimate CFLs, mainly due to the high tree density that results in crowns close to each other
or even overlapping. In such forest types, estimates focusing on crown segments, rather
than on individual trees, provide a viable alternative [93]. CV has been a good alternative for
estimates focusing on crown segments. This agrees with Riggi et al. (2021) [25], who used
CV to estimate the above-ground biomass of olive plantations by linear regression models,
reaching up to R2 = 0.68 and RMSE = 39.19 kg. In our work, mixed forests presented greater
structural complexity, with irregular spatial distribution of trees. Nevertheless, texture
and vegetation indices included in the RF algorithm proved to be a valuable complement
to CV, allowing the inclusion of differences in trees’ spatial distribution patterns between
plots [51].
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Despite the more limited information extracted from photogrammetric point clouds as
compared to LiDAR point clouds, our results showed strong agreement with field estimates
of CFLs. Thus, CFL differences within the segments were less than 3% compared to the
total CFLs measured in the field. This remarkable agreement could be attributed to the size
of the plots used, which were notably larger than those used in other studies. This factor
contributed to minimizing the border effect. Tree trunks typically deviate for a vertical
orientation, resulting in a discrepancy between their geolocation and the boundaries of
segments. This border effect is mostly evident in small plots, while in large plots this error
tends to be compensated [15]. According to Knapp et al. (2018) [94], to attain precisions
with errors below <10%, sample plots must be of at least 100 m per side. Our plots measured
100 m on each side, enabling the segmentation process and field measurements to capture
the inherent three-dimensional spatial distribution of the trees in accordance with their
spatial variability.

4.3. Spatial Distribution of CFLs

The RF regression model enabled an accurate description of the spatial distribution
of CFLs within our plots. The trained model achieved errors of less than 30%, even
when trees had different patterns of spatial distribution. The lowest errors were ob-
served in P1, where trees showed the highest density. These contrast with the findings
of Guerra-Hernández et al. (2016) [95], who suggested that higher-density plots may yield
inaccurate results due to the limited penetration of photogrammetric point clouds into
the canopy. In our case, we addressed this situation by incorporating multispectral data
and textures, along with the segmentation approach based on surfaces rather than on indi-
vidual trees. In addition, employing an external DEM with proven accuracy contributed
to enhancing our estimates of the structure metrics derived from UAV data. The results
in this study were similar to those reported by Maesano et al. (2022) [24], who achieved
Biasrel close to 10% by combining data from LiDAR, RGB images, and RF algorithms. This
confirms that our approach enables the development of robust and accurate models, even
in the absence of LiDAR data.

According to the MDI, CV was the most important variable of the model, accounting
for over 80%. In contrast, the texture and vegetation indices, considered together, showed
importance values close to 20%. The influence of CV on accuracy was substantial, particu-
larly in instances where trees exhibited clustered spatial distribution patterns, leading to
improved model performance. Moreover, texture and spectral indices were useful in over-
coming the limitations of point clouds and addressing the structural complexity inherent
in mixed forests [51,54].

The developed method offers high potential to accurately estimate CFLs within the
context of native mixed forests characterized by a complex spatial distribution of trees, even
in the absence of LiDAR data. The proposed method for mapping CFLs’ spatial distribution
not only allows for the optimization of costs and time associated with intensive field
measurements [10] but also serves as a cost-effective alternative to LiDAR technology [96].
In this research, sampling plots showed relatively low ground and slope values, staying
below 10%. The accuracy may be impacted in areas with higher slopes or predominantly
rugged terrain; therefore, a DEM should be applied instead of a DSM. However, this
situation can be solved using topographic measurements.

The field data utilized in this research belong to the same HRA of the study area,
where they share a common ecological background. This context enables in situ data
collection to extrapolate to areas with similar characteristics [31]. However, the robustness
of the method ensures its replicability across various latitudes. Moreover, it is feasible to
extend its applicability from a local geographic scope to wider areas thought upscaling
techniques [17,22]. The present method uses data from field measurements, digital pho-
togrammetry, multispectral analysis, and Machine Learning techniques, mostly through
open source software; the method is also straightforward to implement. Although the
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method has undergone local testing, its transferability to other areas is seamless, facilitated
by the easy and cost-effective collection of data across diverse geographical regions.

After collecting field measurements, the proposed method requires only a few hours
for data processing. Moreover, trained Machine Learning models can be used in areas with
similar ecological context, allowing forest managers to make informed decisions based on
current and reliable information.

5. Conclusions

The present research introduces a methodology for mapping the spatial distribution
of CFLs by employing image segmentation, multispectral analysis, and Machine Learning
modeling. This approach enables the extraction of structural information, yielding com-
mendable accuracy in CFL estimation. Mapping CFLs was consistent even when the study
area presented a high level of complexity pertaining to the mixture of genera and species in
the forest and the variation in patterns of the trees’ spatial distribution. Machine Learn-
ing modeling, in particular RF based on CV complemented with multispectral variables
derived at the object level, enabled a high accuracy at a relatively low cost.

This method can be easily applied to drone-derived data, which is particularly impor-
tant in areas with frequent disturbances, to obtain reliable and updated information for
decision making. The present method offers the opportunity for CFL monitoring, which
can be used to generate models of temporal dynamics and their interactions with the
environment.

The investigation of the complex of forest fuels holds a pivotal position in fire research,
accenting the overriding significance of studying the spatial distribution of CFLs. This ex-
ploration is essential for depicting the intricate nature of the fuel complex, comprehending
its dynamics, and unraveling spatial variability within the broader ecological framework.
Such insights are indispensable for researchers, academics, and forest managers alike,
providing a central foundation for making informed decisions regarding the management
of forest fuels and the mitigation of forest fires.
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