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Abstract: American chestnut (Castanea dentata Borkh.) was a dominant tree species in its native
range in eastern North America until the accidentally introduced fungus Cryphonectria parasitica
(Murr.) Barr, that causes chestnut blight, led to a collapse of the species. Different approaches
(e.g., genetic engineering or conventional breeding) are being used to fight against chestnut blight
and to reintroduce the species with resistant planting stock. Because of large climatic differences
within the distribution area of American chestnut, successful reintroduction of the species requires
knowledge and consideration of local adaptation to the prevailing environmental conditions.
Previous studies revealed clear patterns of genetic diversity along the northeast-southwest axis
of the Appalachian Mountains, but less is known about the distribution of potentially adaptive
genetic variation within the distribution area of this species. In this study, we investigated neutral and
potentially adaptive genetic variation in nine American chestnut populations collected from sites with
different environmental conditions. In total, 272 individuals were genotyped with 24 microsatellite
(i.e., simple sequence repeat (SSR)) markers (seven genomic SSRs and 17 EST-SSRs). An FST-outlier
analysis revealed five outlier loci. The same loci, as well as five additional ones, were significantly
associated with environmental variables of the population sites in an environmental association
analysis. Four of these loci are of particular interest, since they were significant in both methods,
and they were associated with environmental variation, but not with geographic variation. Hence,
these loci might be involved in (temperature-related) adaptive processes in American chestnut.
This work aims to help understanding the genetic basis of adaptation in C. dentata, and therefore the
selection of suitable provenances for further breeding efforts.
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1. Introduction

American chestnut (Castanea dentata Borkh.) has been a dominant tree species in its distribution
range in eastern North America and one of the ecologically and economically most important species in
that region [1–3]. The accidentally introduced fungus Cryphonectria parasitica (Murr.) Barr, that causes
chestnut blight, dramatically reduced the number and vitality of chestnut trees, so that the species
nowadays occurs mainly as a vegetative propagating (from stump sprouts) understory shrub [1,3,4].
Mainly three different approaches have been used to fight against chestnut blight [1]: inoculation of
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diseased trees with hypovirulent strains of C. parasitica, genetic engineering, and breeding of resistant
trees. Treatment of cankers with hypoviruses is effective in intensively managed plantations or orchards
and hypoviruses naturally occur in Michigan (USA), but biological control with hypovirulence has
not been successful in forest populations in North America [5]. Genetic engineering of resistant trees
has made substantial progress, but is currently limited by public acceptance and regulatory and
legal restrictions. For instance, genetically modified trees to be grown in North America must be
sterile or have some other means to control flowering [6], and hence, natural repopulation by sexual
reproduction is impossible. Large efforts have also been made in conventional breeding to establish
blight resistant chestnut trees. Specifically, backcross breeding was used to incorporate blight resistance
from Chinese chestnut (Castanea mollissima Blume) into C. dentata, resulting in hybrid trees that show
a lower disease incidence [7–9]. The development of new genomic resources [10–14] for different
Castanea species will help to enhance breeding success for disease resistance.

Because of large climatic differences within the distribution area of American chestnut, a successful
reintroduction of the species requires knowledge and consideration of local adaptation to the prevailing
environmental conditions. For instance, there are indications that hybrid backcrossed chestnut trees
are less cold tolerant than pure American chestnut trees [15]. Different studies investigated the
distribution of genetic diversity based on different genetic markers in American chestnut populations
in North America. Thus, the highest genetic diversity was detected in southwestern populations
with a decrease along the Appalachian Mountains to the northeast [16,17]. Furthermore, a clinal
variation of allele frequencies was observed along the Appalachian axis [16–18]. The observed
distribution of genetic variation is most likely an effect of postglacial recolonization. Refugial areas
of American chestnut were likely located far south along the Gulf Coast and the species re-migrated
comparatively slowly to the north arriving in Connecticut (northeast USA) only about 2000 years
ago [19,20]. Less is known, however, about the distribution of potentially adaptive genetic variation
within the distribution area of American chestnut. Therefore, we investigated neutral and potentially
adaptive genetic variation in nine American chestnut populations growing under different climatic
conditions. The same populations were analyzed previously by Gailing and Nelson [16] with partly
overlapping markers (17 EST-SSR markers as well as five chloroplast SSR markers). They found
a decrease of genetic diversity from southwest to northeast but also a high genetic diversity of a
population from Ontario (Canada). This population clustered together with southwestern populations
from the USA. Furthermore, allele frequencies were strongly associated with longitude, and population
pairs east and west of the Appalachian axis showed pronounced allele frequency differences over a
small geographic range. In this study, seven additional putatively neutral SSR markers were included to
separate neutral from potentially adaptive variation patterns. In total, 272 individuals were genotyped
with 24 SSR markers (seven genomic SSRs (g-SSRs) and 17 genic EST-SSRs). The objectives of the study
were: (1) to identify markers with signatures of selection by means of outlier tests, and (2) to associate
these markers with environmental variables of the population sites.
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2. Materials and Methods

2.1. Plant Material and Environmental Variables

DNA samples of nine American chestnut populations covering a wide portion of the species’
native range were described in a previous study [16] (Figure 1, Table 1). The original sampling of
the populations (dormant buds or expanded leaves) was conducted as described in Kubisiak and
Roberds [17]. A total of 272 individuals (with 25 to 32 individuals per population) were investigated in
the present study.Forests 2018, 9, x FOR PEER REVIEW  3 of 15 

 

 
Figure 1. Locations of the sampled chestnut populations, OCA—Ontario, MA—Massachusetts, PCT—
Portland, NYUC—New York, PYC—Pennsylvania, MMD—Maryland, KPC—Kentucky, ABR—
Asheville, MNC—Murphy; the map was created with SimpleMappr [21]. 

Climate data (19 bioclimatic variables “bioclim”, period 1950–2000, resolution: 30 arc sec) for the 
sampling sites were obtained from the WorldClim database [22] using the Data Extraction Tool of the 
Senckenberg Research Society (http://dataportal-senckenberg.de/dataExtractTool/). Based on the 
WorldClim data, two additional variables were calculated that may be important for adaptation in 
tree species: mean growing season temperature and mean growing season precipitation, where the 
growing season was considered to last from May 1 to 30 September. The former ranged from 16.5 °C 
for the Maryland population to 21 °C for the Kentucky population, whereas the latter ranged from 404 
mm (Ontario population) to 628 mm (Asheville population) (Table 1). An overview of all 
environmental variables can be found in Table S1. 

 

Figure 1. Locations of the sampled chestnut populations, OCA—Ontario, MA—Massachusetts,
PCT—Portland, NYUC—New York, PYC—Pennsylvania, MMD—Maryland, KPC—Kentucky,
ABR—Asheville, MNC—Murphy; the map was created with SimpleMappr [21].

Climate data (19 bioclimatic variables “bioclim”, period 1950–2000, resolution: 30 arc sec) for the
sampling sites were obtained from the WorldClim database [22] using the Data Extraction Tool of the
Senckenberg Research Society (http://dataportal-senckenberg.de/dataExtractTool/). Based on the
WorldClim data, two additional variables were calculated that may be important for adaptation in tree
species: mean growing season temperature and mean growing season precipitation, where the growing
season was considered to last from May 1 to 30 September. The former ranged from 16.5 ◦C for the
Maryland population to 21 ◦C for the Kentucky population, whereas the latter ranged from 404 mm
(Ontario population) to 628 mm (Asheville population) (Table 1). An overview of all environmental
variables can be found in Table S1.
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Table 1. Population characteristics.

Population Number of
Individuals Latitude Longitude Altitude [m a.s.l.] Annual Mean

Temperature [◦C] a
Annual

Precipitation [mm] a
Mean Growing Season

Temperature [◦C] a
Mean Growing Season

Precipitation [mm] a

Ontario 32 43.08 80.3 231 7.3 921 16.98 404
Massachusetts 32 42.22 72.31 111 8.3 1119 17.78 484

New York 26 41.44 74.13 110 8.2 1207 17.66 533
Portland 25 41.35 72.37 2 9.6 1222 18.70 504

Pennsylvania 31 39.48 76.59 119 11.2 1032 20.38 464
Maryland 31 39.37 79.07 569 7.9 1120 16.5 513
Kentucky 32 37.50 83.51 213 12.4 1214 20.98 547
Asheville 31 35.46 82.10 300 10.7 1435 17.94 628
Murphy 32 35.05 84.01 540 13.3 1491 20.94 598

a Period 1950–2000, WorldClim data [22].
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2.2. SSR Genotyping

Populations were characterized at a total of 24 SSRs (17 EST-SSRs and 7 g-SSRs; Table S2).
All markers (except for QaCA022) were used for genetic mapping in C. mollissima [11], and cover
10 different linkage groups (LGs) (Table S2). Genotype data for the 17 EST-SSRs were obtained from a
previous study [16]. The EST-SSRs were originally developed in C. mollissima [11]. In order to have
a better representation of putatively neutral genetic variation, further genotyping was conducted
for the remaining seven g-SSRs. Six of these g-SSRs were originally developed for Castanea sativa
(CsCAT1, CsCAT3, CsCAT7, CsCAT8, CsCAT14 and CsCAT24) and one (QaCA022) was originally
derived from Quercus alba but successfully tested in Castanea dentata [17]. For cost-efficient PCR,
a M13-specific sequence (5′-CACGACGTTGTAAACGAC-3′) was added to the 5′ end of each forward
primer, so that only the M13 primer had to be labeled with fluorescent dyes [11,23]. For more accurate
genotyping we further added a PIG-tail sequence (5′-GTTTCTT-3′) to the 5′ end of each reverse
primer [24]. The primer CsCAT24 was analyzed in a separate PCR, while for the other primers
multiplex reactions were established and analyzed (multiplex 1: CsCAT8 and CsCAT14; multiplex
2: CsCAT3 and QaCA022; and multiplex 3: CsCAT1 and CsCAT7). A touchdown PCR program
comprised of the following steps was used for all reactions: an initial denaturation of 95 ◦C for 15 min,
followed by 10 touchdown cycles of 94 ◦C for 1 min, 60 ◦C (−1 ◦C per cycle) for 1 min, and 72 ◦C for
1 min, 25 cycles of 94 ◦ for 1 min, 50 ◦C for 1 min, and 72 ◦C for 1 min, followed by a final extension
step of 72 ◦C for 20 min. The PCR mix consisted of 1µL DNA (ca. 0.6 ng/µL), 1.5 µL 10x reaction buffer
B (Solis BioDyne, Tartu, Estonia), 1.5 µL MgCl2 (25 mM), 1 µL dNTPs (2.5 mM each dNTP), 0.2 µL
(5 U/µL) HOT FIREPol Taq DNA polymerase (Solis BioDyne, Tartu, Estonia), 0.2 µL (5 picomole/µL)
tailed forward primer, 0.5 µL (5 picomole/µL) PIG-tailed reverse primer, 1 µL (5 picomole/µL) dye
labeled (6-FAM or 6-HEX) M13 primer and 5.5 µL H2O. Fragments were separated on an ABI 3130xl
Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) using GS 500 ROX (Applied Biosystems,
Foster City, CA, USA) as an internal size standard. Microsatellite genotyping was conducted with
the GeneMapper 4.0 software (Applied Biosystems, Foster City, CA, USA). All genotypic data can be
found in data file S1.

2.3. Data Analysis

A principle component analysis (PCA) was conducted on the climate variables to obtain
principle components (PCs) for the association analysis (see below). In addition to the 19 bioclim
variables, longitude, latitude, altitude, mean growing season temperature, and mean growing season
precipitation were included in the analysis. The PCA was performed with the “prcomp” function in
R 3.4.3 [25]. For the PCA the variables were standardized to a mean of 0 and a standard deviation
of 1. For an interpretation of the PCs we calculated Spearman’s rank correlation coefficients among
environmental variables and PCs using the “corr.test” function in the psych 1.7.8 R package [26] with
correction for multiple testing (false discovery rate (FDR) [27] with a threshold of 5%).

The GenAlEx 6.5 software [28,29] was used to calculate the number of alleles (Na), the mean
number of private alleles (Pa), the observed heterozygosity (Ho), and the expected heterozygosity (He)
separately for the seven g-SSRs and the 17 EST-SSRs as well as across all markers. The inbreeding
coefficient (FIS) [30] and linkage disequilibrium (LD) were calculated with the Genepop software
4.7 [31] using 10,000 demorizations, 100 batches and 5000 iterations per batch for Markov chain
parameters. Presence and frequency of null alleles were determined with the Micro-Checker software
2.2.3 [32]. Population structure was inferred with the STRUCTURE 2.3.4 software [33]. Two different
analyses were performed: the first one based on the complete marker set, and the second one based only
on potentially neutral SSR markers (markers CmSI0495, CmSI0527, CmSI0537, CmSI0559, CmSI0561,
CmSI0608, CmSI0611, CsCAT7 and CsCAT24). Markers were considered as neutral when they did
not show deviations from neutrality in the outlier analyses, and when they were not associated with
the PCs based on the environmental variables (see below). For both analyses, the admixture model
and correlated allele frequencies were selected. A burn-in period of 50,000 and Markov chain Monte
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Carlo (MCMC) replicates of 100,000 were used. Potential clusters (K) from 1 to 16 were tested using
10 iterations. The ∆ K method by Evanno et al. [34] was applied to determine the most likely number
of K using the STRUCTURE HARVESTER 0.6.94 program [35]. The CLUMPAK software [36] was used
for summation and graphical representation of the STRUCTURE results.

Outlier analyses were conducted for all loci using LOSITAN 1.0 [37] with 70,000 simulations, a
FDR of 0.1, and the stepwise mutation model. Additionally, the BayeScan software 2.1 [38] was used
to detect outlier loci. We used default parameters including 100,000 iterations after a burn-in of 50,000.
A q-value threshold of 10% was applied to determine significant outliers. The markers used in this
study were not directly derived from Castanea dentata. Therefore, sequences in which the outlier loci
and loci that were significantly associated with the PCs of the environmental variables (see results) were
located, were used for sequence similarity searches against Castanea dentata transcripts using the BLAST
search option on the hardwood genomics homepage (https://www.hardwoodgenomics.org/blast).

A general linear model (GLM) implemented in the TASSEL 2.1 software [39] was used to
detect marker-environment associations. In association studies, it is necessary to account for neutral
population structure [40]. The outlier analysis revealed not only significant EST-SSRs, but also two
significant g-SSR loci (see below). Furthermore, loci under weak selection may not be detected by
outlier approaches [40,41]. Thus, in the final association analysis only markers without signatures of
selection in the outlier and initial association analyses (see below) were used to infer neutral population
structure. Initially, only populations among which no population structure was detected using all
markers were included in the association analyses (analysis 1: Ontario, Maryland, Kentucky, Asheville
and Murphy; analysis 2: Massachusetts, New York and Portland), and hence, no Q-matrix was used as
covariate in the model to correct for population structure. Tested were associations between all markers
and the first three PCs (PC1, PC2 and PC3) obtained from the PCA of the environmental variables.
In the final association analysis, loci that showed significant associations in the initial analyses and
outlier loci were tested for associations with the three PCs in all populations. The remaining neutral loci
were used to calculate the Q-matrix in STRUCTURE as covariate to account for population structure.
The reported p-values are based on 1000 permutations and correction for multiple testing based on the
methods by Churchill and Doerge [42] and Ge et al. [43] implemented in the TASSEL software.

3. Results

3.1. Environmental Variables

The PCA showed that the first three PCs (hereafter PC1, PC2 and PC3) had eigenvalues higher
than 1 and explained 92.01% of the variance of the environmental variables. For a better interpretation
of the different PCs, they were correlated with the environmental variables. PC1 showed a significant
negative correlation with latitude, temperature seasonality (bio4), and temperature annual range
(bio7), but also a positive correlation with several climatic variables such as annual mean temperature
(bio1), minimum temperature of the coldest month (bio6), or annual precipitation (bio12) (Table 2).
PC2 was significantly positively correlated with the maximum temperature of the warmest month
(bio5), and PC3 was significantly negatively correlated with altitude.

Table 2. Correlation between principal components and environmental variables.

Variable Description
PC1 PC2 PC3

Correlation Coefficient

Longitude longitude 0.62 0.23 −0.65
Latitude latitude −0.93 0.10 0.23

GST mean growing season temperature 0.73 0.57 0.33
GSP mean growing season precipitation 0.78 −0.38 −0.18

Altitude altitude 0.30 −0.13 −0.80
bio1 annual mean temperature 0.85 0.38 0.27
bio2 mean diurnal range 0.76 0.13 −0.05
bio3 isothermality 0.85 −0.05 −0.22

https://www.hardwoodgenomics.org/blast
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Table 2. Cont.

Variable Description
PC1 PC2 PC3

Correlation Coefficient

bio4 temperature seasonality −0.93 0.25 0.22
bio5 max. temperature of warmest month 0.35 0.84 0.40
bio6 min. temperature of coldest month 0.97 0.07 −0.10
bio7 temperature annual range −0.79 0.51 0.31
bio8 mean temperature of wettest quarter −0.48 0.45 −0.59
bio9 mean temperature of driest quarter 0.92 0.23 0.18
bio10 mean temperature of warmest quarter 0.55 0.67 0.43
bio11 mean temperature of coldest quarter 0.98 0.03 0.00
bio12 annual precipitation 0.87 −0.33 0.12
bio13 precipitation of wettest month 0.83 −0.27 −0.03
bio14 precipitation of driest month 0.62 −0.65 0.32
bio15 precipitation seasonality 0.34 0.37 −0.77
bio16 precipitation of wettest quarter 0.80 −0.30 −0.17
bio17 precipitation of driest quarter 0.75 −0.47 0.27
bio18 precipitation of warmest quarter 0.80 −0.40 −0.27
bio19 precipitation of coldest quarter 0.83 −0.28 0.23

Bold: p < 0.05.

3.2. Genetic Diversity and Population Structure

The number of alleles (Na) ranged from 4.1 in the Portland population to 7.3 in the Murphy
population, and the mean number of private alleles ranged from 0 (Portland) to 0.833 (Murphy)
(Table 3). The observed heterozygosity (Ho) ranged from 0.521 (Kentucky) to 0.586 (Murphy),
whereas the expected heterozygosity (He) ranged from 0.469 (Portland) to 0.610 (Murphy). The mean
fixation index (FIS) was 0.0157 and it was significantly different from zero in six populations (Table 3),
albeit no population showed consistently positive or negative FIS values for all markers (Table S3).
The mean genetic diversity indices (except Pa) were lower based on EST-SSRs than on g-SSRs (Table 3),
even though several EST-SSRs also showed high values of Na, Ho and He (Table 4). The percentage
of loci pairs in linkage disequilibrium ranged from 2.5% in the New York population to 9.8% in the
Kentucky population, with a mean of 5.6% among all populations (Table S4). Only few markers
showed evidence for the presence of null-alleles in the different populations (Table S5).

The STRUCTURE analysis revealed the most likely number of K = 2 based on the ∆K method [34]
and the complete marker set, and the most likely number of K = 3 based on only potentially neutral
markers (Figure S1). Based on the complete marker set, the northeastern populations Massachusetts,
New York and Portland formed one cluster, and the remaining populations a second cluster (Figure 2).
Only the Pennsylvania population was not clearly assigned to one of the two clusters, but reveals
a high degree of admixture. Based on potentially neutral loci, a similar clustering was observed,
albeit the Pennsylvania population showed a similar admixture level as the southern populations and
Ontario (Figure S2).
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Table 3. Genetic diversity indices.

Complete Marker Set g-SSRs EST-SSRs

Population Na Pa Ho He FIS Na Pa Ho He FIS Na Pa Ho He FIS
Ontario 6.2 0.375 0.550 0.578 0.0661 * 8.4 0.000 0.729 0.727 0.0166 * 5.3 0.529 0.477 0.517 0.0930 *

Massachusetts 5.0 0.042 0.560 0.575 0.0406 * 7.9 0.143 0.706 0.783 0.1117 * 3.9 0.000 0.499 0.489 −0.0050
New York 5.1 0.042 0.585 0.556 −0.0328 7.6 0.143 0.753 0.704 −0.0493 4.1 0.000 0.516 0.495 −0.0230
Portland 4.1 0.000 0.526 0.469 −0.1011 5.4 0.000 0.743 0.651 −0.1207 3.5 0.000 0.437 0.394 −0.0877

Pennsylvania 5.1 0.042 0.562 0.542 −0.0227 * 6.6 0.000 0.736 0.706 −0.0349 * 4.5 0.059 0.490 0.475 −0.0154
Maryland 5.8 0.042 0.563 0.553 −0.0021 9.1 0.143 0.738 0.743 0.0220 4.5 0.000 0.491 0.475 −0.0174
Kentucky 5.8 0.208 0.521 0.565 0.0945 * 8.4 0.143 0.618 0.728 0.1668 * 4.7 0.235 0.481 0.498 0.0508 *
Asheville 5.9 0.125 0.530 0.545 0.0433 * 8.9 0.143 0.720 0.731 0.0265 4.7 0.118 0.451 0.468 0.0525 *
Murphy 7.3 0.833 0.586 0.610 0.0552 * 10.7 0.857 0.753 0.801 0.0782 * 5.8 0.824 0.517 0.531 0.0413 *

Mean 5.6 0.190 0.554 0.555 0.0157 8.1 0.175 0.722 0.730 0.0241 4.5 0.196 0.484 0.482 0.0099

Na-number of alleles, Ho-observed heterozygosity, He-expected heterozygosity, FIS-fixation index, Pa-mean number of private alleles, * p < 0.05.
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Table 4. Genetic diversity indices for each marker over all populations.

Marker Na Ho He FIS

CmSI0031 7.1 0.696 0.719 0.0534 *
CmSI0049 3.4 0.243 0.231 −0.0331 *
CmSI0327 7.0 0.731 0.743 0.0333
CmSI0391 4.0 0.585 0.585 0.0190
CmSI0396 3.7 0.596 0.601 0.0305
CmSI0495 3.9 0.350 0.350 0.0258
CmSI0527 3.6 0.272 0.292 0.0851
CmSI0537 4.2 0.235 0.249 0.0721
CmSI0551 4.2 0.344 0.368 0.0883
CmSI0559 3.8 0.616 0.601 −0.0079
CmSI0561 5.0 0.477 0.468 0.0056
CmSI0594 3.3 0.365 0.375 0.0524
CmSI0600 8.7 0.809 0.771 −0.0331
CmSI0608 2.0 0.415 0.372 −0.1021
CmSI0611 2.4 0.113 0.118 0.0704
CmSI0678 5.2 0.737 0.688 −0.0528 *
CmSI0683 5.8 0.652 0.671 0.0474 *
CsCAT1 8.2 0.791 0.776 0.0048
CsCAT3 9.9 0.734 0.789 0.0923 *
CsCAT7 6.0 0.610 0.672 0.1143 *
CsCAT8 7.4 0.628 0.603 −0.0216

CsCAT14 6.8 0.767 0.712 −0.0498 *
CsCAT24 11.7 0.785 0.855 0.0978 *
QaCA022 6.8 0.740 0.706 −0.0289

Na-number of alleles, Ho-observed heterozygosity, He-expected heterozygosity, FIS-fixation index, * p < 0.05.
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3.3. Outlier and Environmental Association Analysis

The LOSITAN analysis revealed five outlier loci that showed higher FST values than expected
under neutral assumptions (CsCAT1, CsCAT3, CmSI0031, CmSI0600, and CmSI0594). With BayeScan
no significant outlier loci were detected.

Association analysis 1, in which the populations from Ontario, Maryland, Kentucky, Asheville,
and Murphy (second cluster as identified by STRUCTURE) were included, revealed 8 loci significantly
associated with at least one of the PCs (Table S6), whereas association analysis 2, in which the
populations from Massachusetts, New York, and Portland (first cluster) were included, revealed
11 significant loci (Table S6). A total of nine markers revealed no signatures of selection in the outlier
and initial association analyses and were used to calculate the Q-matrix as covariate to be used in the
final association analysis based on all populations. In this analysis, 10 significant loci were found,
including the loci that were also significant in the outlier analysis (Table 5).
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Table 5. SSR markers significantly associated with principal components.

Marker PC1 PC2 PC3

CmSI0031 x x
CmSI0049 x
CmSI0327 x x
CmSI0391 x
CmSI0594 x
CmSI0600 x x x
CsCAT1 x x
CsCAT3 x x x
CsCAT14 x
QaCA022 x

X-p < 0.05, bold-loci that were significant in the outlier analysis.

The phenotypic variation explained by markers (R2) ranged from 0.014 for marker CmSI0594
to 0.45 for marker CsCAT3, and was on average higher for markers significantly associated with the
PCs than for non-significant markers (Figure 3). In total, 7 of the 10 significant loci were successfully
assigned to Castanea dentata transcripts using BLAST against the C. dentata UniGene-transcript database
(Table S7).
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4. Discussion

Seven g-SSRs were used to complement EST-SSR-based genotypic data of nine American chestnut
populations sampling the native range that were previously investigated by Gailing and Nelson [16].
Compared to the EST-SSRs, g-SSRs revealed higher genetic diversity values (Na, Ho, He), which was
expected due to the usually higher variability of the latter marker type [44]. Only the mean number
of private alleles (Pa) was higher for EST-SSRs. These private alleles may present adaptive beneficial
variants, but this remains open. The reported distribution of genetic variation among the analyzed
populations by Gailing and Nelson [16] could be confirmed with both the newly applied g-SSRs and
the complete marker set (g-SSRs and EST-SSRs): populations from further south as well as the Ontario
population in Canada showed a higher allelic diversity than populations further northeast in the USA.
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Furthermore, FIS values were positive for (south) western populations and negative for northeastern
populations. One exception was the Massachusetts population that showed a significantly positive
FIS value based on g-SSRs, while the FIS value was not significantly different from zero based on
EST-SSRs. Also the population structure among populations was similar to that revealed by Gailing
and Nelson [16]. The northeastern populations of Massachusetts, New York and Portland formed one
cluster and the remaining populations a second cluster. Only the Pennsylvania population reveals a
high level of admixture between both clusters. Since all SSR-markers were transferred from related
tree species, we tested for the presence of null alleles. Only a few SSRs showed evidence for null alleles
in the populations (Table S5), and hence, did likely not bias the results of our study. Further, only 5.6%
of marker pairs were found to be in LD among all populations. This could be expected, since the
markers have previously been mapped to 10 different LGs in C. mollissma [11].

The outlier analysis based on the Fdist approach [45] implemented in the LOSITAN software [37]
revealed five outlier loci, whereas no outlier loci were detected with a Bayesian method implemented
in the BayeScan software [38]. BayeScan has been shown to be more conservative in detecting outliers
compared to other methods before [46–48].

All five FST-outlier loci were significantly associated with PC1, four with PC2 and only two
with PC3. Additionally, five more loci were associated with at least one of the PCs. The phenotypic
variation explained by markers (R2) was higher for significant loci (in the outlier and association
analysis; R2: 0.08 to 0.45, mean of 0.25) compared to neutral loci (R2: 0.01 to 0.24, mean 0.09). The R2

values were relatively high and at the top end of other reported values for tree species summarized in
Lind et al. [49]. In association analyses, population structure can lead to spurious associations [50].
Therefore, neutral population structure is usually included as a covariate in models searching for
significant marker-trait associations. Likewise, population structure based on potentially neutral
markers was considered in our association analysis, but with our marker set it was challenging to
reliably identify neutral loci. Since PC1 was significantly correlated with several environmental
variables, but also with latitude, the associations of markers with PC1 may be biased by population
structure related to geography. PC2, however, was only correlated with bio5 (maximum temperature
of the warmest month), and PC3 was only (negatively) correlated with altitude. Hence, loci associated
with these two PCs may indeed be involved in adaptive processes related to environmental conditions.
In total, four of the six loci that were associated with PC2 and PC3 were also significant in the
FST-outlier analysis, and hence, detected by two different approaches. Therefore, the four loci
CmSI0031 (LG_H, 25.3 cM), CmSI0600 (LG_J, 55.4 cM), CsCAT1 (LG_C; ~45.7 cM), and CsCAT3 (LG_J;
~39.0 cM) [11,51] might be the most promising ones for further analyses. Loci CsCAT1 and CsCAT3
are g-SSRs originally developed in C. sativa. Usually, g-SSRs are located within non-coding genomic
regions, and hence, they are likely not directly involved in adaptive processes, but rather linked with
loci under selection. Locus CsCAT1, however, was successfully assigned to a Castanea dentata transcript
(AC454_contig17130_v3; uncharacterized protein) using BLAST (Table S7). Thus, this locus might be
located next to or within a coding region, and therefore be directly involved in adaptive processes.
Also the other two loci were successfully assigned to C. dentata transcripts: locus CmSI0031 showed
similarities with the transcript “AC454_contig35613_v3,” which shows homology to a Tubulin alpha
chain, and locus CmSI0600 was assigned to transcript “AC454_contig7150_v3,” for which no specific
protein could be inferred (“uncharacterized protein”). Thus, the specific function of the genes, in which
the outliers are located, remains open. Nevertheless, PC2 and PC3 are almost exclusively related to the
maximum temperature of the warmest month or altitude. Hence, the loci associated with these PCs
may be involved in temperature-related adaptive processes. Temperature can play an important role
in the performance and adaptation of American chestnut provenances. For instance, C. dentata growth
was (among others) negatively correlated with previous year August temperature [52]. In addition,
Schaberg et al. [53] showed that height growth was correlated with winter shoot injury. In general,
American chestnut is vulnerable to winter injury in its northern distribution area [15], and provenances
differ in cold hardiness [53,54].
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5. Conclusions

The wider genomic coverage represented by the enlarged marker set compared to Gailing and
Nelson [16] revealed similar distribution patterns of genetic diversity and differentiation among the
populations. By means of outlier and environmental association analysis, ten markers were identified
that are significantly associated with environmental variables of the population sites. Four of these
markers are of particular interest and could be involved in temperature-related adaptive processes in
American chestnut. Future studies may take advantage of genomic resources that have recently been
developed for chestnut species [10,11,13,14] to get a better understanding of adaptation patterns in
C. dentata.
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