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Abstract: Moso bamboo (Phyllostachys edulis (Carrière) J.Houz.) is a fast-growing species that com-
monly invades neighboring broadleaf forests and has been widely reported in subtropical forest
ecosystems. However, little is known about the effect on soil phosphorus (P) bioavailability and its
potential influence factor during the P. edulis expansion. Here, the four soil P bioavailable fractions
(i.e., CaCl2-P, Citrate-P, Enzyme-P, and HCl-P), acid phosphatase activity, iron and aluminum oxides
(Fed and Ald), and soil total P pool at depths of 0–10 cm, 10–20 cm, and 20–40 cm were measured in
three expanding interfaces (a broadleaf forest, a mixed bamboo–broadleaf forest, and a pure P. edulis
forest) in subtropical forests of southern China. Regardless of soil depths, the CaCl2-P content was
significantly lower in the mixed bamboo–broadleaf forest than the other two forest types, with
contents ranging from 0.09 to 0.16 mg/kg, whereas the HCl-P content was significantly lower in the
broadleaf forest, with contents ranging from 3.42 to 14.33 mg/kg, and the Enzyme-P content and
acid phosphatase activity were notably lower in P. edulis forest with contents of 0.17–0.52 mg/kg
and 68.66–74.80 µmol MUF released g−1 min−1, respectively. Moreover, the soil total P pool was
enhanced in the mixed bamboo–broadleaf forest in 0–10 cm depth compared to broadleaf and P. edulis
forests, with increases of 27.40% and 31.02%, respectively. The redundancy analysis showed that
soil pH plays an important role in regulating soil P bioavailability during the P. edulis expansion
(p < 0.01). From the above results, the invasion of P. edulis into broadleaf forests has resulted in soil
P bioavailability and storage capacity. The results of this study suggest that when P. edulis invades
broadleaf forests, it could affect the soil P bioavailability by elevating soil pH, which in turn drives
and facilitates the completion of the expansion. This is important for understanding P cycling during
the P. edulis forest expansion in subtropical regions.

Keywords: plant invasion; biological-based P extraction; subtropical forests

1. Introduction

Phosphorus (P) is an important nutrient element in various ecosystems, and the
cycling of P in soils is a basis for many key ecosystem functions [1]. In soil, P exists in a
variety of forms that differ in their bioavailability to plants [2]. However, the form of P
absorbed by plants is rather insoluble and shows slow diffusion in soil, becoming one of the
macronutrients limiting the enhancement of forest primary productivity [3,4], especially
in highly subtropical soils, since a large amount of P is occluded by iron and aluminum
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oxides [5,6]. Studies have shown that the capacity and availability of soil P mainly depend
on the changes in different P forms, which are closely related to biological processes [7,8].
Thus, with the desired better understanding of forest soil P status, assessing the soil P
bioavailability has become an important research objective [9–11].

Moso bamboo (Phyllostachys edulis (Carrière) J.Houz.) is the most broadly distributed
bamboo species in subtropical China. However, due to its rapid growth and reproduction
ability, P. edulis has been expanding and occupying natural or secondary broadleaf forests in
the past decades, forming a large area of bamboo forest. Broadleaf forests are widely known
as an essential vegetation type that contributes to increased bio-diversity and environment
conservation [12]. It is noted that the P. edulis expansion has been considered as one of
the greatest contemporary threats to China’s broadleaf forests [13,14]. Previous studies
have shown that the P. edulis expansion had significantly affected the soil pH [15], enzyme
activity [16], nitrogen mineralization rates [10], organic carbon chemistry composition [17],
and microbial community structure and function [16]. Until now, no studies have ever
examined the effects of the P. edulis expansion on soil P bioavailability. Therefore, under-
standing how the P. edulis expansion affects various P fractions will help to clarify the
influence of the P. edulis expansion on soil P distribution patterns in adjacent forests and its
potential mechanism.

Soil P bioavailability depends on both geochemical and biochemical processes [18–20].
These processes can influence the soil physiochemical and biological properties, such as
soil pH, metal oxides (e.g., Fe oxides, Al oxides), inorganic nitrogen, organic carbon, total P,
and activities of phosphatase enzymes [21–26]. Accordingly, the P. edulis expansion may
alter soil P pool and P bioavailability and lead to the redistribution of soil P. Regrettably,
these impacts have not yet been assessed in terms of direction and magnitude [27,28]. At
present, the most commonly used method for assessing soil P fractions is the sequential
leaching method by Hedley and its modified method [29,30]. However, this approach does
not consider the contribution of biological processes and P bioavailability [31,32].

The aim of this study was to explore the impact of the expansion of P. edulis into
broadleaf forests on soil phosphorus pool and phosphorus components, as well as the main
environmental factors contributing to this change. We used the substituting space-for-time
approach to collect soil samples from a broadleaf forest, a mixed bamboo–broadleaf forest,
and a pure P. edulis forest which represented non-invasive, mid-invasive, and serious
invasive levels, respectively, in Jinggang Mountain Nature Reserve, Jiangxi Province, and
compared the differences in soil P pool, acid phosphatase activity, and four P fractions
(CaCl2-P, Citrate-P, Enzyme-P, and HCl-P) in the 0–10 cm, 10–20 cm, and 20–40 cm depths.
The principal objective of the study was to investigate the response of the soil phosphorus
pool and phosphorus fractions to the expansion of P. edulis into broadleaved stands, and
the main environmental factors causing this change. Specifically, hypotheses were tested
for the following: (1) the P. edulis expansion would alter soil P bioavailability and acid
phosphatase activity, thereby facilitating expansion, and (2) pH is the main influencing
factor leading to changes in P fraction during the P. edulis expansion.

2. Materials and Methods
2.1. Study Sites

This study was conducted at the Dajing Forest Farm in the Jinggang Mountain National
Nature Reserve (26◦33′58′′ N, 114◦7′58′′ E, Figure 1), Jiangxi Province, China, which has a
humid subtropical monsoon climate with an average annual temperature of 14.2 ◦C and an
average annual precipitation of 1856 mm. The soil types include red soil and red-yellow
soil. This chosen site is located in the nature reserve and has not been exposed to direct
anthropogenic disturbance. The regional vegetation is evergreen broadleaf forest and it is
also a suitable area for P. edulis. Before the establishment of the reserve, owing to long-term
harvesting by humans and natural disturbances, the original evergreen broadleaf forest was
extensively degraded into a secondary forest. After the establishment of the nature reserve,
the secondary evergreen broadleaf forest was in a positive stage of succession to the original
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forest, but P. edulis, as a suitable species under subtropical climate conditions, has been
invading and occupying adjacent forest stands at a rapid rate, resulting in the formation of
a large area of mixed bamboo–broadleaf forest and pure P. edulis forest. The invasion of
broadleaf forests by P. edulis has resulted in three different types of vegetation along the
invasion path: pure P. edulis forest, mixed bamboo–broadleaf forest, and broadleaf forest.
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Figure 1. The geographical location of the study area.

2.2. Experimental Design and Soil Sampling

In June 2020, three typical sample strips were selected in the direction of the expansion
of P. edulis into the broadleaf forest, containing pure P. edulis, mixed bamboo–broadleaf,
and broadleaf forest, with each sample strip spaced at least 50 m. The sample site is at
an elevation of 900 m. The broadleaf forest is a recovering secondary evergreen broadleaf
forest, with the dominant species in the tree layer being Machilus thunbergia, and associated
species including Daphniphyllum macropodum, Alniphyllum fortunei, etc. The tree layer is
17.0 m high, with an average diameter at breast height of 15.8 cm, a density of 1200 ind./ha,
and a denseness of 0.85. The mixed bamboo–broadleaf forest was formed after P. edulis
expanded into a broadleaf forest for 10 years. The ratio of P. edulis to wood is 8:1, in which
P. edulis is about 15 m high and its density is about 4200 ind./ha. The P. edulis forest is
a pure forest formed by natural expansion about 30 years ago, with a density of about
6200 ind./ha, an average diameter at breast height (DBH) of 8.5 cm, and an average height
of 13.5 m.

Five replicated plots of 10 m × 40 m each were set up in each forest type, with a total
of 15 plots established. Soil samples were collected from these plots at depths of 0–10 cm,
10–20 cm, and 20–40 cm. Each soil sample was formed by homogenizing the soil after
removing the litter layer at low, medium, and high elevations along the hillside. Therefore,
this study included a total of 45 subsamples (3 forest types × 5 replicates × 3 soil depths).
All soil samples were placed in sterile self-sealing bags and maintained at low temperatures
for transportation to the laboratory. The composite samples were passed through a 2.0 mm
sieve to remove large rocks, visible roots, and debris. Finally, fresh samples were divided
into two subsamples: one subsample was stored at 4 ◦C for the determination of P fractions
and enzyme activity, and another subsample was airdried for soil chemical analysis.
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2.3. Soil Chemical Properties

Soil pH was measured from a soil suspension (1:2.5, w/v) using a pH meter (PHS-3E;
REX, Suzhou, China). Soil moisture (SWC) was measured by mass loss after drying
at 105 ◦C to a constant weight. Soil organic carbon (SOC) was determined using the
H2SO4-K2Cr2O7 oxidation method. Soil total nitrogen (TN) and P (TP) concentrations
were determined using a continuous-flow autoanalyzer (Auto Analyzer III, Bran + Luebbe
GmbH, Norderstedt, Germany) after digestion in 5 mL of H2SO4 with a catalyst. Concen-
trations of soil NH4

+-N, NO3
−-N, and available P (Olsen-P) were analyzed colorimetrically

with a SmartChem140 Discrete Analyzer (Westco Scientific, Danbury, CT, USA) [33]. Among
them, NH4

+-N and NO3
−-N were measured using 90 mL 2 mol/L KCl with 20 g fresh

soil leaching, and Olsen-P was measured using 5 g airdried soil and 50 mL ammonium
fluoride-hydrochloric acid leaching. Al and Fe oxides were extracted with dithionite-
citrate-bicarbonate (DCB) solutions [34] for free Al (Ald) and Fe (Fed), diluted, and tested
using an iron-aluminum combined colorimetric method with a spectrophotometer (Metash
UV/u20125200, Nanjing, China).

2.4. Soil P Fractions

P fractions were determined using the biological-based P extraction approach that
quantifies the inorganic P supply pathways of organic acid complexation/dissolution,
enzyme hydrolysis, and proton excretion-induced acidification mechanisms, as well as
the amount of dissolved inorganic P in the soil solution, which can highly improve the
mechanistic understanding of soil P biogeochemical cycles and P bioavailability [31]. The
procedure is as follows. Four 0.5 g fresh soil samples were added in parallel to 10 mL of
the following extracts: (1) 10 mM CaCl2 solution (CaCl2-P); (2) 10 mM citric acid solution
(Citrate-P); (3) 0.02 units/mL of acid phosphatase solution (Sigma P3627; Enzyme Commis-
sion Number 232-630-9; Sigma-Aldrich, Shanghai, China) (Enzyme-P); and (4) 1 M HCl
solution (HCl-P). The mixture was shaken at 200 rpm for 3 h. It was then centrifuged at
3220× g for 30 min to collect the supernatant. After appropriate dilution of the supernatant,
the soil P content was determined using the malachite green method [35] to represent
soluble and weakly adsorbed inorganic P, active inorganic P sorbed to clay particles or
weakly bound in inorganic precipitates, organic P readily mineralized by acid phosphatase
enzymes, and recalcitrant inorganic P, respectively [31].

2.5. Soil Acid Phosphatase Activity

The 96-well microplates were used to determine soil acid phosphatase activity (AP) [36].
A total of 1.5 g of fresh soil was added to 125 mL of 50 mM sodium acetate buffer (pH = 5.3)
and stirred well to obtain a soil suspension. A total of 200 µL of soil suspension and 50 µL
of 4-Methyumbelliferyl phosphate were added to the microtiter plate, and control was
made with 200 µL of soil suspension and 50 µL of sodium acetate buffer. After the dark
incubation of the assay plates at 20 ◦C for 4 h, fluorescence values were detected using a
microplate fluorometer (SpectraMax M2, Molecular Devices, Sunnyvale, CA, USA) at an
excitation wavelength of 365 nm and an emission cutoff of 450 nm, respectively.

2.6. Calculation and Statistical Analyses

Soil total P pool (g m−2) was calculated with the fixed depth method:

Soil total P pool = ∑n
i=1 Di × Bi × Pi × 0.1

where Di, Bi, and Pi are the thickness (cm), bulk density (g cm−3), and soil total P concen-
tration (g kg−1) of the ith soil layer, respectively, and 0.1 is a conversion factor.

All data were assessed using the Shapiro–Wilk normality test. One-way analysis of
variance (ANOVA) and Duncan’s test was used to assess differences among three types
of vegetation in the same soil depth and among different soil depths in the same type
of vegetation. Two-way analysis of variance (ANOVA) tests were used to identify the
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interaction effects of vegetation and soil depths on soil properties, AP, P fractions, and total
P pool. The statistical significance level was set at 0.05. This part of the data analysis was
carried out using SPSS 19.0 for Windows (SPSS Inc., Chicago, IL, USA), and the Origin
2018 software package (Origin Lab., Hampton, VA, USA) was used to produce figures.
Redundancy analysis (RDA) was performed between soil phosphorus-related indicators
and soil variables in each soil layer using the vegan package [37,38] in R (version 4.0.2),
and the data were log-transformed when necessary.

3. Results
3.1. Soil Chemical Properties

The vegetation type significantly affected soil pH, SWC, the contents of NH4
+-N,

NO3
−-N, SOC, TN, TP, Olsen-P, Fed, and Ald (p < 0.05). The soil depth affected the

contents of NH4
+-N, NO3

−-N, SOC, TN, TP, and Fed, besides SWC. The interaction between
vegetation and soil depth significantly affected the content of NO3

−-N (Table 1). Specifically,
compared to a broadleaf forest, soil pH significantly increased in the P. edulis forest and the
mixed bamboo–broadleaf forest, by 7.93%–9.50% and 5.57%–10.79%, respectively; as well as
soil SWC, the content of NO3

−-N, SOC, TN, and Ald was decreased in the 0–40 cm depths
of the P. edulis forest, and the content of NH4

+-N was only significantly increased in the
0–10 cm depth, by 15.19% and 14.08%, respectively. In addition, the contents of TP and Fed
were not significantly discrepant among the three forests. The soil Olsen-P concentration
was significantly lower by 27.79%–38.39% in the mixed bamboo–broadleaf forest compared
to the other two forest types, whereas the differences in soil Olsen-P content between the
broadleaf forest and the P. edulis forest were not significant (Table 1).

3.2. Soil P Pool, P Fractions, and Acid Phosphatase Activity

The P. edulis expansion process significantly affected the total soil P pool content in
the 0–10 cm soil layer, which was higher in the mixed bamboo–broadleaf forest than in the
other two forest types (Figure 2). While the vegetation type highly significantly affected
the CaCl2-P, Enzyme-P, and HCl-P content, the soil depth significantly affected all four
phosphorus fractions, but the interaction effect only significantly affected the CaCl2-P
content (Figure 3). Across all soil depths, the contents of all P fractions showed the same
trend among the three types of vegetation. Specifically, the soil CaCl2-P content was
significantly lower in the mixed bamboo–broadleaf forest than in the other two forest types.
The soil Enzyme-P content was lowest in the P. edulis forest, 0.17–0.52 mg/kg, the HCl-P
content was lowest in the broadleaf forest, 3.42–14.33 mg/kg, whereas the Citrate-P content
was not significantly different among the three types of vegetation (Figure 3). Furthermore,
the acid phosphatase activity was significantly lower in the P. edulis forest than the other
forest types (Figure 2).
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Table 1. Characteristics of soil physicochemical properties among the three typical vegetation forests during the expansion of P. edulis into broadleaf forest under
different soil layers.

Soil Depth Vegetation pH Moisture
(%)

NH4
+-N

(mg kg−1)
NO3−-N

(mg kg−1)
SOC

(g kg−1)
TN

(g kg−1)
TP

(g kg−1)
Olsen-P

(mg kg−1)
Fed

(g kg−1) Ald(g kg−1)

0–10 cm
PBF 5.04 ± 0.04A 57.98 ± 2.93B 19.08 ± 0.55A 2.70 ± 0.52C 54.95 ± 2.47B 3.47 ± 0.05B 0.53 ± 0.04A 3.21 ± 0.12A 16.62 ±

0.46A 6.48 ± 0.08C

MLF 5.03 ± 0.06A 69.01 ± 3.42A 18.90 ± 0.58A 4.60 ± 1.73B 77.12 ± 5.51A 3.70 ± 0.12B 0.48 ± 0.02A 2.43 ± 0.30B 17.51 ±
0.24A 6.74 ± 0.05B

BLF 4.67 ± 0.11B 69.99 ± 2.76A 16.56 ± 0.56B 6.78 ± 0.23A 76.93 ± 4.25A 3.98 ± 0.07A 0.48 ± 0.03A 3.37 ± 0.24A 17.51 ±
0.23A 7.03 ± 0.10A

10–20 cm
PBF 5.07 ± 0.02A 42.11 ± 2.17B 9.83 ± 1.01A 1.19 ± 0.61B 33.13 ± 2.56B 1.80 ± 0.08B 0.47 ± 0.03A 2.99 ± 0.17A 17.73 ±

0.48A 6.65 ± 0.13B

MLF 5.13 ± 0.03A 55.06 ± 2.16A 8.93 ± 0.74A 2.25 ± 0.85A 43.97 ± 2.24A 2.43 ± 0.10A 0.41 ± 0.01A 2.09 ± 0.31B 17.96 ±
0.16A 6.79 ± 0.12B

BLF 4.63 ± 0.04B 52.26 ± 1.33A 7.98 ± 0.81A 2.48 ± 0.30A 42.33 ± 2.56A 2.36 ± 0.12A 0.41 ± 0.03A 3.07 ± 0.18A 18.22 ±
0.11A 7.21 ± 0.12A

20–40 cm
PBF 5.18 ± 0.03A 42.47 ± 3.13B 7.05 ± 0.67A 1.58 ± 0.35B 23.96 ± 1.64B 1.36 ± 0.03C 0.43 ± 0.04A 3.43 ± 0.11A 17.60 ±

0.58A 6.60 ± 0.12B

MLF 5.04 ± 0.06A 53.26 ± 2.43A 5.77 ± 0.35A 1.48 ± 0.47B 33.37 ± 2.02A 1.74 ± 0.06B 0.39 ± 0.02A 1.93 ± 0.39B 18.05 ±
0.17A 6.75 ± 0.11B

BLF 4.78 ± 0.06B 48.09 ± 0.84AB 6.14 ± 0.37A 2.51 ± 0.40A 33.19 ± 3.04A 1.96 ± 0.06A 0.36 ± 0.03A 3.14 ± 0.12A 18.27 ±
0.04A 7.24 ± 0.06A

Variance analysis of F-statistics

Vegetation 48.54 *** 18.32 *** 5.38 ** 63.62 *** 19.37 *** 37.08 *** 3.54 * 19.60 *** 3.60 * 25.73 ***
Soil depth 1.90 ns 46.18 *** 269.53 *** 148.88 *** 129.09 *** 495.00 *** 10.27 *** 1.10 ns 5.44 ** 1.46 ns

Soil depth × Vegetation 1.32 ns 0.59 ns 1.07 ns 15.81 *** 1.76 ns 1.92 ns 0.09 ns 0.66 ns 0.28 ns 0.26 ns

Note: PBF, pure P. edulis forest; MLF, mixed bamboo–broadleaf forest; BLF, broadleaf forest; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; Olsen-P, available P; Fed,
free Fe oxides; Ald, free Al oxides. Data are means ± S.E., n = 5. Different uppercase letters indicate significant differences among the three stands in the same soil depth (p < 0.05).
Significance level of F values: ns not significant, * p < 0.05, ** p < 0.01, *** p < 0.001.
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The vegetation type and soil depth significantly affected all phosphorus fraction ratios,
while the interaction only significantly affected Citrate-P/CaCl2-P, Enzyme-P/CaCl2-P,
HCl-P/CaCl2-P, and Enzyme-P/HCl-P (Table 2). Similar trends were observed for all
fraction ratios among the three forest types across all soil depths. In particular, the ratios
of soil Citrate-P/CaCl2-P, Enzyme-P/CaCl2-P, and HCl-P/CaCl2-P in the mixed bamboo–
broadleaf forest, with ranges of 10.55–43.06, 2.64–4.91, and 59.97–136.07, respectively, were
significantly higher than those in the P. edulis and broadleaf forests. The soil Citrate-
P/Enzyme-P ratios were highest in the P. edulis forest, in the range of 5.39–11.78, and both
the Citrate-P/HCl-P and Enzyme-P/HCl-P ratios were highest in the broadleaf forest, the
range of 0.24–0.42 and 0.05–0.10, respectively.

Table 2. Soil biologically based phosphorus fraction ratios among the three typical vegetation forests
during the expansion of P. edulis into broadleaf forest under different soil layers.

Soil
Depth Vegetation Citrate-

P/CaCl2-P
Enzyme-

P/CaCl2-P HCl-P/CaCl2-P Citrate-
P/Enzyme-P

Citrate-P/HCl-
P

Enzyme-
P/HCl-P

0–10 cm
PBF 22.92 ± 1.46B 1.98 ± 0.17B 68.92 ± 4.46B 11.78 ± 0.95A 0.34 ± 0.03AB 0.03 ± 0.00B
MLF 43.06 ± 3.16A 4.91 ± 0.43A 136.07 ± 8.66A 8.96 ± 0.78B 0.32 ± 0.03B 0.04 ± 0.00AB
BLF 22.07 ± 1.67B 2.35 ± 0.21B 53.77 ± 6.80B 9.49 ± 0.41AB 0.42 ± 0.04A 0.05 ± 0.00A

10–20 cm
PBF 7.65 ± 0.52B 1.24 ± 0.03B 39.72 ± 2.29B 6.21 ± 0.52A 0.19 ± 0.01AB 0.03 ± 0.00C
MLF 10.60 ± 0.67A 2.64 ± 0.31A 59.97 ± 3.73A 4.13 ± 0.30B 0.18 ± 0.01B 0.04 ± 0.00B
BLF 7.93 ± 1.10B 1.86 ± 0.17B 31.65 ± 2.42B 4.38 ± 0.75B 0.25 ± 0.04A 0.06 ± 0.00A

20–40 cm
PBF 3.22 ± 0.56B 0.59 ± 0.07B 19.46 ± 1.68B 5.39 ± 0.50A 0.16 ± 0.01B 0.03 ± 0.00B
MLF 10.55 ± 1.68A 4.87 ± 1.12A 65.78 ± 10.91A 2.30 ± 0.23B 0.16 ± 0.01B 0.07 ± 0.01A
BLF 2.81 ± 0.55B 1.07 ± 0.10B 11.28 ± 1.29B 2.69 ± 0.58B 0.24 ± 0.03A 0.10 ± 0.02A

Variance analysis of F-statistics

Vegetation 47.14 *** 38.45 *** 79.66 *** 17.22 *** 11.30 *** 23.62 ***
Soil depth 222.46 *** 6.10 ** 75.60 *** 100.66 *** 45.34 *** 17.08 ***

Soil depth ×
Vegetation 12.54 *** 3.97 ** 6.72 *** 0.23 ns 0.15 ns 4.67 **

Note: PBF, pure P. edulis forest; MLF, mixed bamboo–broadleaf forest; BLF, broadleaf forest. Data are means ± S.E.,
n = 5. Different uppercase letters indicate significant differences among the three stands in the same soil depth
(p < 0.05). Significance level of F values: ns not significant, ** p < 0.01, *** p < 0.001.
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3.3. Linkages between Soil Chemical Properties and P-Related Indicators

The RDA results showed that the distribution of soil P-related indicators in different
soil layers showed significant segregation during the expansion of P. edulis (Figure 4). The
environmental factors examined explained 55.33%, 29.90%, and 51.16% of the variation
in soil P-related indicators at depths of 0–10 cm, 10–20 cm, and 20–40 cm, respectively.
Interestingly, we found that the soil P-related indicators mainly diverged along the RDA1
in each soil depth. The first axis has the highest interpretation rate, explaining 53.15%,
18.79%, and 31.14% of the total variation (Figure 4). The soil pH significantly influenced the
variation of the distribution of soil P (p < 0.01), and was positively correlated with HCl-P in
each depth. In addition, the distribution of soil P was significantly influenced by SWC and
NO3

−-N in the 0–10 cm depth and NH4
+-N in the 20–40 cm depth.
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4. Discussion
4.1. P. edulis Expansion Significantly Altered Soil P Status

The expansion of P. edulis into adjacent forests is one of the most serious environmental
problems in subtropical China [12,39,40]. Evidence from previous studies suggests that the
P. edulis expansion has distinct effects on C and N cycling at the ecosystem level [41,42].
Our study provides evidence that this process also leads to affected P effectiveness and P
bioavailability in the soil. To be specific, the soil total P pool content during the P. edulis
expansion into broadleaf forests varied significantly only in the 0–10 cm depth, whereas
there was no significant change in soil total P and all the total P pools in the depth of
0–40 cm (Table 1 and Figure 4). This is slightly different from the findings of Wu et al. [27],
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who reported that the soil total P decreased significantly after the P. edulis invaded the
adjacent coniferous forests in Lushan Mountain, and the reason for this discrepancy may
be a result of different litter quality and stand/site conditions between coniferous forests
and broadleaf forests [43]. It is noteworthy that the Olsen-P content in the soil profile
was redistributed by the expansion of P. edulis, as evidenced by the significantly lower
levels of the mixed bamboo–broadleaf forest compared to the other two forest types in all
soil layers (Table 1). This phenomenon would be caused by the following reasons. First,
when the mixed bamboo–broadleaf forest was formed, the increase in species richness was
accompanied by an increase in nutrient demand from the stand [32], which may have led to
a greater demand from the species than the supply from the soil. Meanwhile, the change in
soil pH and Ald content had an opposite relationship to the response of the Olsen-P content
in the mixed bamboo–broadleaf forest which also verified the phenomenon. Second, the
nutrient turnover and fine root biomass of P. edulis significantly increased the nutrient
uptake and turnover capacity after the formation of the pure P. edulis forest [27,44], which
in turn increased the soil Olsen-P content.

In P-limited habitats, plants and soil microorganisms release excretions to destabi-
lize organic–mineral associations and aggregates to obtain P [45]. The ratios of Citrate-
P/CaCl2-P, Enzyme-P/CaCl2-P, and HCl-P/CaCl2-P were all greater than 1 in all soil
depths of each stand, showing that, in addition to the uptake of CaCl2-P from soil pore
water, the excretion of both acid and phosphatase into the soil may be an effective strategy
for P acquisition by the plants during the invasion of P. edulis (Table 2). We found that the
expansion of P. edulis to form a mixed bamboo–broadleaf forest significantly decreased the
soil CaCl2-P and increased the HCl-P content. The possible explanation for this outcome
may be that the dominant tree species after mixing were all arbuscular mycorrhizal (AM)
species [46], and AM fungi acquired P mainly based on their high-affinity uptake system
and rapid translocation to the plant [6,47], which then led to a reduction in soil soluble
P levels after hybridization. Meanwhile, HCl-P represents the moderately active stable
inorganic P in soil, which can be obtained through proton extrusion by biota [31], and
aluminum oxides as the primary metal minerals for adsorbed soluble P in southern red
soils [48]. The Ald content significantly decreased during expansion (Table 1), suggesting
an increase in adsorbed and precipitated P [23]. In addition, the ratio of HCl-P/CaCl2-P
increased 1.97-fold when forming mixed forests, suggesting that the excretion of protons
by plants may be an important strategy for their P acquisition. Compared to the mixed
bamboo–broadleaf forest, P. edulis forest soils after expansion had an increased CaCl2-P
content and a decreased phosphatase activity and Enzyme-P content (Figures 2 and 3).
This result is closely related to changes in the composition of plant root systems and soil
microbial communities during expansion [49–51]. Firstly, lower tree species lead to less
competitive pressure and increased resource availability [52]. Secondly, P. edulis has a
denser fine root biomass for absorbing soluble phosphorus in the pore space compared to
broadleaf species [53], and thirdly, microorganisms are very sensitive to changes in the en-
vironment, but the chemical composition and the secretion types released are significantly
diverse among trees, which can dramatically affect microbial communities as well as soil
enzyme activities [32]. We also found no significant differences in the soil Citrate-P content
among the three stands throughout the expansion, suggesting that the change in vegetation
types significantly impacts the hydrogen proton concentration (H+/OH−/HCO3

−) and
phosphatase activity, not organic acids types [32,54].

4.2. Soil pH Drives Changes in P Fraction in the Soil Layer during Expansion

The redundancy analysis results showed that soil pH was the most significant driver
of variation in bioavailable P fractions in the soil layer (Figure 4), which is consistent
with most studies [21,32,55,56] and supports our hypothesis. In this study, the soil pH
increased significantly during the P. edulis expansion, and this change may have affected
the soil P bioavailability in several ways. First, the P. edulis expansion process affects
pH by altering the balance between hydrogen ion production and consumption [57], and
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as pH increases, Al and Fe phosphates, which are presumably the dominant forms of P
minerals in acid soils, gradually lose their positive surface charge and their P adsorption
capacity, thus expelling phosphate [58]. Our finding of a significantly lower Ald content
in the P. edulis forest could partly support this explanation (Table 1). Second, soil bacteria
and fungi prefer neutral pH environments; the expansion of P. edulis improves the soil
pH and thus increases microbial diversity and supports soil ecosystem multifunctionality,
including P cycling [59,60]. Previous studies have found that the soil pH can influence
P-related microorganisms by directly affecting their growth and their interactions with each
other [21,61]. In addition, different vegetation types secrete different organic acids, which
in turn recruit microbial communities with different functional activities [62], and changes
in vegetation taxa as a direct result of the P. edulis expansion process have been shown to
significantly alter microbial community structure [39,41]. Third, P. edulis is a typical silica-
accumulating plant [63], while silicon and P have similar chemical properties and structures,
and silicon is in direct competition with P for sorption sites on iron oxides and other
soil minerals increasing nutrient mobilization. Concretely, increasing silicon availability
in soils leads to a mobilization of Fe(II)-P phases from mineral surfaces, increasing P
availability/mobility in soils [64,65].

5. Conclusions

The impact of P. edulis invasion on the ecosystem structure and function of native plant
habitats has attracted much attention, but the effect of this process on soil bioavailable P
remains an enigma. In this study, we measured the bioavailable P fractions at three soil
depths in three stands formed by the P. edulis expansion into broadleaf forests. Several
conclusions are presented below:

(1) The P. edulis expansion altered the soil P pool and bioavailability in the subtropical
region of China. The Olsen-P content and CaCl2-P were significantly lower in the
mixed bamboo–broadleaf forest than in the broadleaf forest and the pure P. edulis
forest, whereas the soil total P pool content in the 0–10 cm depths was increased. The
HCl-P and Enzyme-P content were higher in the mixed bamboo–broadleaf forest than
in the other two forest types.

(2) The acid phosphatase activity was significantly higher in the mixed bamboo–broadleaf
forest compared to the P. edulis forest.

(3) The positive relationship between the soil pH and HCl-P fraction indicated that
the soil pH was an important factor in altering the P bioavailability during the
P. edulis expansion.

Overall, the P. edulis expansion has altered soil P bioavailability to fulfill plant P
requirements. We predicted that the effect on the soil bioavailability P content may be
increasing with the gradual intensity of the P. edulis expansion. However, further in-depth
studies are needed.
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