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Abstract: The situation of rocky desertification in the southwestern part of China is very serious and
has been included as one of three major ecological problems. In this study, using Landsat images as
the data sources, we estimated the fractional vegetation coverage (FVC) in the Mengdong River Basin
in the Hunan Province over the past 40 years, analyzed its spatio-temporal variation characteristics,
and explored the driving mechanism (climate and anthropogenic) using the Mann–Kendall, Hurst
index, and partial correlation methods. Specifically, the impact of ecological engineering on the
recovery of vegetation cover in rocky desertification areas was analyzed and discussed in this study.
The results demonstrate the following: (1) The changes in FVC in the study area before and after
the rocky desertification management ecological project differed significantly, with a very small
change in the rate of change in the mean value of FVC between 1987 and 1999 (<0.1%), while the
FVC had a significant linear growth trend between 2000 and 2022 (>0.9%). (2) The Hurst index of
FVC ranged from −0.233 to 2.476, with an average value of 0.864. The area with an H value greater
than 0.75 accounted for 80.12%, indicating that the future trend in the vast majority of regions will
develop in accordance with the current change trend. (3) The average partial correlation coefficients
between FVC and precipitation and between FVC and temperature were −0.02 and 0.27, respectively,
showing that FVC is more sensitive to temperature than precipitation. The combination of climate
change and human activities is the main cause of FVC change. The contributions of climate change
(precipitation and temperature) and human activities to FVC variation are about 30% and 70%,
respectively. Ecological restoration projects have a significant positive effect on the recovery of
vegetation in rocky desertification areas. The results of this study are intended to provide a scientific
basis for analyzing the characteristics of vegetation restoration in existing rocky desertification areas
and ecological management in future rocky desertification areas.

Keywords: rocky desertification; fractional vegetation coverage; spatio-temporal variation; climate
factors; ecological engineering

1. Introduction

Karst rocky desertification is one of the main types of land desertification. It is caused
by disturbance and destruction due to unreasonable social and economic activities in
the fragile ecological environment, causing serious soil erosion, large areas of bedrock
exposure, a marked decline in land productivity, and a desert-like land degradation process
on the surface [1]. Southwest China is the key area of karst desertification, and the double
impact of natural factors and human activities led to the deterioration of the ecological
environment in the region at the end of the last century, as well as the intensification of soil
and water erosion, resulting in an ever-expanding area of rocky desertification.

Since the beginning of the 21st century, the Chinese government has attached great
importance to the management of desertification. After more than a decade of compre-
hensive management of rocky desertification and the construction of ecological projects
such as returning farmland to forests in the early stage, the area of rocky desertification
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in China’s karst areas dropped from 129,600 km2 in 2005 to 100,700 km2 by the end of
2016. Comprehensive vegetation coverage increased from 53.5% in 2005 to 61.4% at the end
of 2016, with the degree of rocky desertification continuing to be reduced and the severe
and extremely severe degrees decreasing significantly [2]. As ecological restoration is a
long-term dynamic process, it is not only important to grasp the current recovery status,
recovery degree, development direction, and other information, but it is also an important
means by which to provide feedback information for ecological restoration and further
adjust and improve the restoration plan [3]. Therefore, mastering the characteristics of
vegetation restoration and its influencing factors in rocky desertification areas can provide
a scientific basis for the future ecological management of rocky desertification areas.

Early monitoring of rocky desertification is generally carried out through a combi-
nation of aerial photography and ground surveys. Aerial photography is usually limited
by fuel cost and camera unit load, and its temporal and spectral resolutions are seriously
restricted. A detailed ground survey is generally only suitable for a small-scale ground
feature survey, which is time-consuming and inefficient. It is also difficult to carry out
large-scale and long time-series land cover monitoring in mountainous and hilly areas.
Remote sensing technology provides a long-term, stable, large area, multi-band means
of Earth observation, which can be a basic and scientific data source for the long-term
monitoring of rocky desertification.

The spatio-temporal evolution of rocky desertification in karst areas of Southwest
China has been discussed by different scholars from various perspectives using remote
sensing imagery. Long et al. constructed a rocky desertification interpretation model
and a biodiversity composite index based on MODIS data to analyze the spatio-temporal
evolution patterns of rocky desertification and biodiversity in Southwest China during the
period of 2000–2020 [4]. Guo et al. established a rock desertification monitoring model to
clarify the spatial-temporal change pattern of rock desertification in Bijie, Guizhou, from
1985 to 2020 and found that land use is the main factor leading to rock desertification [5].
Xu et al. found that human activities have both positive and negative effects on the distri-
bution and evolution of rocky desertification in Changshun County, Qiannan, Guizhou,
by means of standardized coefficients (SOI) [6]. Xu et al. analyzed the spatio-temporal
evolution of rocky desertification and driving factors from 1990 to 2020 based on the Google
Earth Engine (GEE) and GeoDetector [7]. In the process of rocky desertification formation,
vegetation and soil layers show different spectral characteristics in remote sensing images.
Therefore, the changes in vegetation and soil (including bare rock) are important charac-
teristics of different rocky desertification degrees, and the degree of rock desertification
can be characterized by extracting the changes in vegetation and soil in remote sensing
images. In rocky desertification areas, ecological indicators such as vegetation coverage and
rock exposure rates are commonly used to characterize the degree of rocky desertification.
The normalized vegetation index (NDVI), as an important feature of rocky desertification
identification, is used to calculate the vegetation cover (FVC) in a particular area through
the pixel binary model; the more severe the rocky desertification, the lower the vegetation
coverage, and vice versa. Therefore, different degrees of rocky desertification can be ob-
tained by setting the threshold of vegetation coverage [8]. Although the remote sensing
indicators (NDVI, EVI, FVC, and other comprehensive vegetation indices, etc.) used in
the above studies can, to a certain degree, show the changes in the vegetation cover in
the rocky desertification areas. However, FVC can more accurately describe the recovery
of vegetation in a rocky desertification area by emphasizing the change in vegetation per
unit area. In rocky desertification field survey and monitoring indicators, which include
the rate of bedrock exposure, vegetation cover, vegetation type, and soil thickness, the
remaining three indicators are relatively stable, except for vegetation cover, which is highly
variable. Therefore, changes in vegetation cover basically reflect the evolution of rocky
desertification. Therefore, this study used FVC to analyze the spatio-temporal evolution
characteristics of vegetation and its driving mechanism in rocky desertification areas.
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In the evaluation of vegetation restoration, the fractional vegetation coverage (FVC)
index of the inverse performance of the empirical model is often used for evaluation [9].
The empirical model extracts vegetation parameters by modeling the relationship be-
tween remotely sensed vegetation indices and measured vegetation structure indicators;
this is simple and easy to implement and can achieve a high accuracy in a small spatial
range [10,11]. Recent studies have shown that the “greenness” of vegetation in the south-
west karst region has increased dramatically in the context of ecological engineering [12–14]
and that the southwest karst region is one of the fastest-growing regions in the world in
terms of vegetation cover and above-ground vegetation biomass. This region could make a
great contribution to mitigating global climate change [15] and strengthening the health of
ecosystems [16]. Some studies suggest that the ecological project in respect of the compre-
hensive control of rocky desertification is one of the important driving forces of vegetation
increase from 2001 to 2016, accounting for 60.9% [17].

To explore the interannual change trend in vegetation, the trend is often determined
via the one-way linear regression method or multiple linear regression analysis, using
the slope of the regression equation (slope) to define the trend rate of annual change in
the vegetation index combined with the F-test to evaluate its significance [18]. However,
when the amount of observed data is small, the evaluation results may be affected by the
seasonal change characteristics of the vegetation. A combination of the Sen slope and the
Mann–Kendall test is often used to analyze the trend in vegetation change over time, which
can show the extent of a continuous increase or decrease in the vegetation index, coverage,
or productivity. The Hurst index is used to predict future trends in vegetation [19–26]. In
the study of vegetation restoration driving forces and factor contribution rates, climate
factors (temperature, precipitation) and human factors (ecological management project,
traffic, population) are mainly taken into account, and the methods adopted include
multiple residual regression analysis, spatio-temporal weighted regression analysis, and
geographical detection [27–31].

Although a considerable amount of research has been carried out on rocky desertifi-
cation, such as the extraction of information on rocky desertification, its spatio-temporal
evolutionary patterns, and its driving mechanisms, the analysis and discussion of the spatio-
temporal evolution of rock desertification and its driving factors are still comparatively
limited, especially regarding the impacts of human activities (e.g., ecological restoration
projects) on rock desertification. The changes in vegetation restoration in rocky desertifica-
tion areas before and after ecological restoration projects deserve to be analyzed thoroughly.
The karst area in the Hunan Province is more widely distributed than other karst areas, and,
in this context, rocky desertification is critical. The karst areas of the province comprise
5.4946 million hectares, accounting for 25.94% of the total land area in the country, of which
rocky desertification land comprises 1.258 million hectares, ranking fourth in the country,
and there are 83 counties and urban areas in the province with continuous scale distribution.
However, the current research on rocky desertification in the Hunan Province is relatively
poor, mainly focusing on soil physicochemical properties and vegetation restoration in
rocky desertification areas, and there are few reports on the characteristics of vegetation
change and its future evolution before and after the implementation of rocky desertification
restoration projects [32]. Based on these observations, in this study, we take the Mengdong
River Basin in the Xiangxi Autonomous Prefecture, Hunan Province, China, as an example
(a typical rocky desertification area) and use FVC as an evaluation index to comprehen-
sively analyze the vegetation change characteristics before and after the implementation
of ecological projects by the Mann–Kendall method. In addition, the factors (climate and
anthropogenic) influencing vegetation change characteristics are discussed by partial cor-
relation, and the future trend in vegetation change is predicted by the Hurst index. The
results of this research are intended to provide technical and data support for ecosystem
monitoring and vegetation restoration analysis in desertification areas.
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2. Study Area and Data
2.1. Study Area

The Mangdong River Basin is located in the Yongshun and Longshan County, Xiangxi
Autonomous Prefecture, which belongs to the Wuling Mountain Region (Figure 1). The
study area covers 2092.82 km2, and the Yongshun section of the Mengdong River Basin
covers 1692.39 km2, accounting for 80.87% of the study area. The soil in the study area
mainly developed from parent rocks such as limestone (including dolomite), slate shale,
purple sand shale, and river impacts. The soil mainly consists of red soil (46.69%), limestone
(rock) soil (22.82%), yellow soil (21.34%), etc. The soil has a slightly acidic-to-weakly alkaline
reaction, with a high fertility, and is adapted to a wide range of plant growth [33].
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Figure 1. Study area.

2.2. Data and Preprocessing

The remote sensing images used in this study were obtained from the Google Earth
Engine cloud platform; the Landsat5 TM images, Landsat 7 ETM+, and Landsat8 OLI
images were obtained from 1987 to 2011, 2012, and 2013 to 2022, respectively, and all the
Landsat images have a spatial resolution of 30 m. The image data were pre-processed using
radiometric calibration, atmospheric correction, geometric correction, image enhancement,
and so on. The processing of the Landsat images in this study mainly included de-clouding,
median synthesis, and clipping. In addition, the Landsat 7 ETM+ image was gap-filled due
to quality issues.

The precipitation and temperature data were obtained from the National Data
Center for the Tibetan Plateau (https://data.tpdc.ac.cn/ (accessed on 12 November
2023)), with a spatial resolution of 1 km and a time span from 2000 to 2022. The FVC data
were resampled to 1 km to match the meteorological data scale. The temperature and
precipitation datasets were generated by the Delta spatial downscaling program in the
Chinese region based on the global 0.5◦ climate dataset released by CRU and the global
high-resolution climate dataset released by WorldClim. The validation was carried out

https://data.tpdc.ac.cn/
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using data from 496 independent meteorological observation points, and the results
were verified to be credible.

According to the third rocky desertification monitoring dataset, the monitoring area
of the Mengdong River Basin (Yongshun section) is 837.3297 km2; it is mainly distributed
in the south and southeast of the study area and the northern section of the Mengdong
River and Shouche River junction (from the third rocky desertification monitoring dataset
of Yongshun County) [34]. The desertification in this region is dominated by the potential
rocky desertification type, which accounts for 52.35% of the monitored area, followed by
the rocky desertification type, which accounts for 25.96% of the monitored area. The degree
of rocky desertification is dominated by medium and light degrees, and the area of the
non-rocky desertification type accounts for 21.69% of the monitored area (Figure 2, left).
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According to the survey data of forest resources in Yongshun County, there are
mainly ecological projects such as other forestry projects, returning farmland to forest
projects, and rocky desertification control projects in Yongshun County (Figure 2, right).
The project involving returning farmland to forest is mainly concentrated in the rocky
desertification monitoring area in the middle reaches of the Mengdong River and the
upper reaches of the Niulu River in the northeast of the research area. The rocky
desertification control projects are mainly concentrated in the south and north of the
Shoughe River and the confluence of the Niulu River and Langxi River in the south.
The key public welfare forest projects are mainly concentrated in the middle and upper
reaches of the Ruchi River, the south of the county, and the middle reaches of the Niulu
River, as well as the confluence of the Langxi River. The other forestry projects are mainly
concentrated in the upper reaches of the Langxi River, Ruchi River, Liandong River, and
Mengdong River. The nature reserve project is mainly located in the downstream section
of the confluence of the Ruchi River and Mengdong River.
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3. Research Methods
3.1. Calculation of Vegetation Coverage

Fractional vegetation coverage (FVC) is the ratio of the vertical projected area of
leaves, stems, and branches of the vegetation community on the surface to the surface
area in a unit area. It reflects the sparseness and growth of vegetation communities cover-
ing the surface, and it is an important indicator of changes in the ecological environment,
such as changes in surface vegetation, soil erosion, and land rocky desertification [35].
The mixed-pixel dichotomy model based on the vegetation index is widely used in the
remote sensing estimation of vegetation coverage, and the most commonly used method
for estimating vegetation coverage is based on the normalized difference vegetation
index (NDVI). Based on the NDVI, the pixel binary model was used to estimate the FVC
of the study area over the last 40 years [36]. However, FVC performs well in areas with
an average vegetation cover but has reduced sensitivity in areas with a high vegetation
cover. Therefore, to avoid this problem, all regions with an FVC greater than 0.7 are
divided into a class in this paper.

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

FVC =
NDVI − NDVImin

NDVImax − NDVImin
(2)

The derived FVCs were validated using the 2019 Forestry Class II small group survey
data. Since the Forestry Class II survey data only has the field of depression (depression
refers to the total projected area of tree crowns on the ground in direct sunlight in a forest
(canopy) versus the total area of this forested land (stand)), only forested land was extracted
for the validation of the FVC. The 2019 FVC raster data were transposed to points, and then
the average of the number of FVC points within the extracted plot range for the forested
land polygon was used as the vegetation cover for that polygon for an accuracy comparison
with depression.

The specific comparison method is to grade the depression of the small class of forested
land and the extracted FVC, and the results are categorized into five types: underestimation
of two grades, underestimation of one grade, grade matching, overestimation of one grade,
and overestimation of two grades, and the results are shown in Figure 3. The percentage
of overestimating 1 level is 59.79%, and, since the definition of FVC is wider than the
definition of depression, this study considers overestimating 1 level to be a matching status.
The percentage of overestimation of 2 levels is 5.10%. Visual observation of the polygons
with 2 levels of overestimation through the sky map image reveals that the depressivity of
the polygons with 2 levels of overestimation is basically 0.4, which is categorized as level 3,
but, from the image features, the FVC can at least reach more than level 4, and it can be
considered that the extraction of the FVC matches the accuracy of this study. Overall, the
validation accuracy of FVC reaches 88.60%.

3.2. Trend Check

(1) Mann–Kendall (MK) test

The Mann–Kendall test is a non-parametric statistical test method, which was first
proposed by Mann in 1945 and further improved by Kendall and Sneyers. Its advantages
are that the measured values do not need to follow a certain distribution, and they are
not affected by missing values and outliers. It also has a high quantification degree, a
wide detection range, and convenient calculation, and it has been widely used in the trend
significance testing of long time-series data [37].
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The original assumption H0 is that the time-series data (x1,x2............xn) comprise n
independent samples with the same distribution of random variables; the alternative
hypothesis H1 involves a two-sided test. For all i, j ≤ n and i ̸= j, the distributions of xi and
xj are not identical. We define the test statistic S as follows [38]:

S = ∑n−1
i=1 ∑n

j=i+1 sign(xj − xi) (3)

sign
(
xj − xi

)
=


1 ((xj − xi) > 0)
0 ((xj − xi) = 0)
−1 ((xj − xi) < 0)

(4)

where xi and xj are the observed values corresponding to time-series i and j, and i < j,n is
the number of data points. sign() is a symbolic function.

The MK statistic is asymptotically normal for a suitably large sample. Assuming that
the sample is sufficiently large and uncorrelated, the mean of the MK test statistic S is zero,
that is, E(S) = 0; the variance is as follows:

Var(S) =
1

18

[
n(n − 1)(2n + 5))− ∑g

p=1 tp(tp − 1)(2tp + 5)
]

(5)

The meaning of the equation behind the subtraction is that the observed data are
grouped according to the same elements, g is the number of groups, tp is the number
of elements in each group, and the sum is calculated separately. It can be seen from the
formula that, if each element in the sequence occurs only once, the sum part of the result is
0. The variance formula can be simplified as follows:

Var(S) =
n(n − 1)(2n + 5)

18
(6)
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The standardized test statistic Zmk is calculated as follows:

Zmk =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

S < 0
(7)

In a bilateral trend test, for a given significance level α, if |Zmk| > Z1−α
2

, then the
original hypothesis H0 is unacceptable; that is, there is a significant trend change in the
time-series data at confidence level α (significance test level). A positive Zmk indicates an
increasing trend, while a negative value indicates a decreasing trend. Z1−α

2
is the value

corresponding to the standard normal function distribution table at the confidence level α.
When the absolute value of Zmk is greater than 1.645, 1.96, and 2.576, this means that the
trend passes the significance test with a confidence level of 90%, 95%, and 99%, respectively.

The p-value of the Zmk statistic (the probability that such an extreme value is observed,
i.e., the probability that the null hypothesis is rejected) is given as follows:

p = 1 − 1
2
(1 + erf(

|Zmk|√
2

))) (8)

where erf is the error function of the standard normal distribution function, also known as
the Gaussian error function.

erf(x) =
2
π

∫ x

0
e−t2

dt (9)

For a bilateral test of whether there is any trend (positive or negative) at the 95%
confidence level, the p-value is compared to 0.975. Alternatively, we compare the z statistic
to Z*, where Z* is the inverse distribution function of 0.975.

(2) Sen slope estimation

The Theil–Sen median method, also known as Sen slope estimation, is a robust non-
parametric statistical trend calculation method with high computational efficiency and
insensitivity to measurement errors and outlier data. It is often used in the trend analysis
of long-term time-series data and is an indicator used to measure the size of the trend [39].

β = mean
(

xj − xi

j − i

)
, ∀1 < i < j < n (10)

where xj and xi are the values at times j and i; and the median denotes the median value.
β > 0 denotes an upward trend in the time-series, and β < 0 denotes a downward trend in
the time-series (Table 1).

Table 1. Criteria for classifying the significance of changes.

β Zmk Trend Category Trend Feature

β > 0
Z > 2.58 3 Dramatic growth

1.96 < Z ≤ 2.58 2 Significant growth
Z ≤ 1.96 1 Insignificant growth

β = 0 0 No change

β < 0
Z ≤ 1.96 −1 Insignificant reduction

1.96 < Z ≤ 2.58 −2 Significant reduction
2.58 < Z −3 Very significant reduction

Sen slopes are often used in conjunction with the MK non-parametric test, where the
Sen trend value is calculated and then the MK method is used to determine the significance
of the trend.
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3.3. Hurst Index

The Hurst index was originally developed by Harold Edwin Hurst (1900–1978), a
British hydrologist, who found that biased random wandering (fractional Brownian motion)
could successfully describe the long-term storage capacity of reservoirs when he was
studying the relationship between the water flow and storage capacity of Nile River
reservoirs [40]. Based on this, he proposed the Hurst index by using the rescaled polarity
(R/S) analysis method as an indicator to determine whether the time-series data followed a
random wandering or a biased random wandering process [41].

Let Xi = X1, . . .Xm be m consecutive values of a time-series, taken logarithmically and
differenced once into a logarithmic difference sequence of length N = m − 1.

Ni = log
(

Mi+1

Mi

)
, i = 1, 2, . . . , m − 1 (11)

The sequence of length N is then equally divided into A subsets a, so that the length
of each subset is n = N/A. We calculate the mean Xa for each sub-interval as follows:

Xa = (X1 + · · ·+ Xn)/n

Within each subset a, the cumulative deviation of each point relative to the mean Xa of
that subset is calculated as follows:

Xk,α = ∑k
i=1 (Ni,α − Xa), k = 1, 2, . . . , n (12)

The cumulative deviation is relative to the mean of the subset; that is, there is a
de-averaging process, so the next calculated fluctuation range is also de-averaging. In
Hurst’s study, he uses the dispersion and band range after de-homogenization, which can
eliminate the effect of the long-term trend of the sequence on the correlation between the
increments [42].

We calculate the fluctuation range within each subset a, and the range within the
group is as follows:

Rα = max(Xk,α)− min(Xk,α), 1 ≤ k ≤ n (13)

We calculate the standard deviation Sα within each subset a as follows:

Sα =

√
∑h

i=1 (xi − xm)2/h (14)

For each subset, the range of fluctuations Rα is normalized using its standard deviation
Sα to obtain the rescaled polar deviation Rα/Sα. There are a total of A subsets and, hence,
A-rescaled extreme deviations. We take their mean as the rescaled range of the original
logarithm sequence over a time span of length n, denoted as (R

S )n.

(
R
S
)

n
=

(
1
A

)
∗ ∑A

h=1 (
Rn

Sn
) (15)

By increasing the value of n and repeating the previous steps, the rescaling range (R
S )n

on a time-series with a different length of n is obtained.
According to the definition of the Hurst index H, it describes the proportional relation-

ship between (R
S )n and nH as follows:

(
R
S
)

n
= C × nH (16)

Therefore, if we perform a double log regression on n and (R
S )n, that is, we use log (n)

to perform a linear regression on log ((R
S )n), the intercept of the regression equation is the

constant C, and the slope is the Hurst exponent H.
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H = 0.5 indicates that the time-series can be described by a random walk (Brownian
motion); that is, the time change series is random, and there is no long-term correlation.

A value of 0 < H < 0.5 indicates the weakening of memory (anti-persistence), which is
the mean recovery process and represents the anti-persistence of the time change series.

A value of 0.5 < H < 1 indicates memory enhancement (persistence), which means that
the time change sequence is persistent, indicating that the future change is consistent with
the past change trend. The closer H is to 1, the stronger the trend of the time-series. In this
paper, the H-value of this level is further subdivided into two levels, 0.5–0.75 and 0.75–1.0,
representing weak and strong sustainability trends, respectively.

The Hurst index is combined with the Sen slope and MK trend test values to categorize
the future trend categories of each vegetation indicator into nine categories, as shown in
Table 2.

Table 2. Classification of future trends using the Hurst index.

TS |Z| Hurst Index Classification Code

>0

>2.58
>0.75 Highly stable and extremely significant growth 6
>0.5 ≤ 0.75 Weakly stable and extremely significant growth 5

>1.96
≤2.58

>0.75 Highly stable and significant growth 4
>0.5 ≤ 0.75 Weakly stable and significant growth 3

≤1.96
>0.75 Highly stable and insignificant growth 2
>0.5 ≤ 0.75 Weakly stable and insignificant growth 1

<0

≤1.96
>0.5 ≤ 0.75 Weakly stable and insignificant reduction −1
>0.75 Highly stable and insignificant reduction −2

>1.96
≤2.58

>0.5 ≤ 0.75 Weakly stable and significant reduction −3
>0.75 Highly stable and significant reduction −4

>2.58
>0.5 ≤ 0.75 Weakly stable and extremely significant reduction −5
>0.75 Highly stable and extremely significant reduction −6

≤0.5 Instability 0

3.4. Partial Correlation Analysis

Partial correlation analysis, also known as net correlation analysis, analyzes the lin-
ear correlation between two variables while controlling for the linear influence of other
variables. In multiple variables, after excluding the influence of one or several control
variables, the correlation degree between the two variables is directly calculated [43]. The
main function of partial correlation analysis is to determine which explanatory variable
has the greatest influence on the response variable among all the variables, which is more
helpful for accurately understanding the mutual influence and interaction relationship
between variables. The tool used is the partial correlation coefficient [44].

Among the three variables, the partial correlation coefficient of any two variables is
calculated after excluding the influence of the other variable, and the formula is as follows:

Ryj·k =
Ryj−Ryk·Rjk√

(1 − R2
yj)(1 − R2

yk)
(17)

where Ryj is the simple correlation coefficient between variables y and j, Ryj is the simple
correlation coefficient between variables y and k, and Ryj is the simple correlation coefficient
between variables j and k.

The partial correlation coefficient test often uses a T-test. The null hypothesis is that
the partial correlation coefficient of the two variables in the population is 0. The formula is
as follows:

t =
√

n − k − 2·r√
1 − r2

(18)
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where r is the corresponding partial correlation coefficient, n is the sample size, k is
the number of controllable variables, and n – k − 2 is the degree of freedom. When
t > t 0.05 (n – p − 1) or p < 0.05, the null hypothesis is rejected (Table 3).

Table 3. Correlation significance classification criteria.

R |p| Confidence Level Classification

>0 ≤0.01 Extremely significant positive correlation
>0 ≤0.05 Significant positive correlation
>0 >0.05 Non-significant positive correlation
<0 >0.05 Non-significant negative correlation
<0 ≤0.05 Significant negative correlation
<0 ≤0.01 Extremely significant negative correlation

We consider a partial correlation of the annual precipitation and average temperature
on the FVC.

3.5. Multivariate Residual Analysis

Changes in vegetation cover are affected by both climate change and human activities.
We use the multiple regression residuals analysis method to examine the effects and relative
contributions of climate change and human activities to FVC changes.

This method involves establishing a binary linear regression model of FVC and temper-
ature and precipitation, calculating various parameters in the model, and then predicting
the FVC (FVCpred). This is used to express the influence of simple climate factors on the
FVC and calculates the difference between the observed FVC and the predicted FVC, namely,
the FVC residual (FVCres), which is used to represent the impact of human activities on the
FVC. The formula is as follows:

FVCpred = a × Tmean + b × P + c (19)

FVCres = FVCobs − FVCpred (20)

Tmean and P represent the average annual temperature and annual precipitation,
respectively. FVCobs indicates the actual value of the FVC. a, b, and c are the coefficients of
the regression equation.

We performed a trend analysis on FVCpred, FVCres, and FVCobs to obtain the cor-

responding slopes, i.e., slope
(

FVCpred

)
, slope(FVCres), and slope(FVCobs), respectively.

As shown in Table 4, we distinguished the main driving factors causing FVC changes and
calculated the relative contributions of climate change and human activities to FVC changes.

Table 4. Determination of FVC drivers and calculation of driver contribution rates.

SlopeFVCobs
Driver Classification Criteria

Driving Factor
Contribution Rates of Drivers (%)

SlopeFVCpred SlopeFVCres Climate Change Human Activities

>0
>0 >0 CC & HA slope(FVCpred)

slope(FVCobs)
slope(FVCres)
slope(FVCobs)

>0 <0 CC 100 0
<0 >0 HA 0 100

<0
<0 <0 CC & HA slope(FVCpred)

slope(FVCobs)

slope(FVCpred)

slope(FVCobs)

<0 >0 CC 100 0
>0 <0 HA 0 100
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4. Result Analysis and Discussion
4.1. Characteristics and Spatial Distribution of Interannual Mean Value of FVC

The FVC was calculated according to the pre-ecological management period (1987–1999)
and the ecological management period (2000–2022). The average FVC for the pre-ecological
management period was 0.554, the maximum annual average was 0.606 (1997), and the
minimum annual average was 0.511 (1993). The FVC showed an increasing trend from
1986 to 1990, a rapid decline from 1990 to 1993, a steady increase from 1993 to 1997, and a
downward trend from 1997 to 1999, with frequent changes in the FVC. The linear fitting
of the FVC annual mean is shown in Figure 4. As it can be seen from the figure, there is
essentially no linear trend in the mean value of the FVC during the period 1987–1999.
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The average value of the FVC from 2000 to 2022 was 0.641, the maximum annual
mean was 0.763 (2020), and the minimum annual mean was 0.533 (2003). From 2000 to
2010, the FVC increased slowly, but all of the values were lower than the average. From
2011 to 2022, only the 2014 FVC was lower than the average, and the values for the other
years were higher than the average, showing a stable and rapid growth trend. The average
FVC for 2017 exceeded 0.7. The Pearson correlation coefficient fitted using the FVC one-
variable linear equation was 0.908, R squared was 0.824, the average annual growth rate
was 0.00942a − 1, and the growth rate was 1.64%. The FVC had an obvious linear growth
trend during the period 2000–2022, indicating that the FVC exhibited significant growth in
the ecological governance period (Figure 5).

In this study, only the linear-type trend of the FVC was considered in the Mengdong
River Basin. The focus of this study was to analyze the role of ecological engineering on
vegetation restoration in rocky desertification areas. The results demonstrated that, after
the implementation of the ecological project, the vegetation cover in the region showed
a significant linear-increasing trend. However, the FVC may in general have non-linear
behaviors, which is a concern for subsequent studies.

In order to further reduce the fluctuations in remote sensing data, the FVC for the
ecological management period was averaged over three-year intervals to obtain FVC data
for eight time periods.



Forests 2024, 15, 746 13 of 25

Forests 2024, 15, 746 13 of 25 
 

 

was 0.00942a − 1, and the growth rate was 1.64%. The FVC had an obvious linear growth 
trend during the period 2000–2022, indicating that the FVC exhibited significant growth 
in the ecological governance period (Figure 5). 

In this study, only the linear-type trend of the FVC was considered in the Mengdong 
River Basin. The focus of this study was to analyze the role of ecological engineering on 
vegetation restoration in rocky desertification areas. The results demonstrated that, after 
the implementation of the ecological project, the vegetation cover in the region showed a 
significant linear-increasing trend. However, the FVC may in general have non-linear be-
haviors, which is a concern for subsequent studies. 

 
Figure 5. Unitary linear-fitting graph of FVC mean values from 2000 to 2022. 

In order to further reduce the fluctuations in remote sensing data, the FVC for the 
ecological management period was averaged over three-year intervals to obtain FVC data 
for eight time periods. 

According to the FVC statistics in these eight periods, the mean value of the FVC in 
the rocky desertification monitoring area in the ecological control period was lower than 
that in the non-rocky desertification monitoring area in each period. The mean values of 
the FVC in the two regions showed little difference in the period 2001–2004, and the mean 
value of FVC in the rocky desertification monitoring area increased slowly from 2003 to 
2008, while the mean value in the non-rocky desertification monitoring area increased 
rapidly. The mean value in the rocky desertification monitoring area increased rapidly 
after 2008 and approached the level of the mean value in the non-rocky desertification 
monitoring area (Table 5). 

Table 5. FVC mean values in the monitoring area with respect to rocky desertification for eight time 
periods during the ecological management period. 

FVC 

Mean Value

Rocky Desertification  

Monitoring Area 

2000–2002 2003–2005 2006–2008 2009–2011 2012–2014 2015–2017 2018–2020 2021–2022 

Rocky desertification monitoring area 0.556 0.535 0.554 0.607 0.647 0.686 0.727 0.708 

Non-rocky desertification monitoring 

area 
0.576 0.567 0.625 0.644 0.651 0.696 0.758 0.719 

The FVC values of these eight time periods were calculated via the land cover cate-
gories. The average FVC showed the characteristics of forest land > shrub land > other 

Figure 5. Unitary linear-fitting graph of FVC mean values from 2000 to 2022.

According to the FVC statistics in these eight periods, the mean value of the FVC in the
rocky desertification monitoring area in the ecological control period was lower than that in
the non-rocky desertification monitoring area in each period. The mean values of the FVC
in the two regions showed little difference in the period 2001–2004, and the mean value of
FVC in the rocky desertification monitoring area increased slowly from 2003 to 2008, while
the mean value in the non-rocky desertification monitoring area increased rapidly. The
mean value in the rocky desertification monitoring area increased rapidly after 2008 and
approached the level of the mean value in the non-rocky desertification monitoring area
(Table 5).

Table 5. FVC mean values in the monitoring area with respect to rocky desertification for eight time
periods during the ecological management period.

Rocky Desertification Monitoring Area

FVC Mean Value
2000–2002 2003–2005 2006–2008 2009–2011 2012–2014 2015–2017 2018–2020 2021–2022

Rocky desertification monitoring area 0.556 0.535 0.554 0.607 0.647 0.686 0.727 0.708
Non-rocky desertification monitoring area 0.576 0.567 0.625 0.644 0.651 0.696 0.758 0.719

The FVC values of these eight time periods were calculated via the land cover cate-
gories. The average FVC showed the characteristics of forest land > shrub land > other
woodland > garden plot > grassland > plowland. From 2001 to 2004, the average value of
FVC for different land covers decreased slightly, and there was steady growth in the FVC
mean for each category from 2004 to 2019. It was speculated that the FVC mean peaked in
2020 from the FVC mean of 2000 to 2020, and there was a slight decline in the following
two years (Table 6).

Table 6. FVC mean values by land cover category for the eight time periods during the ecological
management period.

Land Cover
FVC Mean Value

2000–2002 2003–2005 2006–2008 2009–2011 2012–2014 2015–2017 2018–2020 2021–2022

Forestland 0.639 0.630 0.676 0.710 0.740 0.780 0.828 0.800
Shrubland 0.556 0.542 0.591 0.643 0.657 0.708 0.778 0.756

Other woodland 0.522 0.515 0.571 0.607 0.616 0.677 0.761 0.730
Grassland 0.468 0.441 0.467 0.510 0.528 0.572 0.628 0.608

Garden plot 0.444 0.424 0.485 0.516 0.529 0.599 0.686 0.643
Plowland 0.383 0.342 0.382 0.396 0.400 0.455 0.530 0.474

The FVC statistics according to the ecological management project for these eight
time periods show that the average value of the FVC was characterized as nature reserve
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project > rocky desertification control project > fast-growing and high-yield forest base >
middle–lower Yangtze River shelter belt project > key public welfare forest management
project > other forestry projects > returning farmland to forest project. In the early stage of
ecological management, the FVC was the lowest, and the increase was the highest, which is
similar to the current level of the shelter belt project in the middle and lower reaches of the
Yangtze River. The FVC level in the middle–lower Yangtze River shelter belt project was
higher than that in the key public welfare forest management project in the early stage of
ecological management, but the FVC level in the late stage of ecological management was
slightly lower than that of the key public welfare forest management project, indicating
that the FVC increase in the key public welfare forest management project was higher than
that of the middle and lower reaches of the Yangtze River protection forest project. The
increase in the FVC in other forestry projects belonged to the slow-growth type, and its
effect on FVC improvement was slightly lower than that of the fast-growing and high-yield
forest base (Table 7).

Table 7. FVC mean values of ecological engineering in eight time periods during the ecological
governance period.

FVC Mean Value 2000–2002 2003–2005 2006–2008 2009–2011 2012–2014 2015–2017 2018–2020 2021–2022

Returning
farmland to

forest project
0.542 0.539 0.615 0.686 0.716 0.767 0.823 0.797

Rocky
desertification
control project

0.685 0.677 0.697 0.742 0.758 0.795 0.841 0.816

Key public welfare
forest manage-
ment project

0.654 0.630 0.661 0.708 0.755 0.793 0.835 0.811

Middle–lower
Yangtze River

shelter belt project
0.663 0.653 0.693 0.733 0.750 0.789 0.830 0.800

Nature reserve
project 0.751 0.761 0.790 0.777 0.803 0.812 0.861 0.834

Other forestry
projects 0.652 0.647 0.691 0.712 0.738 0.777 0.831 0.800

Fast-growing and
high-yield
forest base

0.655 0.672 0.713 0.751 0.756 0.787 0.823 0.806

The results of the MK mutation test with respect to FVC data show that there were
multiple intersection points between statistical forward sequence (UF) and statistical reverse
sequence (UB) in the pre-ecological management period, and the FVC changed frequently
without mutation points, as shown in Figure 6. During the period of ecological governance,
the FVC showed a downward trend from 2000 to 2003 and then showed a significant
upward trend. The UF value and UB value intersected in 2008, indicating that 2008 was a
sudden change year with respect to the FVC, and the effectiveness of ecological governance
began to become prominent.

According to the vegetation coverage rating standard of rocky desertification monitor-
ing, the FVC was divided into five grades, as shown in Table 8.

The FVC of each year was graded and mapped, and FVC displays were selected for the
years 1987/1993/1999 of the pre-ecological management period and 2002/2006/2010/2014/
2018/2022 after ecological governance. This accounted for its FVC classification area, as
shown in Table 9; the space distribution is shown in Figure 7.
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Table 8. Classification of vegetation coverage.

FVC FVC Grade Classification

≤10% 1 No cover and
very low vegetation cover

10% < FVC ≤ 30% 2 Low vegetation cover
30% < FVC ≤ 50% 3 Medium vegetation cover
50% < FVC ≤ 70% 4 More dense vegetation cover

>70% 5 Dense vegetation cover
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Table 9. Proportion of graded area of vegetation coverage in individual years (%).

FVC
Grade 1987 1990 1995 1999 2001 2004 2007 2010 2013 2016 2019 2022

1 4.83 1.48 1.77 2.09 0.86 2.33 2.18 4.51 3.11 3.66 3.12 2.96
2 12.15 9.04 8.81 15.04 6.67 11.01 7.67 7.91 5.30 6.13 4.00 3.98
3 23.76 24.83 29.80 29.81 26.46 26.88 16.91 14.65 10.61 11.92 7.39 7.94
4 28.06 34.16 37.00 28.90 39.95 32.78 32.16 27.81 21.53 24.36 15.86 19.66
5 31.20 30.49 22.62 24.16 26.06 27.00 41.08 45.12 59.45 53.93 69.63 65.46
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It can be seen from the table that, during the period 1987–1999, before ecological
governance, the area proportion of FVC for different grades changed very little, and the
area proportion of FVC with respect to grades 3/4/5 was fundamentally similar; that is, a
denser vegetation cover was not dominant.

From the annual fluctuation in FVC grades, the area of the FVC1 grade was not large,
fluctuating at 4.51%. The area proportion of the FVC2 class fluctuated and decreased
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by nearly 75% during the ecological treatment period. The area proportion of the FVC3
grade changed very little from 1987 to 2004, rapidly decreased from 2004 to 2007, and
gradually decreased by nearly 70% from 2007 to 2022. The area proportion of the FVC4
class fluctuated from 1987 to 1999 and steadily declined from 2001 to 2019, mainly
changing to the FVC5 class. The area proportion of the FVC5 grade decreased from 31.2%
to 26.06% during the period 1987–1999 and steadily increased from 27% to 65.46% during
the period 2001–2022; that is, dense vegetation cover occupied a dominant position in
the region.

From the comparison of the area share of vegetation cover grading between the
first time period (2000–2002) and the eighth time period (2021–2022) of the ecological
management period of each ecological project, the area share of the FVC5 grade of the
fallow farmland reforestation project increased the most, from 17.85% to 84.96%. The area
share of rocky desertification control projects with an FVC5 rating was 88.88%, ranking
second only to the nature reserve project. The proportion of the FVC5-rated areas in the
other ecological projects had essentially increased to more than twice the original level. This
shows that the ecological management project had a significant effect on the improvement
in the vegetation cover level, among which the returning farmland to forest project and
rocky desertification control project had the most significant effect on the improvement in
vegetation cover (Table 10).

Table 10. Vegetation coverage level structure changes in the first and eighth periods of the ecological
engineering treatment period.

Project Category Time
Period FVC1 FVC2 FVC3 FVC4 FVC5

Returning farmland to
forest project

1 0.17% 7.19% 32.30% 42.49% 17.85%
8 0.17% 0.72% 2.25% 11.90% 84.96%

Rocky desertification
control project

1 0.04% 1.03% 8.46% 39.11% 51.36%
8 0.12% 0.41% 1.15% 9.44% 88.88%

Key public welfare forest
management project

1 0.09% 1.69% 12.64% 44.50% 41.08%
8 0.22% 0.59% 1.75% 9.60% 87.84%

Middle–lower Yangtze River
shelter belt project

1 0.09% 1.72% 14.21% 39.56% 44.42%
8 0.12% 0.51% 1.74% 11.79% 85.84%

Nature reserve project 1 0.04% 1.17% 6.91% 22.30% 69.58%
8 0.08% 0.36% 1.19% 6.65% 91.72%

Other forestry projects 1 0.06% 2.34% 15.36% 39.75% 42.49%
8 0.20% 0.63% 2.17% 11.98% 85.02%

Fast-growing and high-yield
forest base

1 0.06% 0.80% 10.29% 49.80% 39.05%
8 0.10% 0.42% 1.31% 10.58% 87.59%

4.2. Changing Trend and Future Trend of FVC

The MK trend test and Sen slope estimation were carried out for FVC values during
the ecological management period from 2000 to 2022, and, combined with the Hurst index,
the statistical values of the FVC change trend and future trend area were obtained.

As it can be seen from Table 11 and Figure 8, in the study area, the area with an
extremely significant growth in the FVC accounted for 52.63%, the area with a significant
growth accounted for 11.22%, the area with an insignificant growth accounted for 23.82%,
the area with an insignificant reduction accounted for 8.4%, the area with a significant re-
duction accounted for 1.3%, and the area with an extremely significant reduction accounted
for 2.54%. More than 85% of the regions showed an increasing trend in the FVC, and about
13% of the regions showed a decreasing trend in the FVC. The distribution of the FVC trend
map is shown in Figure 8 (left).



Forests 2024, 15, 746 18 of 25

Table 11. MK trend test statistics for the FVC from 2000 to 2022 and future trends.

Change Trend Area Proportion (%) Hurst Index Percentage of Area of This Trend Type (%)

Extremely significant growth 52.64%
>0.75 81.16%

>0.5 ≤ 0.75 18.31%

Significant growth 11.22%
>0.75 79.1%

>0.5 ≤ 0.75 20.21%

Insignificant growth 23.82%
>0.75 77.41%

>0.5 ≤ 0.75 21.74%
No change 0.08% - -

Insignificant reduction 8.40%
>0.5 ≤ 0.75 20.28%

>0.75 79.03%

Significant reduction 1.30%
>0.5 ≤ 0.75 13.92%

>0.75 85.69%

Extremely significant reduction 2.54%
>0.5 ≤ 0.75 11.05%

>0.75 88.73%
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The Hurst index of the FVC in the study area during the period 2000–2022 ranged
from −0.233 to 2.476, with an average value of 0.864. The area with an H value greater than
0.75 accounted for 80.12%, and the area with an H value greater than 0.5 and less than or
equal to 0.75 accounted for 19.25%, indicating that the future trend of most regions would
develop in accordance with the current change trend. The proportion of highly stable
growth accounted for about 80% of the corresponding growth trend change types, and the
strong stable reduction type accounted for 79–85% of the corresponding reduction trend
types. The sustainability profile of the FVC’s future trends is shown in Figure 8 (right).

As it can be seen from Figure 8 (medium), most of the areas in the study area belonged
to the trends of extremely significant growth and significant growth. The insignificant
growth trend was mainly located in the northern alpine forest land, which did not grow
significantly due to the good foundation of the original forest land. The reduction was
scattered or linear, mainly due to the occupation of construction land due to transportation.

From the statistics regarding whether the area was a rocky desertification monitoring
area or not, among the extremely significant growth and significant growth, the proportion
of the rocky desertification monitoring area was 70.28% and that of the non-rocky desertifi-
cation monitoring area was 59.98%, indicating that the ecological engineering type of the
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stony desertification monitoring area was subject to more artificial intervention and the
ecological governance effect was obvious. Among the insignificant growth and insignificant
reduction with respect to this type, the proportion of the rocky desertification monitoring
area was 25.42%, and the proportion of the non-rocky desertification monitoring area was
slightly higher (36.3%) (Table 12).

Table 12. MK trend test for FVC in rocky desertification monitoring area from 2000 to 2022.

Land Cover
Extremely
Significant

Growth

Significant
Growth

Insignificant
Growth No Change Insignificant

Reduction
Significant
Reduction

Extremely
Significant
Reduction

Rocky desertification
monitoring area 59.58% 10.70% 18.31% 0.08% 7.11% 1.39% 2.82%

Non-rocky
desertification

monitoring area
48.37% 11.61% 27.10% 0.09% 9.20% 1.25% 2.38%

From the perspective of the engineering category, the extremely significant growth
trend in the farmland conversion to forest project accounted for the highest proportion,
followed by the key public welfare forest management project. The lowest proportion
was for the nature reserve project, and the extremely significant reduction trend area in
other projects accounted for about 50%. Among the trend types of insignificant reduction,
the nature reserve project accounted for the highest proportion (21.26%), followed by the
middle–lower Yangtze River shelter belt project (8.76%). This shows that, even though
ecological projects have played a great role in contributing to the increase in the share of
the FVC structure, the FVC still fluctuates locally and needs to be monitored in a focused
manner (Table 13).

Table 13. MK trend test for the FVC by project from 2000 to 2022.

Engineering Category
Extremely
Significant

Growth

Significant
Growth

Insignificant
Growth No Change Insignificant

Reduction
Significant
Reduction

Extremely
Significant
Reduction

Returning farmland to
forest project 76.67% 8.42% 11.92% 0.00% 2.35% 0.32% 0.32%

Rocky desertification
control project 48.10% 14.02% 30.04% 0.00% 6.97% 0.44% 0.43%

Key public welfare
forest manage-
ment projects

61.60% 12.59% 20.45% 0.00% 4.55% 0.40% 0.41%

Middle–lower Yangtze
River shelter
belt project

49.89% 11.55% 28.80% 0.00% 8.76% 0.52% 0.48%

Nature reserve project 24.42% 11.06% 41.31% 0.00% 21.16% 1.04% 1.01%
Other forestry projects 50.82% 12.91% 27.33% 0.00% 7.73% 0.62% 0.59%

Fast-growing and
high-yield forest base 49.66% 14.25% 27.48% 0.00% 7.34% 0.76% 0.51%

4.3. Relationship between FVC Change and Climate

The annual mean value of precipitation in the study area from 2000 to 2022 was
1367.70 mm, with a rate of increase of 10.00 mm a−1 (0.8763% annual growth rate). The
mean value of temperature from 2000 to 2022 was 16.90 ◦C, with a rate of increase of
0.04 ◦C a−1 (0.2450% annual growth rate), which suggests that there were indications of
the study area warming and becoming wetter. Pearson’s correlation analysis showed a
significant positive correlation between the FVC and temperature (R = 0.618, p = 0.001)
and no significant correlation between the FVC and precipitation (R = 0.126, p = 0.559),
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indicating that the increase in temperature as a whole contributed to the increase in the
FVC in the study area (Figure 9).
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Figure 9. Unitary linear-fitting map of annual precipitation and mean temperature between 2000
and 2022.

The partial correlation coefficient between the FVC and precipitation ranged from
−0.58 to 0.65, with an average partial correlation coefficient of 0.004. The FVC and precipi-
tation were significantly negatively correlated (p < 0.05) in 2.10% of the area, significantly
positively correlated (p < 0.05) in 3.25% of the area, and not significantly negatively corre-
lated in 49.02% of the area. From the significant distribution map of the partial correlation
between the FVC and precipitation, the areas with non-significant negative correlation
between the FVC and precipitation were mainly distributed in the northern (high elevation)
and northeastern (high distribution of cultivated land) parts of the study area; the areas
with a non-significant positive correlation were mainly distributed in the southern part of
the study area, with lower elevation (Figure 10).

The partial correlation coefficient between the FVC and temperature ranged from
−0.63 to 0.78, with an average partial correlation coefficient of 0.19. The area with a
significant negative correlation between the FVC and temperature (p < 0.05) accounted for
2.15%, the area with a significant positive correlation (p < 0.05) accounted for 25.04%, the
area with a non-significant negative correlation accounted for 17.77%, and the area with a
non-significant positive correlation accounted for 55.04%. The positive correlation between
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the FVC and temperature was absolutely dominant. This indicates that the FVC is more
sensitive to temperature than precipitation in areas with sufficient precipitation (Figure 11).
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4.4. Driving Force of FVC Change and Contribution Rate of Each Factor

Figure 12 shows that 79.03% of the regions in the study area suggest that the combined
effect of climate change and human activities was the driving factor for the increase in the
FVC; the area of FVC increase caused by climate change alone accounted for 4.36%, and the
area of FVC increase caused by human activities alone accounted for about 5.88%.
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Figure 12. Spatial distribution of drivers of vegetation cover change (CC and HA refer to climate
change and human activities, respectively).

A total of 5.98% of the study area suggests that the combined effect of climate change
and human activities was the driving factor for FVC reduction. The areas of FVC decreased
by climate change alone and by human activities alone accounted for 0.59% and 4.16%,
respectively. Overall, the combined effects of climate change and human activities are the
main causes of FVC changes.

The average contribution of climate change was 0.31, and the average contribution of
human activities was 0.69. Figure 13 shows that the contribution rate of climate change to
FVC change was larger in the ranges 0–0.2 and 0.2–0.4, and the contribution rate of human
activities to FVC change was larger in the ranges 0.6–0.8 and 0.8–1.0. In most regions, the
contribution of human activities to the increase in the FVC was generally greater than that
of climate change. According to the average change trend in the FVC in the study area
and the average change trend in the FVC forecast and FVC residual, we calculated that the
contributions of climate change and human activities to FVC change were about 30% and
70%, respectively.
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5. Conclusions

We estimated the vegetation coverage of the Mengdong River Basin and analyzed
the spatial-temporal characteristics and driving factors of vegetation coverage based on
Landsat remote sensing images over the past 40 years. The overall FVC in the study area
showed a trend of stabilization followed by growth, with the FVC remaining stable in
the pre-ecological management period (1987–1999), while the FVC showed a significant
increase during the ecological management period (2000–2022), with an average annual
growth rate of 0.00942a−1 and a growth rate of 1.64%. The average value of the FVC in
each year of the ecological management period showed the characteristics of forest land
> shrub land > other forest land > garden land > grassland > cultivated land. The FVC
grade showed the characteristic of changing from an FVC2/3/4 grade to an FVC5 grade,
and the area of grade 5 accounted for more than 65%, indicating that dense vegetation cover
occupied a dominant position in the region. From the perspective of ecological engineering
types, the FVC5 level area had the most significant increase in the conversion of farmland
to forest and the control of rocky desertification.

The area with an extremely significant growth in the FVC accounted for 52.63%, the
area with significant growth accounted for 11.22%, and the area with insignificant growth
accounted for 23.82%. Among the areas with extremely significant and significant growth,
the proportion of the rocky desertification monitoring area was 70.28% and that of the non-
rocky desertification monitoring area was 59.98%, indicating that the ecological engineering
type of the stony desertification monitoring area was subject to more artificial intervention
and that the ecological governance effect was obvious. The results of the MK mutation test
of the FVC data in the ecological management period show that FVC values presented a
decreasing trend from 2000 to 2003, after which the FVC had a significant upward trend;
2008 was the mutation year when the effectiveness of ecological management began to
be evident.

The average partial correlation coefficient between the FVC and precipitation was
−0.16 and that between the FVC and temperature was 0.27. The proportion of area of
significant positive correlation and significant negative correlation between the FVC and
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temperature was slightly higher than that of precipitation, indicating that the FVC is more
sensitive to temperature than precipitation.

The residual analysis results show that 79.03% of the study area suggested that the
combined effect of climate change and human activities was the driving factor for the
increase in the FVC, and the combined effect of climate change and human activities was
the main reason for the change in the FVC. The contributions of climate change and human
activities to FVC variation were about 30% and 70%, respectively.
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