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Abstract: Efficiently mitigating the severe air pollution resulting from rapid progress is crucial
for the sustainable development of the socio-ecological system. Recently, concerns about nature-
based solutions have emerged in the research on the treatment of air pollution. Studies on the
purification of PM2.5 using vegetation currently concentrate on the individual scale of tree species
or urban vegetation, ignoring the regional scale, which could better assist ecological governance.
Therefore, taking the Fenwei Plain of China as the study area, an assessment framework of the air
purification service’s spatial distribution reflecting regional vegetation was constructed. The dry
deposition model and GeoDetector were used to quantify the spatial-temporal pattern and explore
natural driving factors on the removal of PM2.5. The results showed that (1) the PM2.5 purification
services offered by various types of vegetation exhibit notable variations. The average removal
rates of PM2.5 by vegetation were 0.186%, 0.243%, and 0.435% in 2000, 2010, and 2021, respectively.
(2) Meanwhile, a wide range of spatial mismatch exists between the PM2.5 concentration and PM2.5

removal. Insufficient supply regions of PM2.5 purification services account for 50% of the Fenwei Plain.
(3) PM2.5 removal was strongly influenced by the types of vegetation and the Normalized Vegetation
Index (NDVI), followed by the Digital Elevation Model (DEM), and less affected by meteorological
factors; a strong joint effect was shown among the factors. The findings in this research provide a
new perspective on regional air pollution management at the regional scale.

Keywords: dry deposition model; ecosystem services; Fenwei Plain; GeoDetector; PM2.5 purification
services; PM2.5 removal

1. Introduction

In recent years, sustained economic and social development has accelerated the ur-
banization process [1,2]. Air pollution has become a serious environmental problem that
needs to be addressed across the world [2]. Goal 3 and Goal 11 of the United Nations
Sustainable Development (SDG) emphasize the impact of air pollution on residents. This
requires providing good health and well-being to residents and building sustainable cities
and communities [3–5]. Fine particulate matter (particles with a diameter of less than
2.5 µm, PM2.5) can be breathed deep into the lungs and, in some cases, enter the blood-
stream. Epidemiological studies have confirmed that it has a direct negative impact on
humans, especially respiratory and cardiovascular diseases. It threatens human health
and well-being through complex interactions [6–8]. As a developing country, China has
formulated and implemented the Air Pollution Prevention and Control Action Plan as
well as the Three-year Action Plan to Fight Air Pollution [9]. Continuous improvements
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have been made to the ecological environment and air quality by updating industries and
optimizing the energy structure [10]. These efforts have led to significant reductions in
atmospheric PM2.5 pollution levels in many areas [11]. However, the emission reduction
potential of traditional treatment methods is gradually narrowing, especially when air
pollution enters moderate and mild conditions, and landscape planning and optimization
are considered effective ways to mitigate air pollution [12,13]. Nature-based solutions are
beginning to receive attention from scholars, which can effectively mitigate PM2.5 pollution
by enhancing ecosystem services at the regional level [14]. The assessment of the dust
retention capacity of vegetation has gradually become a hot research topic in this field.

Vegetation possesses a unique leaf structure that allows it to remove fine particulate
matter from the atmosphere [15]. Current research suggests that ecosystems can help
reduce PM2.5 emissions in highly urbanized areas [16,17]. Green infrastructure such as
urban trees plays a crucial role in providing ecosystem services such as air purification [18].
The government can effectively enhance regional air quality and promote sustainable urban
growth by prioritizing the development of forest cities and strategically planning green
spaces [19]. However, the existing research on vegetation dust retention primarily centers
on assessing the dust-holding capacity of diverse tree species and investigating the removal
effect of different urban vegetation on PM2.5 [20]. In terms of this small scale, the assessment
of the effects of tree species selection and vegetation structure on urban air purification
focused on street trees and urban parks [21,22]. At the urban scale, they quantified the
capacity of vegetation to remove air pollution in different cities. This can provide policy
suggestions for optimizing urban green space construction [23–25]. Meanwhile, there are
also comparative studies on the differences in air purification services of vegetation in
multiple cities. Meanwhile, few studies have produced regional quantitative estimates of
the capacity of vegetation to reduce PM2.5 levels more effectively. Hence, it is imperative
to merge high-resolution data from various sources and utilize mechanistic modeling to
establish a framework. This could elucidate the connection between vegetation and the
enhancement of air quality currently. The framework in this research will help us better
understand how vegetation affects air quality and will be instrumental in developing a
novel model for air pollution management.

Due to the complex topographic characteristics and industrial composition, Fen Wei
Plain, where the accumulation of PM2.5 has been elucidated, has now become a key area
for air pollution control in China [26]. The PM2.5 purification capacity of vegetation
in this region is investigated based on high-resolution remote sensing data and spatial
analyses. The objectives were to (1) quantify the spatial and temporal variability and
spatial mismatch between regional PM2.5 concentrations and PM2.5 removal from air
pollution amelioration by vegetation; (2) identify the natural factors that affect the PM2.5
removal; and (3) incorporate nature-based air purification programs into regional-scale
ecological construction. This research aims to provide nature-based solutions for air quality
improvement and regional ecological environment optimization in key air pollution areas.

2. Materials and Methods
2.1. Study Area

Fenwei Plain is a general term for the Fen River Plain, Wei River Plain, and its surround-
ing terraces. It is located in the middle reaches of the Yellow River, with the Loess Plateau in
the northwest and the Qinling Mountains in the south, making it the fourth-largest plain in
China [27]. The geographical distribution of the study area in a northeast-southwest band is
not conducive to the dispersal of pollutants. The climate of this region is mainly affected by
the East Asian monsoon, with annual precipitation of less than 600 mm in most areas [28],
and the prevailing winds throughout the year are northeasterly and usually around
2 m/s [26]. The interaction of pollution emissions between cities is significant. In addition,
the energy structure of the region is heavy, and the coal industry is relatively developed.
The river valley is densely populated and has severe air pollution. The availability of clean
air for the inhabitants of the region is not guaranteed. At present, the FenWei Plain is a key
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area in China’s air pollution control. As defined in the “Three-Year Action Plan to Fight
Air Pollution”, it includes 11 cities and 1 district. Among them, five cities and one district
are in Shaanxi Province, including Xi’an (XA), Tongchuan (TC), Baoji (TC), Xianyang (XY),
Weinan (WN), and the Yangling Demonstration Area; four cities are in Shanxi Province:
Jinzhong (JZ), Yuncheng (YC), Linfen (LF), and Lvliang (LL); and it also includes Luoyang
(LY) and Sanmenxia (SMX) in Henan Province. This study focuses on a region with 11
prefecture-level cities (Figure 1).
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Figure 1. Overview of the Fenwei Plain. The spatial location (a); land cover in 2021 (b); land cover
changes in 2000, 2010, and 2021 (c); administrative divisions (d); and topographical features (e).

2.2. Research Framework

The research framework includes five main stages (Figure 2), which mainly include
(1) index selection and parameter calculation; (2) the quantification of vegetation PM2.5
purification services; (3) analysis of influencing factors for PM2.5 removal; and (4) proposal
of measures to improve regional air quality.

In the first stage, natural indicators related to PM2.5 pollution and vegetation dust
retention were selected, followed by the collection of PM2.5 spatial distribution data, the
Normalized Vegetation Index (NDVI), the China Land Cover Dataset (CLCD), the Digital
Elevation Model (DEM), meteorological data, and other basic data. Secondly, based on the
retention effect of vegetation leaves on particulate matter, the dry deposition model [24]
was used to quantify the PM2.5 purification service, which was used to visualize the effect
of vegetation on PM2.5 removal and the temporal and spatial distribution characteristics.
Thirdly, spatial matching relationships between PM2.5 concentration and PM2.5 removal
were determined. These can be used to identify areas at risk of PM2.5 pollution. In the fourth
stage, natural drivers of PM2.5 removal were revealed using GeoDetector [23]. The main
influencing factors of PM2.5 removal can be determined. Finally, combined with the above
content, it can provide scientific support for the formulation of air quality improvement
measures and regional ecological construction decision-making in key areas of national
air pollution.
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natural influence factors.

2.3. Data Sources and Processing

The multi-source data used in the study include land-use classification, DEM data,
meteorological elements, NDVI, and PM2.5 spatial distribution data. The CLCD dataset
published by Yang et al. [29] was adopted as the land-use classification data from Wuhan
University. The PM2.5 spatial distribution data were from the Chinese high-resolution
and high-quality near-surface air pollutant (CHAP) dataset published by Wei et al. [30,31].
The dataset of a 30 m annual maximum NDVI in China was from the Resource and
environmental science data registration and publication system (https://www.resdc.cn/
DOI/DOI.aspx?DOIID=68, accessed on 26 January 2024). The datasets of precipitation,
wind speed, and temperature came from the NOAA’s National Centers for Environmental
Information (https://www.ncei.noaa.gov, accessed on 26 January 2024) through sorting,
computation, and spatial interpolation generation. The atmospheric boundary layer height
data are from the ECMFW European Center, the fifth-generation atmospheric reanalysis
dataset (https://cds.climate.copernicus.eu, accessed on 26 January 2024) for the global
climate of the ERA5 meteorological data. DEM data were obtained from the National Earth
System Science Data Center (http://www.geodata.cn, accessed on 26 January 2024). The
NDVI data were from the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences with a resolution of 30 m (Table 1).

https://www.resdc.cn/DOI/DOI.aspx?DOIID=68
https://www.resdc.cn/DOI/DOI.aspx?DOIID=68
https://www.ncei.noaa.gov
https://cds.climate.copernicus.eu
http://www.geodata.cn
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Table 1. Datasets, sources, and calculated parameter data sources used to analyze PM2.5 purification
services of vegetation in the Fenwei Plain.

Data Classification Data Name Spatial Resolution

CLCD 2000, 2010, 2021
Land use data 30 m

Vegetation data 2000, 2010, 2021 NDVI 30 m

PM2.5 data
2000, 2010, 2021
Annual average

concentration of PM2.5

1000 m

Meteorological data

Average annual wind speed -
Average daily precipitation -

Average annual temperature -

Atmospheric boundary
layer height 0.1◦

Terrain data DEM data (ASTER DEM v3) 30 m

2.4. Methods
2.4.1. Simulating PM2.5 Removal

Vegetation possesses a unique leaf structure that allows it to remove fine particulate
matter from the atmosphere [15]. PM2.5 removal per unit area can be estimated as [12]:

Qd = C × V × LAI × T × (1 − r) (1)

where Qd (µg/m2) is the PM2.5 removal per unit area of vegetation; C (µg/m3) is the
concentration of PM2.5, which is resampled to 30 m; V (cm/s) is the rate at which PM2.5
settles onto the surface of vegetation leaves; LAI is the leaf area index of the vegetation
(m2/m2); T is the dust retention time; and r is the resuspension rate (%) [32]. Annual mean
PM2.5 concentration raster data were used in this research. The PM2.5 deposition rate and
resuspension rate were determined from the annual average wind speed (Table 2). The
dust retention time was calculated from the continuous non-precipitation time (less than
15 mm daily precipitation) [33]. LAI was calculated based on the NDVI using the formula
found in a literature review (Table 3).

Table 2. PM2.5 deposition rate (cm/s) of different vegetation types [24,34].

Vegetation Types
Wind Speed (m/s)

1 2 3 4 5 6 7 8

Mixed Forest 0.02 0.285 0.545 0.64 0.735 0.83 0.925 1.02
Shrub 0.03 0.24 0.45 0.55 0.66 0.76 0.86 0.96

Grassland 0.006 0.012 0.018 0.022 0.025 0.029 0.056 0.082
Cropland 0.006 0.012 0.018 0.022 0.025 0.029 0.056 0.082

Resuspension rate 0.025 0.029 0.032 0.036 0.039 0.059 0.079 0.099

Table 3. Calculation formula of LAI for different vegetation types [35,36].

Vegetation Types Regression Equation

Forest LAI = 4.689NDVI/(1.818 − NDVI)
Shrub LAI = 6.211NDVI − 1.088

Grassland LAI = 3.227NDVI/NDVIavg
Cropland LAI = 8.547NDVI − 0.932

P Total vegetation PM2.5 removal can be estimated as [34]:

Qz = Qd × S (2)
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where Qz (µg) is the total amount of PM2.5 removed by each type of vegetation and S (m2)
is the area of each type of vegetation, which was extracted and counted by CLCD.

2.4.2. Simulating of PM2.5 Removal Rate

The removal rate (Pi) of PM2.5 from vegetation foliage was calculated as [24]:

P =
Qz

Qz + E
(3)

E (µg) was the total amount of PM2.5 in the atmosphere calculated as [37]:

E = C × BLH × A × 365 × 24 (4)

where BLH (m) is the height of the atmospheric boundary layer. The average value was
calculated using the spatial distribution. A (m2) is the area of the region.

2.4.3. Identification of Coldspots and Hotspots

The spatial distribution of PM2.5 concentration in this region is uneven. PM2.5 removal
in spatial heterogeneity due to different regional vegetation types. To accurately identify the
risk areas of air pollution, Gi*statistics was employed to spatially identify the coldspots and
hotspots of PM2.5 concentration and PM2.5 removal. Meanwhile, this study explored the
spatial match between PM2.5 concentration and PM2.5 removal based on intersect analysis.
Gi* is an indicator of local autocorrelation, which incorporated each adjacent raster into the
calculation. This approach could visualize the spatial clustering patterns of hotspots and
coldspots. Features with high z-scores and low p-values indicated statistically significant
hotspots. Conversely, features with low negative z-scores and small p-values indicated
statistically significant coldspots [38,39].

2.4.4. GeoDetector

Seven indexes including the NDVI, Vegetation Type (VT), the Digital Elevation Model
(DEM), Precipitation (Pre), Wind Speed (WS), Temperature (Tem), and Atmospheric Bound-
ary Layer Height (BLH) were involved in quantifying PM2.5 removal. Based on the vegeta-
tion type data, each indicator was classified into 4 categories using the natural breakpoint
method, and the natural meteorological drivers of PM2.5 removal were analyzed using the
GeoDetector model.

The GeoDetector model is a new statistical method proposed by Wang Jinfeng et al. [40].
It can fully consider the degree of spatial dissimilarity between the dependent and indepen-
dent variables, and it was widely used in driving factor analysis. The core of the method
assumed that there is a certain similarity in the spatial distribution between variables if
the change in the independent variable has an important effect on the dependent variable.
GeoDetector can detect both numerical and qualitative data, and they can also detect the
interaction of two factors on the dependent variable. This paper used two detectors of the
software (http://www.geodetector.cn/, accessed on 26 January 2024):

Factor_detector: This was employed to investigate the existence of spatial heterogene-
ity and identify the factors causing such differences using the q-value, which ranges from
0 to 1. The q-value represents the extent to which X explains 100 × q% of Y. A higher
q-value indicates more pronounced spatial heterogeneity.

Interaction_detector: This was used to detect the relationship between the independent
variables of the risk factors. First, the q-values of the two factors and the q-values of the
combined polygon were calculated. Then the three values are compared and analyzed, and
finally, we can determine if the independent variables are truly independent or if there are
broader interactions at play.

http://www.geodetector.cn/
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3. Results
3.1. Quantification of PM2.5 Removal and Identification of Risk Areas
3.1.1. Spatial and Temporal Distribution of PM2.5 Concentration and Removal

The annual PM2.5 concentration showed an overall increasing and then decreasing
trend from 2000 to 2021. The area with a relatively high PM2.5 concentration was dis-
tributed in the center of the Fenwei Plain (Figure 3a–c), perhaps due to its low topographic
conditions, sparse vegetation, and large numbers of artificial surfaces. In comparison, the
mountainous region southwest of Baoji and the central mountainous area of Lüliang have
relatively low PM2.5 concentrations, meaning they have relatively better air quality. This
is likely related to the presence of large vegetation areas in these regions. The average of
the three-year PM2.5 concentration far exceeded the PM2.5 concentration limits (5 µg/m3)
set by the World Health Organization (WHO). The maximum PM2.5 values in 2000 and
2010 were mildly polluted according to China’s PM2.5 pollution standards (35 µg/m3) [41]
(Figure 3g).
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3.1.2. Effect of Different Vegetation Types on PM2.5 Removal

The level of PM2.5 removal per unit area of vegetation had a high consistency with the
vegetation types (Figure 3d–f). The removal of each vegetation type in order of magnitude
is forest > shrub > grassland > cropland (Table 4). Both the maximum and average values
of PM2.5 removal per unit area increased in the given time (Figure 3h). The increase in
2010 compared with 2000 was mainly due to the larger concentration of PM2.5, and the
significant increase in 2021 was mainly due to the increased wind speed and precipitation.
The total amount of PM2.5 removed by different vegetation types was different from the
amount removed per unit area. Forests remain the vegetation type that removes the most
PM2.5. Due to the large proportion of cultivated land, the total removal of PM2.5 in the
FenWei Plain is higher than that of shrubs and grasslands. The highest capacity for the
removal of PM2.5 was in forests, followed by cropland (Table 4).

Table 4. Annual PM2.5 removal of different vegetation types in the Fenwei Plain.

Vegetation Type

Year 2000 2010 2021

Removal (t) Removal
Rate (%) Removal (t) Removal

Rate (%) Removal (t) Removal
Rate (%)

Cropland 1375.80 0.004 1731.02 0.004 1763.43 0.007
Forest 68,287.13 0.179 93,504.70 0.236 106,175.11 0.424
Shrub 846.92 0.002 617.02 0.002 421.54 0.002

Grassland 677.17 0.002 718.15 0.002 613.40 0.002
Sum 71,187.01 0.186 96,570.89 0.243 108,973.47 0.435

3.1.3. Comparison of PM2.5 Removal Effect in Different Cities

The removal rate of PM2.5 in the Fenwei Plain was 0%~0.634% in 2000, 0%~0.899% in
2010, and 0%~0.919% in 2021, totaling 71,187.01 t, 96,570.89 t, and 108,973.47 t, respectively.
The removal rate of PM2.5 in forest land accounted for the largest proportion, up to more
than 90%, and the year average removal rate was 0.288% (Figure 4). Since there are
large forest area in Baoji, its total annual PM2.5 removal and removal rate was the largest,
followed by Luoyang. The lowest total amount of PM2.5 removed in 2000 and 2010 was in
Xianyang, and in 2021, it was in Tongchuan.
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3.1.4. Identification of Risk Areas

A certain spatial mismatch between PM2.5 concentration and PM2.5 removal was
shown in the study area (Figure 5). The high PM2.5 concentration combined with low PM2.5
removal (high pollution with low PM2.5 removal) accounted for the largest proportion
(approximately 50%), mainly distributed in the plains area. In the eastern middle part
of the study area, there are some areas with PM2.5 hotspots superimposed on PM2.5 re-
moval hotspots (high pollution with high PM2.5 removal). Areas with PM2.5 concentration
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coldspots were superimposed on PM2.5 removal coldspots (low pollution with low PM2.5
removal), mainly in the western mountainous areas, with a significant decrease in the pro-
portion in 2021 compared with the previous two years. The PM2.5 concentration coldspots
combined with PM2.5 removal hotspots are mainly distributed in mountainous areas (low
pollution with high PM2.5 removal).
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3.2. Influencing Factors of PM2.5 Removal Services in the Fenwei Plain

All factors passed statistical significance tests (p < 0.01). The order of explanatory
power of each factor for PM2.5 removal in order from strong to weak in 2000, 2010, and
2021 was Vegetation Types, NDVI, DEM, Precipitation, Temperature, Wind Speed, and
Boundary Layer Height. Among them, vegetation type and NDVI had explanatory power
for PM2.5 removal greater than 60%. The others showed slightly lower explanatory power,
and the explanatory power of the annual mean wind speed decreased to 0.001 in 2021. This
indicated that the spatial distribution of annual mean wind speed and PM2.5 removal in that
year had low similarity, so the effect was small, whereas the similarity of the distributions
in 2000 and 2010 was relatively high (Figure 6). Overall, vegetation has a significant effect
on PM2.5 removal services, followed by elevation as PM2.5 and vegetation cover in the
Fenwei Plain region were strongly influenced by topographic conditions.
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PM2.5 removal was affected by multiple external factors, which have interactions
with each other. In this study, the joint effect of any two factors would increase the effect
on the removal of PM2.5, mainly manifested as two-factor enhancement and nonlinear
enhancement of two types, and the joint effect made the explanatory power significantly
larger. As shown in Figure 7, the green circle was the nonlinear enhancement factor.
Because vegetation type and NDVI have stronger explanatory ability for PM2.5 removal,
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the explanatory ability of the combination with other factors is also larger. In conclusion,
the removal of PM2.5 is a combination of many factors, rather than a single factor that plays
a decisive role.
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4. Discussion
4.1. Effect Analysis of Vegetation PM2.5 Purification Services

The vegetation in the Fenwei Plain possesses distinct abilities to purify PM2.5. Forests
possess the highest removal capacity for PM2.5 due to their higher deposition rate and
larger distribution area, accounting for over 96% of the total removal. Among the 11 cities in
the Fenwei Plain, the removal rates ranged from 0 to 0.63%. The PM2.5 removal rates in this
region align closely with the findings of similar studies in the world. The forest in Jiangsu
Province has an average PM2.5 removal rate of approximately 0.03% [37]. In Beijing, urban
green spaces have a PM2.5 removal rate ranging from 0.07% to 0.19% [42]. Additionally,
research conducted abroad also demonstrated that San Francisco experienced an average
annual air quality improvement of 0.05%, while Atlanta saw a larger improvement of
0.24% [24]. PM2.5 deposition rates vary across vegetation types, with trees generally having
a greater effect. Existing research suggests that coniferous forests, in particular, play
a significant role in retaining PM2.5 due to their higher deposition rate [43]. In Taipei
City in 2016, the contribution of vegetation to PM2.5 removal was found to be highest in
mixed forests, followed by broadleaf forests, coniferous forests, greenfield trees, and street
trees [34]. Few researchers are focusing on the deposition rate of grassland and cropland,
although some studies have indicated that they have a certain level of retention effect on
particulate matter [44].

Various factors influence the dispersion and accumulation of air pollutants in the
Fenwei Plain, particularly PM2.5. The findings showed that vegetation and NDVI exert
the most significant influence on PM2.5 removal. The type and amount of vegetation play
a significant role in the rate at which vegetation captures and removes PM2.5 particles.
Previous studies have shown a connection between Net Primary Productivity (NPP) and
the concentration of PM2.5. This includes selecting tree species with higher sedimentation
rates or net productivity, optimizing the layout of urban green spaces, and implementing
effective vegetation management practices. These measures contribute greatly to enhancing
regional air quality and maintaining ecological balance, and nature-based air purification
services hold great potential for future air pollution management [37]. In addition, the
spatial distribution of PM2.5 concentrations and PM2.5 removal cold hotspots in the Fenwei
Plain show obvious spatial mismatch patterns. Purification of PM2.5 is lower in vegetation
at lower elevations, where PM2.5 pollution is more severe and the vegetation distribution is
smaller. Undeniably, the key to effectively solving air pollution still remains controlling
the emission of PM2.5 or minimizing the PM2.5 pollution by treating it through physical
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and chemical methods. However, the emission reduction capacity of traditional solutions
is gradually reduced, and upgrading the industrial structure and energy transformation
are arduous tasks. However, nature-based solutions to air pollution are also a direction
that could be explored in depth in the future [13].

Additionally, topography plays a substantial role in air purification. However, me-
teorological factors have a comparatively small direct impact on PM2.5 removal but are
intricately connected to the rate of PM2.5 reduction. In northwest China, wind speed and
temperature have a more pronounced effect on PM2.5 levels [45,46]. Typically, elevated
wind speeds under normal conditions promote pollutant dispersion, resulting in a gradual
decline in PM2.5 concentration [47]. However, within the Fenwei Plain, distinctive topo-
graphical features give rise to diminished wind speeds, impeding pollutant dispersion
and potentially exacerbating pollutant aggregation. Additionally, wind speed affects the
deposition rate of PM2.5 by vegetation, with higher wind speeds leading to a higher relative
deposition rate. There are generally two types of PM2.5 removal in the natural environment,
one is dry deposition selected in this study and the other is wet deposition. Notably, it
is only intense precipitation that exerts a potent scouring effect on PM2.5 concentrations,
leading to a substantial reduction in PM2.5 levels. For the meteorological conditions of the
Fenwei Plain, dry deposition assumes a more prominent role. Vegetation loses its trapping
capacity after a certain duration of the dry deposition and precipitation is needed to purify
the vegetation for recovery.

4.2. Policy Recommendations

Currently, certain success has been achieved in air pollution control in China. But
when urban air quality reaches moderate or low pollution levels, landscape regulation
and optimization have been recognized as an effective way to mitigate air pollution [48].
In areas with high population densities, there is a growing demand for air improvement.
Hence, it is necessary to implement more effective air purification measures to protect
public health in the future [49].

In the long term, the services provided by ecosystems have a significant positive
impact on the removal of PM2.5 particles from the air [17]. Nature-based solutions have
the potential to enhance ecosystem services, resulting in significant economic and social
advantages when compared to traditional solutions. It helps in conserving natural resources
and managing intangible assets in China [37]. Increasing the area of green space is also
an effective way to achieve collaborative control of various air pollutants [50] and the
significant removal capacity of forests for PM2.5. It also has a good temperature regulation
effect. The proper allocation of forests and green spaces can potentially reduce energy
consumption, thereby delaying climate change [51,52]. Therefore, in areas with high
pollution and high vegetation coverage, priority should be given to energy transformation
and industrial structure optimization. In areas with high pollution and low vegetation
coverage, while considering energy emission reductions, it is also necessary to consider
the reasonable allocation of natural resources [53]. These could give full play to the air
purification role of vegetation. In the process of urban expansion, the rational design of
green space layout needs to be considered. Planning policies should also be based on
natural laws, taking into account local geographical conditions and dominant tree species.
In addition, urban construction should focus on strengthening green infrastructure, such as
the rational use of shrubs and hedges for vertical greening and the construction of green
roofs [54]. In mountainous areas with high vegetation cover, forests and grasslands need to
be restored and protected. Those can further consolidate the results of governance [55].

Above all, nature-based solutions to air pollution are of great significance to devel-
oping countries. In future air pollution control, policymakers need to break away from
traditional thinking and entrenched patterns and implement diversified and innovative
measures. In particular, regionally coordinated development should be integrated into
urban planning and management, which is crucial to jointly promote regional pollution
prevention and control precise pollution management.
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4.3. Limitations

Nonetheless, there are still some uncertainties that need to be addressed in further
research. Firstly, the deposition rate of forests and shrubs, as well as the resuspension rate,
were derived from the existing study. The sedimentation rates of grassland and cropland
were determined using the minimum value of the vegetation PM2.5 sedimentation rate.
Additionally, LAI was calculated using an empirical function. These factors could have
an effect on the variability of the outcomes; given this, the subsequent stage would be
focusing on the setting of the parameters. In addition, the spatial resolution of NDVI
and vegetation distribution is 30 m, which could not accurately depict the distribution
of green areas in spaces that are smaller than 600 m2. Higher-resolution data should be
explored in future studies to parse the PM2.5 removal status of vegetation within the city in
a more in-depth manner. Secondly, the impact of vegetation and its natural and ecological
factors on PM2.5 purification services was taken as the focus. Socio-economic factors
such as industrial emissions, transportation, energy, population, and GDP were not taken
into account, to explore the socio-ecological effects of vegetation air purification services.
Nevertheless, nature-based solutions for mitigating air pollution represent a promising
avenue of progress due to their substantial socio-economic benefits. A primary benefit lies
in the augmentation of ecosystem services, which can positively influence the environment.
Moreover, these solutions can inspire novel research on air purification services and foster
a deeper understanding of how ecosystems can retain and absorb air pollutants.

5. Conclusions

The framework in this research was constructed to quantify the PM2.5 purification
services of vegetation and explore the natural drivers of PM2.5 removal at the regional scale.
The expression of the degree of spatial matching between the PM2.5 concentration and PM2.5
removal has also been visualized. The results showed that spatial heterogeneity of PM2.5
purification services provided by vegetation exists in the Fenwei Plain due to the uneven
distribution of vegetation. Meanwhile, vegetation type and NDVI significantly affected the
PM2.5 removal in the Fenwei Plain. PM2.5 removal is high in mountainous areas with high
vegetation coverage. PM2.5 removal is low in plains and urban areas with high emissions.
The air-purifying capacity of vegetation in densely populated areas is limited, resulting in
a spatial mismatch between PM2.5 concentration and PM2.5 removal. The under-supply of
PM2.5 purification services from vegetation in areas with high pollution concentrations is
close to 50%, indicating the critical role of vegetation in regional air pollution management.
The implementation of regional air pollution control measures needs to be accompanied
by the prioritization of improving green infrastructure and optimizing the layout of green
spaces in urban development. This is a potential future means of addressing air pollution
and a scientific basis for regional ecological construction.
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