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Abstract: Traditional uneven-aged forest management seeks a balance between
equilibrium stand structure and economic profitability, which often leads to harvesting 
strategies concentrated in the larger diameter classes. The sustainability (i.e., population 
persistence over time) and influence of such economically optimal strategies on the 
equilibrium position of a stand (given by the stable diameter distribution) have not been 
sufficiently investigated in prior forest literature. This article therefore proposes a discrete 
optimal control model to analyze the sustainability and stability of the economically 
optimal harvesting strategies of uneven-aged Pinus nigra stands. For this model, we rely 
on an objective function that integrates financial data of harvesting operations with a 
projection matrix model that can describe the population dynamics. The model solution 
reveals the optimal management schedules for a wide variety of scenarios. To measure the 
distance between the stable diameter distribution and the economically optimal harvesting 
strategy distribution, the model uses Keyfitz’s delta, which returns high values for all the 
scenarios and, thus, suggests that those economically optimal harvesting strategies have an 
unstabilizing influence on the equilibrium positions. Moreover, the economically optimal 
harvesting strategies were unsustainable for all the scenarios.
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1. Introduction

The goal of traditional uneven-aged forest management is a balance between equilibrium stand 
structure and economic profitability. In pursuing this balance, many harvesting strategies concentrate
on the larger diameter classes. The sustainability (i.e., population persistence over time) and influence 
of such economically optimal strategies on the equilibrium position of a stand (given by the stable 
diameter distribution) have not been sufficiently investigated in prior forest literature. Using 
uneven-aged Pinus nigra stands as an example, we propose a discrete optimal control model that can 
assess whether the economically optimal harvesting strategies are sustainable or stabilizing. For this 
model, we rely on an objective function that integrates the financial data of harvesting operations with 
a matrix model that can describe the population dynamics.

Matrix models commonly serve to analyze the evolution, management and harvesting of tree 
populations [1–4]. Population growth rate in such models is the dominant eigenvalue, �0, of the 
transition matrix, A. According to asymptotic analysis (i.e., long-term behavior), we know that 
independent of the initial conditions, when �0 >1, the total number of stems/ha of the tree population 
increases exponentially over time (without harvests), whereas when �0 < 1, the population decays until 
extinction, and when �0 = 1, the result is a stable distribution proportional to the right eigenvector, W0,
of the transition matrix that corresponds to �0. Gotelli [5] refers to the special case of the stable 
distribution when �0 = 1 as the “stationary distribution”; we consider a similar case in reference to the 
stable diameter distribution of the stand W0.

This concept of stability relates closely to the concept of perturbation: A system is stable if it 
always returns to an equilibrium position following small perturbations (otherwise, the system is 
unstable). The stable distributions are closely dependent on recruitment, removal and stem migration 
throughout the diameter at breast height (dbh)-classes over time [6]. In fact, given the transition 
probabilities between diameter classes, for each pair (R, G), where G is the stand basal area and R is 
the global amount of recruitment, the stable diameter distributions of managed uneven-aged Fagus 
sylvatica L. and Pinus nigra Arn. stands were calculated in [7–9] using a matrix model of stand 
diameter classes evolution. Those stable diameter distributions are associated with the 
“sustainable/stable” harvesting strategy [7,8], aimed at reaching in each harvest the proportions of 
stems/ha in each class corresponding to the stable diameter distribution of the stand, yielding the 
following “sustainable/stable” harvest rate:

s = ,

for all the diameter classes and time steps. This rate corresponds to the case in which the right 
eigenvector associated with the dominant eigenvalue � = 1 of the transition matrix with harvests is W0.
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Therefore, in the present study, we combine that matrix model to describe the population dynamics 
with an economic model (objective function) that summarizes the net present value (NPV) of all the 
management operations in a 70-year harvest cycle, which creates a discrete optimal control problem.

Optimal control theory enables the solution of a wide variety of dynamic problems, for which the 
evolution of the dynamic system (discrete or continuous) can be partially controlled by the agent’s 
decision. In every moment, t, the system can be described by a set of state variables, xk(t) (e.g., 
stems/ha in diameter class k at year t), so the planner chooses a specific set of control variables, hk(t)
(e.g., the harvest rate in diameter class k at year t). Different values for the control variables imply 
different paths in the phase space for the dynamic system, and the planner or manager must determine 
the control values that maximize the selected objective, according to the constraints of the problem.

Many authors have considered optimal control theory to model forest stands (e.g., continuous 
case, [10,11]; discrete case, [12–14]).

Thus, the main purpose of this study is to determine economically optimal harvesting strategies of 
uneven-aged Pinus nigra stands in the Spanish Iberian System and to analyze their sustainability and 
eventual destabilization (i.e., with the stable diameter distribution W0 set as the initial condition, to 
discern if the introduction of an NPV maximizing management strategy leads to distributions that 
move away from that equilibrium over time). Furthermore, we investigate the effects of diameter 
growth, stand density and recruitment on those strategies, considering a wide variety of typical 
management scenarios in the study area, obtained by combining three levels of diameter growth 
(Qualities I–III), three levels of stand basal area, G = 22, 24 and 26 m2/ha, and three levels of global 
recruitment, R = 200, 520 and 840 stems/ha. Finally, an economic comparison has been performed 
between the economically optimal and the “sustainable/stable” harvesting strategies.

In the following sections, we describe the model and the estimates of the corresponding parameters. 
The general calculations, including regressions, were run using Maple version 16 [15], and the 
solutions to the optimization problems were derived from Solver Premium Platform version 7.1 [16] 
running under Excel 2010.

2. Material and Methods

2.1. Population Dynamics

The model for recruitment, harvesting and stem migration throughout the dbh classes over time is 
based on the model proposed by López et al. [7,8] for Fagus sylvatica L. and by López et al. [9] for 
Pinus nigra Arn. stands. In this case, the stands of the study area are located in the Spanish Iberian 
System, a mountain range extending about 400 km along the north-eastern edge of the central plateau, 
concentrating 60% of the area occupied by Pinus nigra in Spain [17]. The management of Pinus nigra
stands in this area is currently based on the growth and yield tables for Pinus nigra Arn. in the Spanish 
Iberian System [18]. The data in these tables are classified according to growth level into five site 
qualities, of which only the first three have been selected as our data source. These three qualities 
(I, faster; II, medium; and III, slower diameter growth) were defined by the dominant heights reached 
at the reference age of 60 years (20, 17 and 14 m, respectively).
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The starting assumptions were as follows: (a) the forest is in a steady state; (b) the average diameter 
growth curves for Qualities I–III are defined by the Bertalanffy-Richards model; (c) within each 
diameter class, the probability distribution for the diameter of the trees is uniform (rectangular); and 
(d) harvesting operations occur at the beginning of every projection interval.

Harvesting operations in this study area generally took place every 10 years, so we adopted this 
period as the range of the projection intervals in the model. Considering this time period and the 
diameter growth functions corresponding to Qualities I–III, trees were grouped into n diameter classes 
of equal width w = 6 cm: (0,6), (6,12), (12,18), ..., (30,36),…, with the last class being (48,�������	�
than 48 cm) for Quality I, (42,�������	�
��
�����������������
������
�������������	�
��
������������
Quality III. Therefore, an individual tree in class k can remain in class k or progress to class k + 1 
during the projection interval (t, t + 10). The number of trees in each class changed in each projection 
interval, because some were harvested, some remained in the same diameter class and others grew past 
the boundary to the next diameter class. In such conditions, pk refers to the probability that an 
individual tree in class k at time t will appear in class k + 1 at time t + 10. The term, rk, or the 
recruitment coefficient, is the number of offspring (stems/ha) living at time t + 10 produced in the 
interval (t, t + 10) by an average tree in class k at time t (Similar to many standard size classified 
matrix models, we did not consider the smallest diameter class fertile.). The variable, hk(t), defines the 
proportion of harvested trees in class k at year t, natural mortalities included. Finally, xk(t) and 
xk(t + 10) describe the stem densities in class k at the initial and final projection times. By analyzing 
the dynamics of the projections, we find that the model is described accurately by the matrix model:

X(t + 10) = A(I ��H(t)) X(t),

Where:

;

I is the identity matrix, H(t) = diag( h1(t), h2(t) , …, hn(t) ) is a diagonal matrix with the harvest rates 
hk(t) and X(t) and X(t + 10) are column vectors indicating the stem densities at the initial and final 
times of projection, respectively.

2.2. Optimization Model

Since the main objective for the stands in the study area is the production of timber, we use, as the 
objective function of the optimization problem, the net present value of all the management operations 
over a time horizon of T = 70 years, discounted to the beginning of the period, and from the 
landowner’s perspective. The combination of this objective function with the population dynamics 
model produces a discrete optimal control problem, from which we have to determine control variables 
hk(t) that globally maximize the function:
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,

where xk(t), or the state variables, represent the number of stems/ha in class k at year t, hk(t), or the 
control variables, define the harvest rate in class k at year t, vk(t) is the stumpage price that corresponds 
to class k at year t (euro/stem), i is the discount rate and T is the planning horizon in years (where k = 1, 
2, … , n and t = 0, 10, 20, … , T–10 years). The first summation represents the income derived from 
the sale of timber, and the last is the final stocking value. It is well known that the NPV is a justifiable 
management objective for a single economic goal [19].

As commented on in the Introduction, the initial conditions must represent the stable diameter 
distributions of the stand or X(0) = W0.

We also introduce the following constraints:

mk ��hk(t) ��������k = 1, 2, … , n and t = 0, 10, 20, 30, … , T ��10,

where mk is the natural mortality in class k.
By applying the “sustainable/stable” harvesting strategy to each scenario and setting X(0) = W0

(stable diameter distribution) as the initial condition, the basal area of the stand continuously oscillates 
between the Gmin (after harvesting) and Gmax (before harvesting) values, and the stable diameter 
distribution is reached at each time step. Therefore, in order to compare the economically optimal and 
the “sustainable/stable” harvesting strategies, it is essential to assume an additional constraint to 
maintain the stand basal area throughout the harvest cycle within the range Gmin – Gmax (where Gmax =
22 for the G = 22 m2/ha scenario, Gmax = 24 for G = 24 m2/ha, Gmax = 26 for G = 26 m2/ha and Gmin is 
the minimum basal area reached for each scenario under the “sustainable/stable” harvesting strategy) 
during the optimization process.

2.3. Input Estimation

2.3.1. Transition Probabilities

We calculated the transition probabilities by applying the method introduced by López et al. [9] 
considering that, given the basal area constraints and the low basal area scenarios of this study, stand 
density has small influence on diameter growth. Thus, the diameter growths were defined by the 
Bertalanffy-Richards function:

(1)

adjusted using regression analysis to data points (t, D(t)) in Gómez-Loranca’s tables [18]. The main 
characteristics of these growth models for Qualities I–III are shown in Figure 1.

Using these diameter growth models, the transition probabilities from class i to class (i + 1), or from 
interval (6(i � 1), 6i) to interval (6i, 6(i + 1)), are given by:

, for i = 1, 2, 3, 4,…, n ��1 (2)

where , the inverse function of f in (1), is defined by:
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(3)

(where t is age in years and D is dbh in cm).

Figure 1. Diameter growth models: Quality I, D = 51.68 (1 ��	 �0.015259·t)1.255111; Quality II, 
D = 46.645633 (1 ��	�0.014318·t)1.337062; and Quality III, D = 40.644134 (1 ��	�0.013838)1.456382

(dbh, D, in cm and time t in years). The coefficient of determination was always greater 
than 0.999.

The above mentioned transition probability formula is a direct application of the one introduced by 
López et al. [7,8] for a Bertalanffy-Richards model. We provide the calculations for Qualities I–III 
in Table 1.

Table 1. Transition probabilities between diameter classes for each quality.

Quality I Quality II Quality III
(0,6) �������� p1 = 0.7697 p1 = 0.5951 p1 = 0.4564

(6,12) ��������� p2 = 0.8602 p2 = 0.6824 p2 = 0.5326
(12,18) ��������� p3 = 0.7913 p3 = 0.6200 p3 = 0.4697
(18,24) ������� � p4 = 0.6828 p4 = 0.5190 p4 = 0.3692
(24,30) ���� ���� p5 = 0.5533 p5 = 0.3971 p5 = 0.2475
(30,36) ��������� p6 = 0.4106 p6 = 0.2618 p6 = 0.1119
(36,42) ��������� p7 = 0.2587 p7 = 0.1171 -
(42,48) �������� p8 = 0.1000 - -

According to the model assumptions and the methodology used, we had to consider that the same
transition probability, pk, applies to all the individuals in the same class k, where there might exist 
individuals under very different conditions (that is, the transition probability pk is a global property 
shared by all the individuals in the same class k, independently of their local conditions). We consider 
that the stratification into three quality classes must result in low variability around the mean pk values.

1
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2.3.2. Recruitment and Basal Area

Although Pinus nigra regenerates well under its own canopy [20,21] and recruitment may be very 
abundant even at high densities (more than 1,875 stems/ha during a regeneration in Pinus nigra stands 
where G = 51.96 m2/ha, as described in [22]), there is a critical basal area for sufficient light 
transmittance for regeneration, that is, approximately 20–30 m2/ha [23,24]. Therefore, we have 
considered in the calculations three levels of stand basal area in that range, G = 22, 24 and 26 m2/ha. 
With these basal area values, we have assumed the same three levels of recruitment of our previous
studies, R = 200 (scarce recruitment), 520 (normal recruitment) and 840 (abundant recruitment) 
stems/ha. For these cases, similar to other matrix models for tree species [25], we attributed the global 

amount of recruitment R entirely to the last diameter class (r2 = r3 = … = rn-1 = 0; rn = ), which 

had no influence on the stable diameter distribution of the stand, which is established by transition 
probabilities, the global amount of recruitment and stand basal area [7].

2.3.3. Natural Mortalities

We estimated natural mortalities using previous studies. Specifically, Misir et al. [26] developed a 
logistic mortality model for Pinus nigra subsp. pallasiana in Turkey, and from the observed data, they 
estimated an overall annual mortality rate of 1.41%, equivalent to a 13.24% mortality rate in a 10-year 
period. Trasobares and Pukkala [27] studied Pinus nigra Arn. in north-eastern Spain and suggested 
natural mortality rates (including minimal intermediate thinning) of 2% for the D > 30 cm 
diameter classes.

We thus assumed the following 10-year individual tree constant mortality rates for each diameter 
class: m1 = 0.20, m2 = 0.14, m3 = 0.08, m4 = 0.05, m5 = 0.03 and m6 = m7 = … = mn = 0.02.

2.3.4. Sustainable/Stable Harvesting Strategy: Stable Diameter Distribution

As shown in the Introduction, the “sustainable/stable” harvesting strategy is aimed at reaching in 
each harvest the proportions of stems/ha in each class corresponding to the stable diameter distribution 
of the stand, yielding the following “sustainable/stable” harvest rate:

s =

for all the diameter classes and time steps (s also includes the natural mortalities). This rate 
corresponds to the case in which the right eigenvector associated with the dominant eigenvalue � = 1 of 
the transition matrix with harvests is W0.

As commented on in Section 2.2, by applying the “sustainable/stable” harvesting strategy to each 
scenario and setting X(0) = W0 (stable diameter distribution) as the initial condition, the basal area of 
the stand continuously oscillates between the Gmin (after harvesting) and Gmax (before harvesting) 
values, and the stable diameter distribution is reached at each time step. The calculations for the 
27 scenarios of this study, obtained by combining three levels of diameter growth with three levels of 
recruitment (R = 200, 520 or 840 stems/ha) and three levels of stand basal area (G = Gmax = 22, 24 or 

(0)n

R
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	"�� (0, the “sustainable/stable” 
harvest rates, s, and the minimum basal areas, Gmin.

The results obtained for �0 are within the intervals corresponding to other tree species. In this 
regard, Ramula and Lehtilä [28] and Zuidema [29] summarize the main characteristics of matrix 
models, for 35 woody species in the first case and for 37 plant species (13 of them trees) in the second. 
The variation range for �0 went from 0.977 to 1.589 in the first case and from 0.826 to 2.334 in the 
second. In natural forests, with light or no human intervention, �0 values are much lower, because of 
competition, which increases mortality rates and reduces transition probabilities, as well as 
recruitment. However, our results for �0, still within the intervals given in [28] and [29], were expected 
to be slightly high, due to the fact that natural mortalities were absorbed by the harvesting rate, h, not 
being incorporated into matrix A.

Table 2. Numerical values for �0, s, stable distributions and NPV0 (R, recruitment; Q I–III, 
quality class I–III; �0, population growth rate without harvests; s, stable harvest rate; G,
basal area in m2/ha; Est. Dis., stable diameter distribution in stem/ha; NPV0, net present 
value under the stable equilibrium in €/ha for i = 3%).

R = 200 stem/ha R = 520 stem/ha R = 840 stem/ha

Q I

G = 22

�0 1.305091 1.477671 1.594240
s 0.233770 0.323259 0.372742

Gmin 16.857068 14.888296 13.799677
Est. 
Dis.

[186.1, 122.9, 96.4, 77.2, 
61.4, 47.5, 34.6, 22.1, 7.2]

[416.9, 239.8, 162.6, 110.9, 
73.4, 45.7, 25.5, 11.4, 2.4]

[615.9, 325.9, 202.3, 125.4, 
74.6, 41.1, 19.8, 7.4, 1.2]

NPV0 5,347.36 6,118.03 6,383.55

G = 24

�0 1.292499 1.458959 1.571264
s 0.226305 0.314580 0.363570

Gmin 18.568685 16.450081 15.274322
Est. 
Dis.

[188.3, 125.7, 99.8, 81.0, 
65.4, 51.4, 38.3, 25.3, 8.6]

[423.2, 246.9, 169.9, 117.8, 
79.4, 50.5, 28.9, 13.4, 2.9]

[626.4, 336.8, 212.6, 134.2, 
81.5, 45.9, 22.7, 8.8, 1.5]

NPV0 5,743.33 6,611.13 6,918.95

G = 26

�0 1.281305 1.442342 1.550881
s 0.219546 0.306683 0.355205

Gmin 20.291808 18.026241 16.764668
Est. 
Dis.

[190.3, 128.3, 102.9, 84.5, 
69.1, 55.3, 42.0, 28.5, 10.1]

[429.0, 253.5, 176.8, 124.3, 
85.3, 55.3, 32.4, 15.5, 3.5]

[636.1, 347.0, 222.4, 142.6, 
88.2, 50.8, 25.7, 10.2, 1.9]

NPV0 6,130.45 7,096.29 7,447.43

Q II

G = 22

�0 1.262093 1.412527 1.514472
s 0.207665 0.292049 0.339704

Gmin 17.431369 15.574919 14.526515
Est. 
Dis.

[233.3, 147.0, 113.7, 90.3, 
71.1, 53.9, 37.2, 16.6]

[516.1, 280.5, 185.4, 123.4, 
79.1, 46.6, 23.0, 6.5]

[757.0, 376.4, 226.4, 135.8, 
77.3, 39.6, 16.4, 3.7]

NPV0 4,239.22 4,986.61 5,284.13

G = 24
�0 1.251140 1.396188 1.494358
s 0.200729 0.283764 0.330816

Gmin 19.182509 17.189656 16.060414
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Table 2. Cont.

R = 200 stem/ha R = 520 stem/ha R = 840 stem/ha

Q II

G = 24
Est. 
Dis.

[236.3, 150.7, 118.0, 95.0, 
76.1, 58.9, 41.9, 19.5]

[524.6, 289.4, 194.4, 131.7, 
86.1, 52.0, 26.5, 7.8]

[771.0, 389.9, 238.8, 146.1, 
85.0, 44.7, 19.1, 4.5]

NPV0 4,542.73 5,373.95 5,710.91

G = 26

�0 1.241406 1.381684 1.476521
s 0.194462 0.276245 0.322732

Gmin 20.943989 18.817621 17.608961
Est. 
Dis.

[239.1, 154.0, 122.0, 99.5, 
80.9, 63.8, 46.6, 22.6]

[532.4, 297.7, 202.8, 139.6, 
93.0, 57.4, 30.1, 9.2]

[783.9, 402.5, 250.5, 156.0, 
92.7, 49.8, 22.0, 5.4]

NPV0 4,838.92 5,754.14 6,131.06

Q III

G = 22

�0 1.220604 1.350816 1.439536
s 0.180733 0.259707 0.305332

Gmin 18.023866 16.286454 15.282699
Est. 
Dis.

[295.4, 179.0, 138.1, 110.0, 
86.7, 64.6, 32.8]

[644.2, 332.8, 216.0, 140.9, 
87.0, 46.5, 14.8]

[937.6, 440.2, 257.8, 149.7, 
80.5, 36.1, 9.2]

NPV0 3,202.56 3,906.48 4,224.82

G = 24

�0 1.211164 1.336630 1.422004
s 0.174348 0.251850 0.296767

Gmin 19.815651 17.955611 16.877591
Est. 
Dis.

[299.6, 183.8, 143.8, 116.4, 
93.7, 71.8, 38.0]

[655.8, 344.3, 227.4, 151.3, 
95.6, 52.8, 17.6]

[956.3, 457.2, 273.0, 162.1, 
89.4, 41.4, 11.0]

NPV0 3,421.69 4,194.95 4,548.76

G = 26

�0 1.202780 1.324044 1.406468
s 0.168593 0.244738 0.288999

Gmin 21.616583 19.636810 18.486024
Est. 
Dis.

[303.4, 188.3, 149.1, 122.5, 
100.4, 79.0, 43.6]

[666.3, 355.0, 238.2, 161.4, 
104.2, 59.2, 20.4]

[973.6, 473.1, 287.6, 174.1, 
98.3, 46.9, 12.9]

NPV0 3635.05 4477.23 4866.59

The NPV values corresponding to the “sustainable/stable” harvesting strategies are:

.

Since the optimal harvesting strategies produced by the solutions of the discrete optimal control 
problem described in Section 2.2 could give rise to diameter distributions (X) that differ from the stable 
(W0���#	�	)����
	��
�	���"
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�	�%	
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�
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��%�
��
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where xi and wi are the components of the diameter distributions X and W0, scaled to one [30]:
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(scaled to one), become more similar.

2.3.5. Stumpage Value Model

The stumpage value model applied in this study is a generalization of the model proposed for 
Quality I in [14] for Pinus nigra in the Spanish Iberian System. In Table 3, we provide the stumpage 
prices we used in the objective function. Industrial destinations and diameter classes considered are 
based on those used in previous studies [27,31]. The regression models adjusted to these data appear in 
Figure 2. The prices in Table 3 come from the official statistics [32] and have been contrasted with real 
data from actual harvests. The stumpage prices of Pinus nigra in Spain have remained fairly stable 
between 1994 and 2011 [32].

Table 3. Stumpage prices (€/m3) of Pinus nigra in Spain according to diameter class and 
contribution to the final price of the four industrial destinations considered.

Products
Diameter classes (cm)

<20 20–40 >40

Particle board 6 1.2 0.6

Poles 0 11.85 0

Sawlog 0 9.8 11.76

High quality sawlog 0 0 9.96

Total average price 6 22.85 22.32

Figure 2. Stumpage price models: Quality I, v = D3.186471 exp(�202 �34�����0�2���25� �3

D); Quality II, v = D3.114196 exp(�20�2�4 �� �� 303 ���45� �3 D); and Quality III: 
v = D2.987053exp(�20�� 322� �� �0 2�24�5� �2D) (stumpage prices v in euro stem�1 and 
diameter D in cm). The coefficient of determination was always greater than 0.9999.
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The last row in Table 3 shows average price per cubic meter for trees belonging to the different
diameter classes. This price is obtained by adding up the four rows above showing the contributions to 
the final value of a tree of the four industrial destinations according to the percentage of wood of each 
diameter class going into each product type. The prices of particle board, poles, sawlog and high 
quality sawlog are 6.0, 39.5, 19.6 and 33.2 €/m3, respectively.

3. Results and Discussion

3.1. Results

By substituting the transition probabilities in Table 1, the “sustainable/stable” harvest rates, s, and 
stable diameter distributions, W0, in Table 2, into the proposed discrete optimal control model and 
solving globally the corresponding optimization problems (Solver finds the globally optimal solution 
to each problem by changing the hk(t) variables, for k = 1, 2, … , n, and t = 0, 10, 20, … , 70 years), we 
obtained optimal state and control variables, xk(t) and hk(t); basal areas before and after each harvest; 
optimal NPV and the NPV corresponding to the “sustainable/stable” harvesting strategy; and 
Keyfitz’s -���������
�	�"�	
����"0�$�	���"���

���
	"��''��	���	���%	
#		
�2%–6%, as is typical of forest 
management studies.

We thus obtain four main results. First, Figure 3 shows the population dynamics, xk, needed to 
maximize the NPV function over 70 years with G = 24 m2 ha�1 and i = 3%. Second, Figure 4 depicts 
the optimal harvesting strategies, hk(t), for G = 24 m2 ha�1 and i = 3%. Third, the NPV increase 
between the “sustainable/stable” harvesting strategy s and the optimal harvesting strategy (maximizing 
NPV function) for i = 3% and different values of Quality, R and G, appears in Table 4. Fourth, Table 5 
"��#"� 
�	� "	
� ��� )���	"� ���� *	���
+,"� -� �
� 
�	� 	
�� ��� 
�	� ���)	"
� ����	�� ���
&�#�
�� 
�	� '�'���
��
�
growth rate, �T, for the whole harvest cycle of T = 70 years. Note that the transition matrix, AT, for the 
whole harvest cycle (from t = 0 to t = 70 years) is:

,

and that �T < 1 for all the scenarios. Therefore, the economically optimal harvesting strategies were 
unsustainable for all the scenarios, which implies that, by executing the same harvest cycle indefinitely, 
the population of trees would be decaying until extinction.

The tables and figures mentioned in the above paragraph are included below.
The optimal harvesting strategy, designed to maximize NPV, results in higher NPV figures than the 

“sustainable/stable” strategy. For i = 3%, this increment is always greater than 8.43%, with a 
maximum of 17.50% for Quality I, R = 520 stems/ha and G = 22 m2/ha. The NPV increase was greater 
for Quality I than for Quality II or Quality III. For higher discount rates, NPV increase rates are 
slightly higher, from a minimum of 10.88% to a maximum of 21.29% for i = 6%, Quality I, 
R = 520 stems/ha and G = 24 m2/ha. The pattern of change for the three site qualities is kept for the 
different discount rates. 
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Figure 3. Population dynamics, xk, to maximize the NPV function throughout a harvest 
cycle of 70 years for G = 24 m2 ha�1 and i = 3% (left: Quality I; middle: Quality II; right:
Quality III; first row: R = 200 stems/ha; second row: R = 520 stems/ha; third row:
R = 840 stems/ha). The initial conditions (intercepts on ordinate axis) are defined by the 
stable diameter distributions.

Quality I, R = 200 Quality II, R = 200 Quality III, R = 200

Quality I, R = 520 Quality II, R = 520 Quality III, R = 520

Quality I, R = 840 Quality II, R = 840 Quality III, R = 840
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Figure 4. Optimal harvesting strategies, hk(t), for G = 24 m2 ha�1 and i = 3% (left:
Quality I; middle: Quality II; right: Quality III; first row: R = 200 stems/ha; second row:
R = 520 stems/ha; third row: R = 840 stems/ha). The dashed lines depict the 
“sustainable/stable” harvest rates, s.

Quality I, R = 200 Quality II, R = 200 Quality III, R = 200

Quality I, R = 520 Quality II, R = 520 Quality III, R = 520

Quality I, R = 840 Quality II, R = 840 Quality III, R = 840
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Table 4. Optimal strategy NPV and NPV increase (%) between the optimal and 
“sustainable/stable” harvesting strategies for i = 3% and different levels of Quality, R and 
G (G in m2/ha).

R = 200 stem/ha R = 520 stem/ha R = 840 stem/ha
NPV
(€/ha)

NPV
increase 

(%)

NPV
(€/ha)

NPV
increase 

(%)

NPV
(€/ha)

NPV
increase 

(%)

Q I
G = 22 6205.07 16.04 7188.49 17.50 7468.18 17.00
G = 24 6636.65 15.55 7767.29 17.49 8095.43 17.00
G = 26 7056.80 15.11 8316.44 17.19 8718.00 17.06

Q II
G = 22 4788.21 12.95 5754.83 15.40 6139.05 16.18
G = 24 5124.07 12.80 6203.83 15.44 6623.80 15.99
G = 26 5453.96 12.71 6647.77 15.53 7098.14 15.77

Q III
G = 22 3,502.94 9.38 4,389.27 12.36 4,820.65 14.10
G = 24 3,724.85 8.86 4,701.48 12.07 5,185.97 14.00
G = 26 3,941.58 8.43 5,007.24 11.84 5,529.35 13.62

Table 5. *	���
+,"� -� )���	"�� ����	"'�
��
&� 
�� 
�	� ��"
�
�	� %	
#		
� 
�	� ����	
	��
distribution associated with the optimal harvesting strategy (for t = 70 years) and the stable 
diameter distribution (W0), as well as population growth rates, �T, for the whole harvest 
cycle (from t = 0 to t = 70 years) (G in m2/ha).

R = 200 stem/ha R = 520 stem/ha R = 840 stem/ha
- �T - (T - �T

Q I

G = 22 0.450415 0.056033 0.397311 0.002602 0.394624 0.000226

G = 24 0.434304 0.178754 0.392813 0.002866 0.390207 0.000284

G = 26 0.425244 0.210573 0.437235 0.002866 0.387282 0.000559

QII

G = 22 0.467745 0.310556 0.490225 0.006628 0.361989 0.004161

G = 24 0.467935 0.333705 0.487651 0.011089 0.351967 0.004161

G = 26 0.468382 0.354182 0.478031 0.014921 0.346997 0.004161

Q III

G = 22 0.348297 0.604092 0.392534 0.275817 0.335904 0.365103

G = 24 0.422880 0.551102 0.385367 0.303478 0.323309 0.336591

G = 26 0.417756 0.562400 0.378934 0.337522 0.324559 0.312709

Applying the optimal harvesting strategy, for Qualities I, II and III, the diameter distribution of the 
stand evolved through time, leaving the initial equilibrium distribution and tending toward a diameter 
distribution more characteristic of even-aged stands. For high recruitments (R = 840 stems/ha), the 
resulting distribution at the end of T = 70 years is a bimodal distribution, more accentuated for 
Quality I. Figure 5 contains, as an example, a scenario corresponding to Quality I, G = 24 m2/ha, R =
520 stems/ha and i = 3%.
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Figure 5. Evolution of the diameter distribution with the economically optimal harvesting 
strategy throughout a harvest cycle of 70 years for Quality I, G = 24 m2/ha, 
R = 520 stems/ha and i = 3%.

The influence of small variations in the discount rate or the natural mortality rates on the optimal 
harvesting strategies was minimal, because they did not change the general pattern of the solutions.

3.2. Discussion and Conclusions

This study proposes a model that combines an objective function comprising the NPV of all the 
management operations in a planning horizon of 70 years with a matrix model for the population 
dynamics. The resulting discrete optimal control model provides a simple tool for heuristic analysis to 
answer the “what if” questions in relation to forest management actions.

Following López et al. [7–9], we calculated the transition probabilities considering that pk is an 
average global property shared by all the individuals in the same class k, and that, given the basal area 
constraints and the low basal area scenarios of this study, there is a low variability around the mean pk

values (see section 2.3.1) thus resulting in a small influence on diameter growth. Moreover, in the case 
of these constrained optimization matrix models, in which the search for optimal paths throughout the 
phase space is mainly governed by the objective function, optimal decisions are essentially conditioned 
by the stumpage prices, i.e. by selective harvesting, and thus stand density has minor influence on 
the objective.

López et al. [8] also show that results obtained for �0 are sensitive to the width, w, of the diameter 
classes, such that the most conservative values of �0 and s result from the lowest values of w (which 
does not allow an individual tree to jump over more than one diameter class in a single projection).
The minimum (integer) widths of the diameter classes compatible with this model assumption were 
w = 6 cm for Quality I, w = 5 cm for Quality II and w = 4 cm for Quality III. However, since the 
dominant eigenvalue �0 and the stable diameter distribution are not substantially affected by small or 
even moderate changes in the width of the diameter classes, the width considered throughout this study 
was w = 6 cm, to facilitate the comparison of results.
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The basal area indirectly resulted in optimization problems, such as a “bang-bang control” variable, 
which oscillated between Gmin and Gmax. The upper and lower bounds imposed on basal area values are 
derived from the “sustainable/stable” harvesting strategy (to compare the optimal strategy with 
the “sustainable/stable”).

By applying optimal harvesting strategies, the schedules aim for the highest NPV, with an intense 
harvest (h > 0.5) performed in the diameter classes during the planning horizon as follows:

For high recruitments, the intense harvest applies to the upper diameter class at the beginning (first 
period) and the end (seventh period) of the planning horizon. In addition, for medium and high 
recruitments, the intense harvest gets performed in every period of the planning horizon for the 
diameter classes corresponding to poles, while low recruitments follow a different pattern. In this case, 
the intense harvest is performed in the upper diameter classes, since low recruitments are associated 
with a lower number of stems per hectare with a higher average diameter.

For the three qualities, this harvest pattern caused a decrease in the number of stems of the first 
diameter class, such that at the end of the time horizon, the diameter range of the distribution narrowed 
and shifted from a reversed J-shaped curve to a bell-shaped curve, centered on the medium diameter 
classes (18–36 cm), as is typical of an even-aged stand distribution (see Figure 5). The intermediate 
diameter classes correspond to trees going to the production of poles. This type of evolution might be 
favored by market conditions for Pinus nigra products in Spain, because of the high price of poles 
obtained from those diameter classes (see Table 3).

There is not a significant change in the harvest pattern for the optimal strategy when higher 
discount rates are considered, except for a slight trend to advance harvest in the upper diameter classes. 
This result, leading to an earlier harvest, is consistent with an increase in the discount rate.

The NPV increase rate between the optimal and “sustainable/stable” harvesting strategies grows 
slightly with discount rate. The pattern of NPV change for the three site qualities is kept for the 
different discount rates considered in the analysis.

By applying the optimal harvesting strategies, at the end of T = 70 years, the Keyfitz’s -�)���	"�
ranged from 0.32 to 0.49; that is, the stand moved away from the equilibrium. For i 6��7��
�	���#	"
�-�
values emerged for higher recruitments (R = 840 stems/ha) and Quality III.

Regarding the sustainability of the optimal harvesting strategies, all the scenarios were 
unsustainable (see Table 5). In fact, the population growth rate, �T, for the whole harvest cycle (given 
by the dominant eigenvalue of the transition matrix, AT) was always �T < 1. Moreover, the population 
decline was greater for Quality I, followed by Quality II and Quality III, and with some exceptions, the 
greater the recruitment was, the greater the population decline induced by the optimal harvesting 
strategies. It is not difficult to implement constraints to obtain � = 1 at each time step (for example, by 
assuming in the model a new set of constraints obtained by solving the determinant 
det(A(I – H(t)) – I) = 0 for hn(t), at each time step), but this does not guarantee either that �T = 1 or that 
the stable distribution is reached at t = T (the �T values are in this case closer to one, but clearly, it 
remains �T < 1 for all the scenarios). However, with the “sustainable/stable” harvesting strategy, we get 
� = 1 and the stable diameter distribution at each time step, and �T = 1 for the whole harvest cycle.

In conclusion, the proposed discrete optimal control model was used to analyze if the introduction 
of an NPV maximizing management strategy on the dynamics of uneven-aged Pinus nigra stands in 
demographic equilibrium (with the stable diameter distribution W0 set as the initial condition), leads to 
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distributions that move away from that equilibrium through time and assessing the sustainability of 
those strategies. Our results suggest that the economically optimal harvesting strategies were 
unsustainable and unstabilizing for all the scenarios. This is unsurprising, because these assumptions 
(�T = 1 and W0) were not specified in the model. In addition, these considerations in general are not 
present in previous models to optimize uneven-aged stands management. Therefore, it would be 
interesting to incorporate into further evolutions of this optimization model constraints related to the 
maintenance of a certain age structure, a final stable distribution (i.e., X(T) = W0) and/or the 
sustainability for the whole harvest cycle (�T = 1). These determinants are common in traditional 
uneven-aged forest management.
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