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Abstract: Global warming and extreme climate events (ECEs) have grown more frequent, and it is
essential to investigate the influences of ECEs on vegetation in the Yellow River Basin (YRB) and other
environmentally fragile areas. This study was based on data from 86 meteorological stations in the
YRB for the period 2000–2020. Twenty-five extreme climate indices (ECIs) were chosen, encompassing
four dimensions: extreme value, intensity, duration, and frequency. The trend analysis approach
was used to examine the spatiotemporal characteristics of extreme climate conditions. Additionally,
geographical detectors and Pearson correlation analysis methods were employed to quantitatively
assess the influence of ECEs on the Normalized Difference Vegetation Index (NDVI). The Multiscale
Geographically Weighted Regression (MGWR) method was adopted to analyze the regression of
twenty-five ECIs. The findings revealed the following: (1) Over the last 21 years, there has been a
distinct rise in both the extreme precipitation indices (EPIs) and the extreme temperature indices
(ETIs). (2) The spatial distribution of the NDVI throughout the year displayed the characteristic
of being high in the south and low in the north. The annual NDVI demonstrated a noteworthy
increase at a rate of 0.055/decade, with the enhancement encompassing an extensive area of 87.33%.
(3) The investigation revealed that EPIs, including PRCPTOT, R10mm, CWD, R95p, and CDD, had
explanatory values surpassing 0.4. This implied that the intensity, frequency, and duration of extreme
precipitation played pivotal roles in steering vegetation alterations in the YRB. (4) The correlation
between the EPIs and vegetation was greater than the ETIs. Grassland meadows exhibited greater
sensitivity to precipitation than woody plants. The EPIs (excluding CDD and SDII) and the ETIs (TXn)
displayed a substantial positive correlation with the NDVI in regions hosting grasslands, broadleaf
forests, and shrubs. Desert vegetation and cultivated plants were less affected by ECEs. This study
underscores the importance of the interplay between extreme climate and vegetation in the YRB.
Additionally, it provides a scientific basis for formulating environmental safeguarding strategies.

Keywords: extreme climate events; NDVI; Yellow River Basin; spatiotemporal change; geographical
detector

1. Introduction

Extreme climate events (ECEs) like rainstorms, floods, droughts, and global warming
have occurred in recent years, and the area of vegetation affected has increased [1,2]. Global
warming has caused an upward trend in the frequency and intensity of ECEs [3]. The term
“extreme climate events” typically refers to specific climate factors that surpass both the
upper and lower bounds of statistical or observational average climate factors [4]. Earlier
studies have indicated that extreme heat events have occurred frequently over the past
century [5]. For instance, researchers have studied ECEs spatiotemporal patterns at different
scales [6]: the national scale, as represented by China [7]; the Americas [8]; and the local
scale, with three major river basins in China serving as study systems [9]. More researchers
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have started to simulate extreme climate using the CMIP6 and CMIP5 frameworks [10,11].
Additionally, there is still a possibility of extreme climate conditions breaking records
due to carbon emission levels [12]. Regarding extreme climate research in China, some
scholars have found that extreme warmth will increase in Northern and Western China,
while cold events will decrease. A significant increase in maximum continuous five-day
precipitation events and precipitation intensity were expected in China, while continuous
drought events in the northern and western parts were expected to decline significantly [13].
The relationship between terrestrial ecosystems and climate variation continues to receive
international attention, and monitoring the dynamics of climate extremes and their impacts
on vegetation is a hot topic in regional vegetation research.

Vegetation performs a vital role in ecological services such as climate regulation and
biodiversity [14,15]. The Normalized Difference Vegetation Index (NDVI) is a powerful
metric for characterizing changes in surface vegetation coverage at large scales [16]. It
can accurately characterize the vegetation change in a region and is usually used as a
measure of ecological impacts on vegetation. In recent years, domestic and international
scholars have separately studied the link between NDVI variations and climate changes at
the global, national, and regional scales [17–20]. These studies have demonstrated that a
good coupling of hydrothermal conditions is a necessary condition for vegetation growth.
In terms of impacts on vegetation dynamics, extreme climate change (ECC) had a much
larger effect than average climate change (ACC) [21]. However, most of the aforementioned
studies have concentrated on the response of vegetation to average climatic conditions,
while studies on the impact of ECC on vegetation are lacking. Therefore, investigating the
response of vegetation to ECEs is a hot topic of modern research.

The Yellow River Basin (YRB) spans the eastern, central, and western regions and flows
through nine provinces and regions with a wide range of influences. The river is an essential
ecological buffer zone in China, and the mother river is key to the water requirements
of the local population [22]. Historically, this area has been prone to natural disasters
and is characterized by an uneven distribution and scarcity of water resources, making
it a typical arid-semiarid region [23]. General Secretary Xi has repeatedly emphasized
that ecological protection and high-quality development in the YRB are major national
land use strategies [24]. We urgently are required to protect the ecological environment of
the YRB, address the water and sediment relationship, and alleviate the supply-demand
tension over its water resources [25]. The Yellow River Conservation Project has been
launched and has made significant accomplishments in the management of this region [26].
In addition to focusing on key ecological areas in the YRB, we will diligently carry out
projects such as comprehensive land improvement and the construction of protective forest
systems, such as the Three North project, so as to reduce soil erosion. However, there are
still pressing issues that need to be addressed. Against the backdrop of global climate
warming, the YRB is experiencing a trend of rising temperatures, with a growing number
of extreme heat events [9]. The trend of annual extreme heavy rainfall exhibits distinct
regional differences, with a decrease in the duration of EPIs [27]. The YRB is a region
sensitive to climate variations and is ecologically vulnerable [28]. Extreme climate events
pose severe challenges to its water resources, ecological environment, and food security.
Therefore, studying and evaluating the evolving spatiotemporal characteristics of ECEs in
the region and their impact on vegetation has important practical value and is conducive
to preventing and resolving ecological security risks. Such research fulfills a practical need
for informing the building of a beautiful China.

In large-scale studies, differences in surface ecological environments can lead to
different vegetation responses to climate change. The analysis of spatiotemporal variations
in regional vegetation and climate characteristics from a subbasin perspective is particularly
important. This study was based on data from 86 meteorological stations in the YRB for the
period 2000–2020. Using 25 ECIs suggested by the World Meteorological Organization, we
comprehensively analyzed the spatiotemporal characteristics of ECEs using four categories:
extremes, intensity, duration, and frequency. By combining the contemporaneous MODIS
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NDVI data, we utilized a geographical detector for the driving force analysis of the impact
of ECEs on vegetation cover. Then, we analyzed whether the spatial heterogeneity of the
dominant drivers of ECEs had an effect on the vegetation cover of YRB using MGWR. We
also focused on the response of different vegetation types to ECEs. The aim is to provide
scientific evidence for understanding regional ecosystem dynamics, studying ecosystem
vulnerability, and predicting future climate change.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin (YRB) is located between 32◦ N–42◦ N and 96◦ E–119◦ E. It
begins from the Bayan Har Mountains in the west and flows to the Bohai Sea, starting from
the Yin Mountain in the north and stretching to the Qinling Mountains (Figure 1a). The
terrain of the basin gradually declines from west to east. To the west are the headwaters of
the river basin, which consists of a series of high mountains averaging more than 4000 m
above sea level. To the north is the Inner Mongolian Plateau, with elevations ranging from
1300 to 2200 m. The northern side is bordered by the Yin Mountains, while the western
side is the Helan Mountains. In the middle, there are some fragmented basins and the
Ordos Plateau. The central region is the Loess Plateau, with elevations ranging from 1000
to 2000 m. The dominant landform is loess-covered tablelands and hills, which suffer from
significant soil loss. The downstream area is the Huang-Huai-Hai Plain, characterized by
lower elevation.

Typical arid, semi-arid, and alpine regions exist in the study area. Regional tempera-
ture variations are significant, and the spatial distribution pattern is low in the northwest
and high in the southeast. These landforms and climatic features determine regional varia-
tions in vegetation types and coverage (Figure 1b). The river source region is controlled
by low temperatures and dominated by alpine vegetation, including alpine shrubs, alpine
meadows, alpine grasslands, marshes, and aquatic vegetation. The Loess Plateau is char-
acterized by forests and grasslands as the dominant vegetation types, and it gradually
transitions from grasslands in the west to forest-steppe.

Figure 1. Cont.
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Figure 1. (a) Meteorological station, DEM, and YRB division; and (b) vegetation types in the Yellow
River Basin.

2.2. Data Sources and Processing

The NDVI data were derived from the MOD13Q1 dataset (https://earthengine.google.
com/). To better represent the vegetation coverage on the land surface, the maximum
value composite (MVC) method [29,30] was adopted to generate annual NDVI data for the
years 2000–2020, which were employed in the analysis of the spatiotemporal variation in
vegetation cover and its response to ECEs in the YRB.

The climatological data were downloaded from the National Meteorological Science
Data Center (https://data.cma.cn/). A total of 86 meteorological stations in the YRB with
complete and consistent time series data from 2000 to 2020 were selected. Daily minimum
and maximum temperature and daily precipitation data were used to calculate 25 ECIs
using RClimDex1.1 software (Toronto, ON, Canada). These indices include 11 EPIs and
14 ETIs. Spatial interpolation was performed using the kriging method, and the selected
extreme climate indices were classified into four categories: extremes, intensity, duration,
and frequency. The definitions of 25 ECIs are provided in Table 1.

Table 1. Classification and description of 25 extreme climate indices.

Classification Extreme Climate
Indices Description Unit

Precipitation
intensity index

Rx1day Maximum 1-day precipitation mm
Rx5day Maximum 5-day precipitation mm

PRCPTOT Annual total precipitation on wet days mm
SDII Simple daily precipitation intensity index mm/d

R95p Annual contribution from very wet days (daily precipitation is greater than
the 95th percentile of precipitation) mm

R99p Annual contribution from extremely wet days (daily precipitation is greater
than the 99th percentile of precipitation) mm

Precipitation
persistence index

CDD Maximum length of dry spell, maximum number of consecutive days with
daily precipitation less than 1 mm Days

CWD Maximum length of wet spell; maximum number of consecutive days with
daily precipitation greater than 1 mm Days

Precipitation
frequency index

R10mm Annual count of days when daily precipitation is greater or equal to 10 mm Days
R20mm Annual count of days when daily precipitation is greater or equal to 20 mm Days
R25mm Annual count of days when daily precipitation is greater or equal to 25 mm Days

https://earthengine.google.com/
https://earthengine.google.com/
https://data.cma.cn/


Forests 2024, 15, 307 5 of 24

Table 1. Cont.

Classification Extreme Climate
Indices Description Unit

Cold extreme
temperature

TX10p Percentage of days when the daily maximum temperature is less than that of
the 10th percentile %

TN10p Percentage of days when the daily minimum temperature is less than that of
the 10th percentile %

TNn The minimum value of the daily minimum temperature ◦C
TXn Minimum value of daily maximum temperature ◦C
FD Number of frost days Days

Warm extreme
temperature

TX90p Percentage of days when the daily maximum temperature is greater than the
90th percentile %

TN90p Percentage of days when the daily minimum temperature is greater than the
90th percentile %

TNx The maximum value of the daily minimum temperature ◦C
TXx Maximum value of daily maximum temperature ◦C
SU Number of summer days Days

Temperature
intensity index DTR Daily temperature range ◦C

Temperature
persistence index

GSL Growing season length Days
WSDI Warm spell duration index Days
CSDI Cold spell duration index Days

2.3. Analysis Procedure

First, the daily minimum and maximum temperature and daily precipitation data
for the period 2000–2020 were extracted from 86 meteorological stations within the YRB.
RClimDex1.1 software was used to calculate 25 ECIs. Then, the spatiotemporal trends of the
ECIs and the vegetation NDVI in the Yellow River subbasins were characterized with the
Theil-Sen method. The Mann-Kendall method was also utilized to check the significance
of the trends. The factor explanatory power of the 25 ECIs on the NDVI was investigated
using geographical detectors. Additionally, the link between the vegetation NDVI and ECIs
was examined using the Pearson correlation coefficient method.

2.4. Methods
2.4.1. Theil-Sen Trend Analysis Method

The Theil-Sen slope method does not assume any specific distribution of the data and
is widely used to calculate regional trends due to its robustness properties [31]. In this
study, the image-by-image approach was adopted to use the Theil-Sen slope method that
calculates the spatial trend value of ECIs and the NDVI. |Z| > 1.96 indicates a significant
change in the ECIs based on a 95% significance level. The formula is as follows:

S = median

(
xj − xi

tj − ti

)
, 2000 ≤ i < j ≤ 2020 (1)

The formula includes the median function, S representing the ECIs or the NDVI trend,
xi and xj representing the sequence data for different years, and ti and tj representing the
study time period. S > 0 and S < 0 indicate upward and downward trends, respectively.

In addition, the Mann-Kendall (M-K) trend test has the advantage of nonparametric
statistics and has been used extensively in combination with Theil-Sen in hydrological,
meteorological, and other time series trend analysis [32–34]. It is not limited by data
distribution or a few outliers. This method is designed to test the significance of variability
in ECIs and the NDVI [21].
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2.4.2. Geographical Detector Model

The geographical detector model (GDM) is a statistical methodology for detecting
spatial differences and revealing underlying driving forces [35,36]. In this research, factor
detectors were employed to quantitatively analyze the driving force of the 25 ECIs in the
YRB for the NDVI variation. The specific calculation is described below:

q = 1 −
L

∑
h=1

Nhσ2
h

Nσ2 (2)

where q represents the driving force of the ECIs on the NDVI trend.
The q value ranges from 0 to 1, with higher values indicating greater explanatory

power, and h (1, 2, . . ., L) represents variable classification or partitioning. Nh and N
represent the number of cells in stratum h and the whole region, and σh

2 and σ2 represent
the variance of Y values in stratum h and the region, respectively.

The interaction detector can identify the interaction effects between different extreme
climate indices. The evaluation is performed by calculating and comparing the q values of
the individual and joint explanatory power of the two factors X1 and X2 for Y: q(X1), q(X2),
and q(X1∩X2). Factor interaction categorization can be found in the original study [35].

2.4.3. Pearson Correlation Coefficient

The Pearson correlation coefficient method was adopted to explore the correlation
between ECIs and the NDVI [37]. The specific calculation is described below:

R =

n
∑

i=1

(
ECIsi − ECIs

)(
NDVIi − NDVI

)
√

n
∑

i=1

(
ECIsi − ECIs

)2 n
∑

i=1

(
NDVIi − NDVI

)2
(3)

R represents the correlation coefficient between the ECIs and the NDVI. It ranges
from −1 to 1. NDVIi denotes the NDVI value for year i, (NDVI)represents the average
NDVI value over multiple years, ECIsi represents the ETIs or EPIs value for year i, and
(ECIs)represents the average ETIs or EPIs over multiple years. The larger the R value, the
stronger the correlation between the variables. Significance testing was performed using
the t-statistic.

2.4.4. Multiscale Geographically Weighted Regression

The ordinary least squares (OLS) method assumes that regression parameters remain
constant in space and is a traditional global regression approach. It overlooks the spatial
heterogeneity existing between the NDVI and various explanatory variables [38,39].

Geographically weighted regression (GWR) can establish local regression models for
each location, offering benefits in capturing spatially heterogeneous between explanatory
and responsive variables and fully accounting for spatial variation to yield improved
regression outcomes [40,41].

In comparison to GWR, multiscale geographically weighted regression (MGWR) is
not confined to fixed bandwidths and provides more diverse spatial scales for various
variables [42]. It selects optimal spatial scales for different processes, achieving optimal
parameter estimates at varying stages of spatial heterogeneity. Furthermore, it can reduce
multicollinearity and provide more accurate parameter estimates [43]. The MGWR model
can be formulated as follows:

yi = ∑m
j=0 βbwj(µi,vi)xij + εi (4)

where bwj in βbwj denotes the bandwidth to be used to calibrate the j-th conditional rela-
tionship.
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Prior to performing MGWR, the variance inflation factor (VIF) was calculated for
diagnosing multicollinearity, examining whether there is redundancy in the explanatory
power of the selected driving factors with respect to the NDVI, and eliminating driving
factors that fail the test. Additionally, combining the factor detector results of the geograph-
ical detector, driving factors were further determined. The diagnostic results of multiple
covariates for the different drivers are presented in Table 2.

Table 2. MGWR multicollinearity diagnostic results.

2000 VIF Value 2005 VIF Value 2010 VIF Value 2015 VIF Value 2020 VIF Value

PRCPTOT 4.494 PRCPTOT 8.911 PRCPTOT 9.156 PRCPTOT 8.857 PRCPTOT 7.706
R10mm 5.439 R10mm 5.216 R10mm 6.348 R10mm 6.741 R99p 3.566

FD 3.883 R95p 5.074 R95p 8.291 R95p 2.872 R95p 9.112
DTR 4.009 Rx5day 3.880 Rx5day 2.4

3. Results
3.1. Variation Characteristics of Extreme Climate Indices in the YRB
3.1.1. Temporal Dynamics of the Extreme Precipitation Indices

The temporal trends of the EPIs in the YRB from 2000 to 2020 indicated an increasing
trend for precipitation intensity (Figure 2). Rx1day and Rx5day exhibited increasing
rates of 1.910 and 5.535 mm/decade, respectively, suggesting an increasing intensity of
EPIs on both daily and continuous scales (Figure 2a). PRCPTOT had a growth rate of
45.846 mm/decade, while SDII had a growth rate of 0.483 (mm/d)/decade (Figure 2b,c).
R95p and R99p showed upward trends at rates of increase of 20.742 mm/a and 6.999 mm/a,
respectively, demonstrating a steady increase in precipitation intensity (Figure 2d). CDD
decreased at a rate of 0.200 d/decade, while CWD increased at a rate of 0.123 d/decade
(Figure 2e). The precipitation frequency indices R10mm, R20mm, and R25mm exhibited
weak increasing rates of 1.758 d/decade, 0.862 d/decade, and 0.548 d/decade, respectively
(Figure 2f). As a result, extreme precipitation intensity, duration, and frequency had an
upward trend from 2000 to 2020. Furthermore, the maximum values of EPIs such as
PRCPTOT, R10mm, and R20mm occurred in 2003, while the minimum values of Rx1day,
Rx5day, SDII, R95p, R99p, R20mm, and R25mm were observed in 2015.

Figure 2. Temporal variations in the 11 extreme precipitation indices (a–f). The black dotted line
represents the trend of the variable during 2000–2020.
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3.1.2. Spatial Evolution in Extreme Precipitation Indices

From Figure 3, it was found that 27.43% of the area of Rx1day had an increasing trend,
and 72.57% had a decreasing trend. A total of 37.13% of the area of Rx5day increased,
and 62.87% of the area decreased. PRCPTOT exhibited an upward trend of 60.19% and a
downward trend of 39.81%. The areas where Rx1day and PRCPTOT exhibited a remarkable
increasing trend were mainly located in the downstream Huang-Huai-Hai Plain, while the
regions with an upward trend for Rx5day were primarily found in the western upstream
and northeastern regions but not significantly (Figure 4a,c). A total of 56.31% of the area of
SDII exhibited an upward trend, but this trend was significant. R95p and R99p showed
decreasing areas of 64.51% and 64.56%, respectively, located in the upstream eastern and
midstream, while the increasing areas accounted for 35.49% and 35.44%, mainly located in
the downstream eastern (Figure 4e,f). This indicated that extreme precipitation intensity
has increased in the upstream western and downstream over the past 21 years, while it has
decreased in the upstream eastern and midstream.

Figure 3. Area changes in the 11 extreme precipitation indices during 2000–2020.

Figure 4. Spatial distribution of the 11 extreme precipitation indices from 2000 to 2020 in YRB.
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A total of 87.61% of the CDD districts decreased, and only 12.39% had an increasing
trend, while 23.46% of CWD districts decreased, mainly located in the upstream central
region, and the increased area reached 76.54% and was widespread throughout the basin
(Figure 4h). The areas with increasing trends in R10mm, R20mm, and R25mm accounted
for 61.12%, 43.45%, and 34.78%, respectively, and were found in the upstream western,
midstream southern, and downstream regions (Figure 4i–k). The areas with decreasing
trends accounted for 38.88%, 56.55%, and 65.22%, respectively, and were concentrated in
the upstream central.

In summary, from 2000 to 2020, extreme precipitation intensity, wet duration, and
frequency increased in the upstream western (Tibetan Plateau) and downstream (Huang-
Huai-Hai Plain), while a decreasing trend was observed in the typical temperate grassland
area of the upstream central region and the typical temperate deciduous broadleaf forest
area of the midstream.

3.1.3. Temporal Dynamics of the Extreme Temperature Indices

The annual cold extreme values were determined from the interannual variations in ETIs
(Figure 5) and showed growth rates for TX10p and TN10p of 1.399 and 1.264 days/decade,
respectively (Figure 5a). The annual warm extreme values exhibited growth rates for
TX90p and TN90p of 0.868 days/decade and 2.403 days/decade, respectively (Figure 5b).
This indicated a decline in the frequency of cold days and nights as well as warm days
and nights. In terms of diurnal temperature changes, the change speed during cold
days was slightly higher during the daytime than at night, while during warm days,
the change speed at night was significantly faster than in the daytime. According to
Figure 5c, the cold extreme values showed growth rates for TNn and TXn of 0.738 and
0.568 ◦C/decade, while the warm extreme values exhibited growth rates for TNx and TXx
of 0.033 and 0.304 ◦C/decade, respectively. The decrease in speed at the daily maximum
temperature was remarkably smaller than the increase in speed at the daily minimum
temperature, indicating a trend towards convergence between the two extremes, which led
to a slow decline in the DTR. The extreme temperature duration index, GSL, increased to
4.446 d/decade in the YRB (Figure 5e). The frost day (FD) occurrence and CSDI decrease
rates were 5.529 and 0.800 days/decade, while the summer day (SU) occurrence and WSDI
increase rates were 1.361 and 0.298 days/decade (Figure 5d,f). Considering the extreme
temperature days and duration indices together, the decrease rate in the FD and cold
days indices grew faster than the increase rate in the summer days and duration indices,
indicating a continued rise in temperatures.

3.1.4. Spatial Evolution in Extreme Temperature Indices

Figure 6 shows that the proportions of TX10p and TN10p regions with an increasing
trend reached 99.998% and 65.24%, respectively, while the values for decreasing regions
were only 0.002% and 34.76%. The proportions of TX90p and TN90p regions with an
increasing trend were as high as 71.62% and 96.37%, respectively, while the values for
decreasing regions were only 28.38% and 3.63%. The areas with decreasing TNn and
TXn values accounted for 63.88% and 90.70%, while the areas with increasing values
accounted for 37.12% and 9.30%, respectively. The areas with decreasing TNx and TXx
values accounted for 82.76% and 75.34%, while the areas with increasing values accounted
for 17.24% and 24.66%, respectively. The areas with decreasing FD values accounted for
91.29%, while the increasing values reached 8.71%. The decreasing SU values accounted for
48.90%, while the areas with increasing values accounted for 51.10%. The expansion of areas
with extreme cold and warm temperature values indicated a progressive growth in extreme
temperatures (Figure 7a–j). The spatial trend of the DTR exhibited significant distribution
differences, with the increase and decrease accounting for 54.74% and 45.26%, respectively.
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Figure 5. Temporal variations in the 14 extreme temperature indices (a–f). The black dotted line
represents the trend of the variable during 2000–2020.

Figure 6. Area changes in the 14 extreme temperature indices during 2000–2020.

The area of declining DTR was primarily in the southwestern and northeastern por-
tions of the upstream, while the regions with increased DTR were widely located in the
mid-downstream (Figure 7k). The area with an increasing GSL reached 95.02%, with sig-
nificant increases occurring in the north of the YRB and the Huang-Huai-Hai Plain in the
downstream eastern region (Figure 7l). The decreasing WSDI reached 67.93%, while the
area with an increasing value accounted for 32.07%. The area with an increasing CSDI
reached 99.95%. Overall, the ETIs, in terms of temperature extremes, intensity, and duration,
trended upward across most of the YRB during 2000–2020 (Figure 7).
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Figure 7. Spatial distribution of the 14 extreme temperature indices from 2000 to 2020 in YRB.

3.2. Spatiotemporal Changes in NDVI

By analyzing the NDVI trend in the YRB and its three major subbasins and comparing
the differences in the NDVI trends among different subregions, the variations in vegetation
activity in the area can be characterized. Figure 8 shows the trend of the annual average
NDVI and its three major sub-basins from 2000 to 2020.

Figure 8. Trend of annual maximum NDVI changes in the (a) YRB and (b) three subbasins from 2000
to 2020.

The results indicated a remarkable growing trend of the NDVI with a rate of 0.055/decade
during 2000–2020 (Figure 8a). The NDVI valley value of 0.487 occurred in 2001, while it
peaked at 0.636 in 2018. Further investigation into the three major subbasins of the YRB
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revealed that the trends of the NDVI in the upstream and midstream were consistent with
the overall annual NDVI trend, showing a remarkable growth trend. The NDVI growth in
the midstream was significantly higher than the overall trend, at a rate of 0.074/decade,
indicating the significant effectiveness of vegetation restoration and management in this
region. The NDVI growth rate upstream was 0.042/decade, which was slightly lower than
the overall tread. Additionally, the vegetation downstream has maintained high coverage
since 2000, with the slowest vegetation change rate in the past 21 years, at 0.013/decade
(Figure 8b).

In terms of spatial distribution, the annual average NDVI values were higher in the
west of the upstream, the central-southern regions of the midstream, and the downstream
areas. However, they were lower in specific areas of the upstream, such as the high-altitude
areas of the Tibetan Plateau, the Kubuqi Desert, and the MaoWusu Desert (Figure 9a).
Concerning spatial change trends, the annual average NDVI demonstrated an overall
growth trend, with improvement and degradation areas accounting for 87.33% and 12.63%,
respectively (Figure 9b). The Loess Plateau region in the midstream of the YRB had re-
markable growth, indicating notable success in ecological restoration of vegetation over the
21-year period. Conversely, areas facing severe degradation were primarily concentrated
in the southern part of the midstream and downstream regions. This might be due to the
high population density of the region, which made vegetation susceptible to influence from
human activities. Additionally, urban expansion has transformed certain agricultural lands
and grasslands into construction sites, leading to a certain degree of vegetation degradation.
To promote ecological and environmental restoration, it will be necessary to intensify green
vegetation construction efforts in these regions in the future.

Figure 9. NDVI distribution and variation from 2000 to 2020 in the YRB. (a) Spatial distribution of the
multi-year average annual NDVI; (b) spatial distribution of the significance level of the annual NDVI.

3.3. Uncovering the Major Factors Driving the NDVI Spatial Distribution

The results of factor detection have quantified the explanatory power of environmental
variables for spatial variation in the NDVI. Figure 10 shows the weighted factors of the
NDVI spatial variation for 2000, 2005, 2010, 2015, and 2020 and the average over 21 years.
All factors passed the significance test. The results indicated that PRCPTOT, R10mm,
CWD, and TXn were the dominant factors for the NDVI in each year, with q-values above
0.45. While PRCPTOT consistently maintained its dominant position, the other factors
varied over time. The secondary driving factors for the NDVI are R95p, R99p, CDD, and
Rx5day. Extreme precipitation has made a vital contribution to the spatial variation in
the NDVI in the YRB in terms of intensity, frequency, and duration (Table 3), suggesting
that precipitation is the most significant limiting element of vegetation distribution [44].
In addition, the q values of the six ETIs, TN10p, TX10p, WSDI, CSDI, TX90p, and TN90p,
were all lower than 0.1, which indicated that the vegetation changes in the YRB were less
responsive to the ETIs that were below the 10th percentile and at the upper 10th percentile.
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Figure 10. q-value changes of 25 extreme climate indices on NDVI in the YRB over 6 periods (2000,
2005, 2010, 2015, 2020, and overall mean).

Table 3. Changes in explanatory power (q values) in 2000, 2005, 2010, 2015, 2020, and the average of
21 years.

Year 2000 2005 2010 2015 2020 Average of
21 Years

Dominant factors PRCPTOT
PRCPTOT

R10mm
CWD

PRCPTOT
TXn

R10mm
PRCPTOT PRCPTOT

R10mm
PRCPTOT

R10mm

Secondary factors CWD
R10mm

R95p
Rx5day

R95p
R99p
CWD

CWD
CDD

R99p
CDD
R95p
CWD

CWD
R95p
CDD

The interaction detector quantitatively identified the explanatory power and kinds
of interactions between pairs of driving factors. Among the results from the five periods,
the dominant types of interaction between two factors were bifactor enhancement and
nonlinear enhancement. Table 4 summarizes the top five interactions for each period. The
interaction between PRCPTOT and ETIs showed a bifactor enhancement effect, which
significantly enhanced the influence of a single factor on the NDVI. Furthermore, in 2010,
the interactions between R95p and TXn as well as between Rx5day and TXn had relatively
large q values of 0.6025 and 0.5990, respectively. In 2015, CWD and R20mm had a q value
of 0.5857. These results demonstrate the crucial role of the coordinated effects of water and
heat on vegetation growth.
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Table 4. Top five factor interactions for 5 periods (2000, 2005, 2010, 2015, and 2020).

Year Rank of Interactive Explanatory Power (Top Five)

2000 PRCPTOT ∩ R20mm = 0.5969 ** > PRCPTOT ∩ TNx = 0.5962 ** > PRCPTOT ∩ SU = 0.5856 ** > PRCPTOT ∩ SDII = 0.5852 ** > PRCPTOT ∩ GSL = 0.5781 **
2005 PRCPTOT ∩ TNn = 0.6362 ** > PRCPTOT ∩ TN10p =0.6336 ** > PRCPTOT ∩TXx = 0.6259 ** > PRCPTOT ∩ TX90p = 0.6236 ** > PRCPTOT ∩ SDII = 0.6219 **
2010 PRCPTOT ∩ TXn = 0.6083 ** > PRCPTOT ∩ TX10p = 0.6052 ** > R95p ∩ TXn = 0.6025 ** > PRCPTOT ∩ R25mm = 0.6012 ** > Rx5day ∩ TXn = 0.5990 **
2015 PRCPTOT ∩ SU = 0.5930 ** > PRCPTOT ∩ TNx = 0.5877 ** > R95p ∩ TXx = 0.5868 ** > CWD∩ R20mm = 0.5857 ** > PRCPTOT ∩ TX90p = 0.5828 *
2020 PRCPTOT ∩ TNx = 0.5781 ** > PRCPTOT ∩ TXx = 0.5736 ** > PRCPTOT ∩ GSL = 0.5712 ** > PRCPTOT ∩ TX10p = 0.5678 ** > PRCPTOT ∩ FD = 0.5662 **

Note: “**” represents bifactor enhancement, and “*” represents nonlinear enhancement.

3.4. NDVI Response to Extreme Climate

The vegetation response to climate change may be more pronounced under extreme
climate conditions. Existing research has also indicated a significant link between vegetation
cover and ECE, especially in semiarid and arid regions. Therefore, there is a need to deeply
explore the response mechanisms between ECEs and vegetation. Figures 11 and 12 show
the Pearson correlation analysis results with the NDVI and raster images generated from the
25 extreme climate index data calculated by the RClimDex1.1 software for 86 meteorological
stations after interpolation by kriging.

Figure 11. The correlation between the extreme precipitation indices and the annual NDVI during
2000–2020 in the YRB.

3.4.1. Correlation between Extreme Precipitation and NDVI

In terms of both intensity and frequency of extreme precipitation, the findings in
Figure 11 indicates that the NDVI exhibited spatial patterns. Specifically, Figure 11a–f,i–k
show that the NDVI was significantly and positively correlated with Rx1day, Rx5day,
PRCPTOT, SDII, R95p, R99p, R10mm, R20mm, and R25mm in the middle and north regions
of the upstream and midstream in the YRB (p < 0.05). Increased precipitation amounts
and extreme precipitation helped alleviate the negative impacts of rising temperatures,
thereby promoting rapid growth in vegetation cover. This result was consistent with the
NDVI trend over the 21-year period (Figure 9) and supported the dominant influence of
PRCPTOT on NDVI changes (Figure 10). The negative correlation between the NDVI and
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Rx1day, Rx5day, PRCPTOT, SDII, R95p, R99p, R10mm, R20mm, and R25mm was mainly
found in the upstream, western, and midstream southern regions, although the overall
correlation was relatively weak.

In the midstream of the YRB, the NDVI and CDD were strongly positively correlated,
while in the upstream, the NDVI and CDD were negatively correlated, forming a “stripe”
along the boundary from southwest to northeast (Figure 11g). The NDVI and CWD
exhibited a remarkable positive correlation in the northern regions, while a negative
correlation was found in the south of the midstream (Figure 11h).

3.4.2. Correlation between Extreme Temperature and NDVI

Figure 12 presents the correlation analysis between 14 ETIs and the annual NDVI in
the YRB, with significance levels obtained through statistical tests set at 0.05. TX10p was
positively correlated with the NDVI in the upstream northeast region of the YRB, but the
correlation was not significant. TX10p was negatively correlated with the NDVI, mainly in
the midstream (Figure 12a). TN10p was remarkably positively correlated with the NDVI in
the upstream northeastern region of the YRB and the midstream south-central region, while
it was negatively correlated in the upstream western region (Figure 12b). The correlation
between cold days and cold nights with the NDVI remained consistent in the western and
northern regions. TX90p and TN90p exhibited a significantly positive correlation with
the NDVI in the upstream southwestern and midstream central regions, while negative
correlations were mainly found in the upstream northeastern region (Figure 12f,h).

Figure 12. The correlation between the extreme temperature indices and the annual NDVI during
2000–2020 in the YRB.
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In the upstream western and midstream central-southern regions of the YRB, the
elevated quantity of warm days and nights helped maintain soil temperature and balance,
mitigating the negative impacts of increased cold nights and enhancing vegetation’s carbon
fixation capacity, primary productivity, and respiration. The warming has created favorable
conditions for vegetation growth. The increase in cold days and nights in the upstream
northeastern region benefited soil moisture retention and reduced evapotranspiration,
promoting vegetation growth in that area.

TNn and TXn exhibited a positive correlation with the NDVI in the upstream western
region and the midstream, while in the upstream northeastern region, they were negatively
correlated with the NDVI (Figure 12c,d). TNx and TXx were positively correlated with
the NDVI in the upstream southwestern region of the YRB (Figure 12h,i). This study
revealed that the vegetation-climate productivity potential of the region was positively
influenced by temperature, with temperature being the dominant factor in this regard.
Therefore, rising daily temperatures promoted vegetation growth in this area. TNx and
TXx exhibited a highly negative correlation with the NDVI in the upstream northeastern
region and the midstream middle-northern region, which may be due to the presence of
desert areas and loess plateaus in these regions, combined with arid climates and poor
water conditions (Figure 12h,i). The increase in daily temperature accelerated vegetation
transpiration and soil moisture evaporation, negatively affecting vegetation growth to
some extent. FD and SU were highly positively correlated with the NDVI, mainly in the
upstream north-eastern region, and significantly negatively correlated with the NDVI at
the upstream and downstream junctions (Figure 12e,j).

DTR was significantly positively correlated with the NDVI mainly in the upstream
northeastern region and negatively correlated with the NDVI mainly in the upstream
southwestern region and midstream (Figure 12k). The positive correlation of GSL with the
NDVI was widely distributed in the upstream and midstream, and the negative correlation
did not pass the test of significance (Figure 12l). The positive correlation of WSDI with
the NDVI occurred mainly in the upstream eastern part and midstream south-central part,
while the negative correlation of CSDI with the NDVI occurred mainly in the midstream
north-central part (Figure 12m,n).

3.4.3. The Impacts of ECCs on NDVI for Various Vegetation Classes

From Figure 13, it was found that the highest positive correlation between EPIs and
the NDVI occurs in grassland meadows, broadleaf forests, and shrub areas. The maximum
positive correlations in these three regions were 0.772, 0.669, and 0.666, respectively, while
the highest negative correlations were 0.609, 0.582, and 0.489. Among the correlations,
the impacts of PRCPTOT and CDD on the NDVI were the most significant. The extreme
temperature index TXn exhibited the highest positive correlation with the NDVI in the three
major regions, with values of 0.598, 0.645, and 0.632. Correspondingly, the highest negative
correlations were 0.67, 0.47, and 0.408, where the influence of CSDI on the NDVI was
relatively important. However, in desert and cultivated vegetation areas, the correlation
between changes in EPIs, ETIs, and the NDVI was relatively low. This is due to the lower
vegetation coverage in deserts, where vegetation changes are less affected by environmental
variations. On the other hand, cultivated vegetation was actively managed within the scope
of human activities, leading to reduced natural impacts on vegetation.

Viewed from the perspectives of both extreme precipitation and extreme temperature,
the former generally exhibited a higher correlation with the NDVI. Table 4 also supports
the dominant role of EPIs in influencing vegetation. With the exception of CDD, most EPIs
demonstrated positive correlations with the NDVI, while, apart from TXn, TX90p, and
TN90p, ETIs were generally negatively correlated with the NDVI. Moreover, the interaction
between EPIs and ETIs strengthened the impact of individual factors on vegetation, aligning
with the dominance of the PRCPTOT-TXn dual-factor influence on vegetation changes in
2010, as indicated in Table 4.
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Figure 13. The correlation between ECC and the NDVI of different plant types during 2000–2020
in the YRB. Abbreviations: alpine vegetation (AV); broadleaf forest (BF); coniferous forest (CF);
cultivated plants (CPs); grassland and meadow (GM).

4. Discussion
4.1. Model Fitting and Illustrations

To monitor the dynamic interplay and spatial scale effects between vegetation and
extreme climate change, this study employed regression analysis, linking extreme climate
indices with the NDVI. Following multicollinearity assessments, variables meeting two
criteria (VIF < 10 and factor detection q-values) were chosen for localized modeling. The
different model results are depicted in Table 5. All parameter estimation values exhibit p
values lower than 0.1. Enhanced adjusted R2 alongside diminished AICc values signifies
improved model performance [45]. Out of the five study periods, the OLS model showed
the lowest adjusted R2 and the highest AICc. This could be attributed to the omission of
inherent spatial heterogeneity between the NDVI and ECI in the model, culminating in
biased estimations. In contrast to global models, both local models, GWR and MGWR,
achieved more favorable regression outcomes. GWR accounted for spatial heterogeneity
and local characteristics, resulting in a goodness of fit R2 surpassing 0.7 (Table 5). Neverthe-
less, it constrained all explanatory variables to a uniform fixed bandwidth, thereby failing
to portray the distinct spatial scale impacts of each variable in their individual spatial pro-
cesses. Hence, spatial variation is not accurately depicted. Conversely, MGWR permitted
distinct extreme climate indices to encompass varied spatial smoothing levels, engaging in
localized modeling across diverse spatial scales to pinpoint optimal geographical modeling
scales. Consequently, in comparison to GWR, the MGWR results reveal an escalation in
adjusted R2 coupled with a reduction in AICc. Figure 14 portrays the standard residuals
of MGWR for the five study periods, commonly depicting a stochastic spatial dispersion
pattern. Additionally, the absolute residuals across all regions remain under 2.5, signifying
that the local model is robust and the results are reliable [46].
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Table 5. Comparison of the fitting measures for the OLS, GWR, and MGWR models.

Year
OLS GWR MGWR

Adj.R2 AICc Adj.R2 AICc Adj.R2 AICc

2000 0.485 9404.078 0.705 7610.028 0.761 5441.652
2005 0.535 9487.666 0.776 7298.727 0.740 5726.879
2010 0.495 9819.916 0.755 7588.276 0.765 5361.018
2015 0.478 9776.743 0.737 7707.585 0.767 5346.585
2020 0.493 9119.293 0.704 7610.028 0.725 5954.629

Figure 14. The spatial distribution of the MGWR standard residuals from 2000 to 2020. (a) Phase 1,
2000; (b) Phase 2, 2005; (c) Phase 3, 2010; (d) Phase 4, 2015; (e) Phase 5, 2020.

4.2. The Impact of Extreme Climate Change on Vegetation

We successfully carried out a spatiotemporal and driver analysis of 25 extreme cli-
mate indices and the NDVI for the same period. Our findings highlighted a noteworthy
upsurge in the NDVI of the YRB from 2000 to 2020 (0.055/decade), aligning with ear-
lier research [47]. This is consistent with the results of the trend analysis of 1 km of
NDVI data after the assimilation of machine learning methods [48]. This growth rate sur-
passes China’s rate (0.03/decade, 1998–2017) [49] and Northern China’s rate (0.01/decade,
1982–2018) [50]. Regarding changes in extreme climate indices, our results unveiled promi-
nent escalating tendencies for EPIs Rx1day, Rx5day, PRCPTOT, R95p, R99p, and R10mm
(1.910 mm/decade, 5.535 mm/decade, 45.846 mm/decade, 20.742 mm/a, and 6.999 mm/a).
Similarly, the ETIs TX90p, TN90p, TNn, TXn, SU, and GSL also manifest noteworthy in-
creasing patterns (0.868 days/decade, 2.403/decade, 0.738 ◦C/decade, 0.568 ◦C/decade,
1.361 days/decade, and 4.446 days/decade, respectively). These outcomes align with those
of previous investigations [48].

Examining the link between ECIs and vegetation cover can contribute to the iden-
tification of ecosystems that are susceptible to extreme climate conditions. Our findings
showed noteworthy positive correlations (p < 0.05) between the NDVI, PRCPTOT, and
R10mm. This is consistent with the increasing trend of the extreme temperature index,
which was obtained in Inner Mongolia using multiple linear regression and full subset
regression. This was in accordance with the findings in the middle and lower reaches of
the Yangtze River in China [37], Pakistan [51], and global drylands [52], which have shown
that variation in extreme precipitation intensity has been consistent with or significantly
influenced vegetation activities. On the continental scale, a strong connection between
extreme precipitation and average precipitation was found for Australia [53]. Over land,



Forests 2024, 15, 307 19 of 24

the wettest day of all seasons was found to intensify strongly during the monsoon in
the middle and high latitudes of the Northern Hemisphere. Additionally, the intensity
of extreme precipitation was forecast to increase alongside elevated mean precipitation
across all seasons throughout the 21st century [54]. As the frequency of extreme precipi-
tation increased, R20mm and R25mm displayed a remarkable negative correlation with
the NDVI, suggesting that increased precipitation might enhance vegetation growth by
supplementing soil moisture [52]. In the upstream of the YRB, CDD was broadly negatively
correlated with the NDVI, especially in grassland meadows (−0.609) and deserts (−0.203).
On the contrary, in the coniferous and broadleaf forests of the Loess Plateau, the signifi-
cantly positive correlation coefficients between CWD and the NDVI were 0.405 and 0.669,
respectively. Furthermore, R99p displayed a less pronounced correlation with the NDVI
when contrasted with R95p. Collectively, these findings indicated that excessive extreme
precipitation could impede vegetation growth due to elevated soil moisture content and
soil erosion, resulting in an unfavorable environment for vegetation development [55].
Additionally, damp conditions caused by precipitation have been found to diminish solar
radiation absorption, resulting in decreased temperatures and soil saturation, which acts as
a restricting factor for vegetation growth [56].

Intriguingly, the present research uncovered a divergence in the effects of warm and
cold extreme values on vegetation with the NDVI. This is because vegetation types such
as coniferous forests, broadleaf forests, and grassland meadows flourish in temperature
conditions that are relatively well suited. This enables them to enhance photosynthesis
by effectively harnessing solar radiation and providing the necessary thermal conditions
for vegetation growth [21]. However, coniferous forests are vulnerable to severe frost
events [57], leading to a diminished correlation with the NDVI during episodes of extreme
cold temperatures. TN90p displayed a noteworthy positive correlation (p < 0.05) with the
NDVI, which is especially conspicuous in grassland meadows and shrub regions. This
can be attributed to the comparatively reduced sensitivity of herbaceous plants to extreme
damp and cold conditions, enabling their survival even on chillier nights [58]. Importantly,
extreme warmth can induce soil desiccation, diminishing the water usage capacity of
plants [59]. Desert vegetation, which depends on its ability to withstand drought, and
high-altitude vegetation, which relies on cold resilience, exhibit reduced correlations with
both cold and warm extreme values [60,61]. Cultivated plants do not demonstrate any
substantial adverse effects from either type of extreme value. Furthermore, our study
reveals markedly unfavorable correlations involving grassland meadows, marshes, and ex-
treme events of low temperatures (TNx, TXx, and SU). The injurious effects of extreme cold
temperatures on plant roots and tissues hinder the development of vegetation throughout
the majority of the YRB [62]. For example, the correlation between cold extreme values
(TX10p and TN10p) and warm extreme values (TX90p and TN90p) with the NDVI exhibits
a complete reversal within the YRB. Similarly, TNn and YXn displayed inverse correlations
with TNx and TXx, except for the upstream northern region, where the correlation turned
negative. This discrepancy implied distinct effects of these indices on vegetation across
different regions (Figure 12). Among the eight vegetation types, TXn exhibited a notable
positive correlation (p < 0).

4.3. Limitations and Uncertainty

The limitations and unpredictability involved in analyzing the effects of ECC on
vegetation are crucial and should not be disregarded. First, uncertainties stem from the
data sources. While this study utilized a maximum synthesis approach to produce annual
NDVI data, it is essential not to overlook the potential impact of clouds and haze on
remote sensing data [63,64]. Clouds and haze can affect the data acquisition and quality
of parameters such as infrared and near-infrared bands, thus reducing the accuracy of the
NDVI. Additionally, during the resampling process, the uniformity of spatial resolution
may influence the precision of research outcomes [65,66]. Consequently, uncertainties
inherent in the data could potentially impact the reliability of this investigation.
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Second, the significance of the discreteness of meteorological station observation data
should not be overlooked. The kriging interpolation method, commonly associated with
spatial weather station data, are used to scrutinize the effect of natural factors on alter-
ations in vegetation [67,68]. Nevertheless, distinct interpolation approaches yield varying
outcomes, introducing elements of uncertainty. In this study, the Kriging interpolation
method was used to interpolate the extreme climate index data from spatially neighboring
stations, while the spline interpolation method was utilized to interpolate the continuous
data via fitting to a smooth surface. The latter can improve the interpolation accuracy for
regions with uneven station distribution, such as the Kubuzi Desert, Loess Plateau, and
lower Yellow River.

Moreover, the impacts of HA on vegetation and CC, frequently attributed solely to
climatic factors, are often disregarded. Urban expansion directly affects the regional distri-
bution of vegetation and indirectly affects the climate. For instance, the urban heat island
effect leads to climatic warming [69,70] and increases the demand for water resources.
However, vegetation is caught in a water scarcity crisis due to the interaction between
urbanization and the increasing trend of extreme warmth indices TN90p and TX90p. In
addition, urbanization coupled with long-lived greenhouse gases (LLGHG) exacerbates
extreme precipitation both in terms of quantity and frequency [71,72]. Extreme precip-
itation indices of Rx5day, R95p, and R10mm had a significant upward trend, possibly
leading to flooding disasters, exacerbation of soil erosion, and deterioration of the veg-
etation growth environment. This research solely investigated the influence of ECC on
YRBs vegetation. In the future, a comprehensive exploration of the factors influencing
vegetation should encompass both natural and human-induced disruptions. Additionally,
the investigation of the link between the NDVI and specific ECEs, such as flash drought,
merits future consideration.

5. Conclusions

The research demonstrated that the NDVI in the YRB revealed a notable growing
trend, increasing at a rate of 0.055/decade. Notably, the midstream region displayed the
most rapid growth, at a rate of 0.074 per decade. In contrast, the upstream and downstream
regions showed growth rates lower than the overall rate of the YRB. Moreover, the annual
NDVI exhibited an overall upward trend, with areas of enhancement constituting 87.33%
and areas of decline accounting for 12.63%. The outcomes of the geographical detector
analysis indicated that precipitation (PRCPTOT) primarily affects vegetation. The combined
effects of hydrothermal conditions play a pivotal role in promoting vegetation growth.
Various vegetation types exhibit substantial variations in their responsiveness to water,
with grassland meadows demonstrating higher sensitivity than woody plants. Desert
vegetation and cultivated plants exhibit the weakest reaction to precipitation. Furthermore,
apart from CDD and SDII, indices of extreme precipitation exerted positive influences on
the NDVI. Cold temperature extreme events (TXn, TNn, and TN10p) exhibited a notable
positive correlation with the NDVI, surpassing the influence of other extreme temperature
events. Regarding diverse vegetation categories, fluctuations in the NDVI among grassland
meadows, broadleaf forests, and shrubs were connected to extreme precipitation indices
(PRCPTOT, R95p, R99p, CWD, and R10mm) as well as extreme temperature (TXn). In
contrast, desert vegetation and cultivated plants displayed a comparatively modest reaction
to extreme climatic incidents. The findings suggested that, within the Yellow River basin,
extreme precipitation events exert a more substantial influence on vegetation than extreme
temperature events. Hence, the interplay between temperature and precipitation should
not be underestimated. These findings contribute to a holistic comprehension of the role
played by different climate alterations in shaping the behavior of arid vegetation. In
subsequent research, a more thorough investigation of extreme climate events should
be prioritized to mitigate their detrimental impacts on vegetation. This endeavor is of
paramount significance for the restoration of arid ecosystems.
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