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Abstract: Mangrove wetland soils have been considered as important sources for atmospheric CH4,
but the magnitude of CH4 efflux in mangrove wetlands and its relative contribution to climate
warming compared to CO2 efflux remains controversial. In this study, we measured both CH4

and CO2 effluxes from mangrove soils during low or no tide periods at three tidal zones of two
mangrove ecosystems in Southeastern China and collected CH4 efflux data from literature for 24 sites
of mangrove wetlands worldwide. The CH4 efflux was highly variable among our field sites due
to the heterogeneity of mangrove soil environments. On average, undisturbed mangrove sites have
very low CH4 efflux rates (ranging from 0.65 to 14.18 µmol m−2 h−1; median 2.57 µmol m−2 h−1),
often less than 10% of the global warming potentials (GWP) caused by the soil CO2 efflux from
the same sites (ranging from 0.94 to 9.50 mmol m−2 h−1; median 3.67 mmol m−2 h−1), even after
considering that CH4 has 28 times more GWP over CO2. Plant species, study site, tidal position,
sampling time, and soil characteristics all had no significant effect on mangrove soil CH4 efflux.
Combining our field measurement results and literature data, we demonstrated that the CH4 efflux
from undisturbed mangrove soils was marginal in comparison with the CO2 efflux in most cases,
but nutrient inputs from anthropogenic activities including nutrient run-off and aquaculture activities
significantly increased CH4 efflux from mangrove soils. Therefore, CH4 efflux from mangrove
wetlands is strongly influenced by anthropogenic activities, and future inventories of CH4 efflux
from mangrove wetlands on a regional or global scale should consider this phenomenon.

Keywords: greenhouse gas emission; soil respiration; coastal wetlands; anthropogenic effect

1. Introduction

Global wetlands are considered as important carbon sinks for sequestering high amounts of
carbon dioxide (CO2) from the atmosphere and contain more than 30% of the world’s organic carbon in
the soils, despite accounting for only 5%–8% of the global terrestrial surface [1–3]. Mangrove wetlands
could be key ecosystems in addressing climate regulation through their high productivity and effective
carbon (C) sequestration rates [4–7]. The global carbon sequestration rate in mangrove wetlands is
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on average 174 g C m−2 year−1, corresponding to about 10%–15% of global coastal ocean carbon
storage [8]. Organic-rich soils dominate in mangrove carbon storage, accounting for 49%–98% of
carbon stocks in mangrove wetlands [9,10]. However, the buried carbon may releases back into the
atmosphere as gaseous products such as CO2 and methane (CH4) [1]. Meanwhile, wetlands are also
identified as major CH4 sources for the atmosphere, emitting 177 to 284 Tg CH4 year−1, corresponding
to approximately 40% of the total global CH4 emission [11]. CH4 has a global warming potential
28 times greater than that of CO2 on a 100-year timescale and directly contributes to about 20% of
recent climate warming, despite the fact its concentration is two orders of magnitude lower than
that of CO2 [12]. Thus, proper quantification of CH4 efflux from mangrove wetlands is critical to
evaluating its effect on climate warming mitigation. Additional knowledge of mangrove wetlands’
CH4 emission will further provide guidance on mangrove wetlands restoration efforts to mitigate
atmospheric CO2 increase.

CH4 efflux from mangrove soils is generally identified to be low but highly variable [13–16].
The practice of mangrove carbon budget has shown that carbon burial, soil respiration, and soil CH4

emission are 24 Tg C year−1, 36 Tg C year−1, and 2 Tg C year−1, respectively [8], assuming a mangrove
extent area of 138,000 km2 [17]. Low CH4 production and emission is mainly due to the presence of
high sulfate in mangrove soil, which allows sulfate-reducing bacteria to outcompete CH4-producing
bacteria [18–20]. Additionally, mangrove ecosystems are inundated by periodic tides and receive
nutrient input from anthropogenic activities, which provides an anaerobic environment and high
availability of substrate for methanogenesis [21]. Recent studies reported a significant amount of CH4

efflux from mangrove wetland soils [21–23] and claimed that the contribution of CH4 efflux to climate
warming was non-negligible in the estuarine mangrove wetlands, which could account for 9.3%–32.7%
plant CO2 sequestration [24]. Thus, considerable uncertainty still exists regarding the magnitude of
mangrove soil CH4 efflux and its contribution to climate warming, which requires further study.

The carbon stocks in mangrove wetlands of China play an essential role in global oceanic
carbon cycling and differ among mangrove species in subtropical and tropical regions [25].
Large spatio-temporal variations in CH4 efflux have been observed in mangrove soils [18,23,26].
Previous studies indicated that CH4 efflux varied among different tidal positions, probably due
to differences in soil temperature, salinity, and pH [27]. Temporal variation in CH4 efflux could
be explained by soil temperature, the position of the water table, and the availability of suitable
substrate [23,28,29]. Meanwhile, mangrove wetlands in China are facing greater pollution pressure
due to chemical discharge from aquaculture activity and sea-wall construction [30]. However, there are
few studies that investigate human perturbations such as nutrient loading from aquaculture ponds on
mangrove soil CH4 efflux even though these activities can significantly change these factors [7,26].

In this study, we measured both soil CH4 and CO2 effluxes from mangrove wetland soils during
low or no tide periods at three tidal zones of two mangrove ecosystems in Southeastern China and
collected available CH4 efflux data from literature for global mangrove wetlands. The aims of this
study were to identify the magnitude of CH4 efflux in mangroves wetlands with and without the
influence of anthropogenic activities and to evaluate the relative contribution of CH4 efflux over CO2

efflux from mangrove wetland soils to climate warming.

2. Materials and Methods

2.1. Study Site Description

The study was conducted in two mangrove wetlands in Southeastern China, including
Zhangjiang Estuary Mangrove National Natural Reserve (23◦55′49′′ N, 117◦24′54′′ E, abbreviated
as the ZJ (Zhangjiang Estuary) site) and Qinglan Harbour Mangrove Provincial Natural Reserve
(19◦37′48′′ N, 110◦46′12′′ E, abbreviated as the QL (Qinglan Harbour) site) (Figure 1).

ZJ site is located in an estuary of the Zhangjiang River, Yunxiao County, Fujian Province, China,
with a subtropical marine monsoon climate. The monthly mean air temperature ranged from 13.5 ◦C
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in January to 28.9 ◦C in August, and the annual mean air temperature was 21.2 ◦C. Annual mean
rainfall was 1714.5 mm, most of which occurred during the wet season from April to September.
Tides were semidiurnal, with an annual mean tidal-level variation of 2.32 m. The salinity of the
seawater ranged from 12 to 26 ppt. The vegetation was dominated by Kandelia obovata Sheue, Liu
& Yong (red mangrove), Aegiceras corniculatum (L.) Blanco (black mangrove), and Avicennia marina
(Forssk.) Vierh. (grey mangrove), mixed with some other less common mangrove species such as
Bruguiera gymnorrhiza (L.) Savigny (black mangrove) and Acanthus ilicifolius L. (holy mangrove) [31].

QL site, situated in Wenchang County, Hainan Province, China, experienced a tropical monsoon
climate. Annual mean air temperature was 23.9 ◦C, and the lowest monthly mean temperature was
18.3 ◦C in January. The annual precipitation was 1974 mm, of which more than 82% occurred during
the wet season from May to October. Tides were semi-diurnal, and the tidal-level ranged from 0.01 m
to 2.38 m, with the largest tidal-level variation of 2.07 m in one tidal cycle. The dominant mangrove
species at QL site, which had the largest number of mangrove species in China, were Bruguiera
sexangula (Lour.) Poir. (upriver orange mangrove), Sonneratia caseolaris (L.) Engl. (mangrove apple),
Lumnitzera racemosa Willd. (tonga mangrove), Ceriops tagal (Pers.) C.B.Rob. (spurred mangrove),
and Rhizophora apiculata Blume (red mangrove) communities [32,33].
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Figure 1. Map of sampling location and climatic conditions. (a) Geographical location of Zhangjiang
Estuary (ZJ) and Qinglan Harbour (QL) mangrove wetlands. (b,c) Sampling sites and a typical
scene from ZJ mangrove forest. (d,e) Sampling sites and a typical scene from QL mangrove forest.
(f) Monthly precipitation (P, mm) and monthly air temperature (T, ◦C) from ZJ and QL mangrove
wetlands. LW: landward zone, MZ: middle zone, and SW: seaward zone.

2.2. Measurements of Soil CH4 and CO2 Effluxes

Sampling campaigns were undertaken in July 2013 (represented wet season) and February 2014
(represented dry season) at ZJ site, and in August 2016 (represented wet season) and November 2017
(represented dry season) at QL site. For each sampling time, measurements were conducted in three
tidal positions: landward zone (LW), middle zone (MZ), and seaward zone (SW), with the exception of
SW at ZJ site during the dry season due to heavy rainfall making the site inaccessible. At each sampling
position, four chambers were set up, and four replicated samples were collected on the same day at
each site for a total of twelve samples. During low or no tide periods in the day time, we measured
environmental variables and collected samples for laboratory analyses. The soil inundation and
exposure duration were similar among three tidal positions and four replicates samples.

Gas effluxes from the soil were quantified through the standard static (closed) chamber
technique [23]. Measurements were taken using PVC chambers (diameter 20 cm, length 15 cm, volume
4.50 L, and enclosing 0.025 m2). The open end of chamber was slightly inserted into the soil to a depth
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of 2–3 cm to ensure minimal lateral gas leakage. A controllable valve above the chamber was left open
for 30 min prior to sampling, which is adequate to remove impacts of root disturbance caused by the
chamber insertion, and then the valve was closed during the whole measurements time. Deployment
time was set at 2 h, with sampling at 0, 30, 60, 90, and 120 min intervals. Headspace gas was mixed
carefully through the vent tube, and 8 ml gas samples were collected using a 50 mL gas-tight syringe
equipped with a luer-lock valve (SGE Trajan Scientific and Medical Pty Ltd., Melbourne, Australia).
Gas samples were then transferred into pre-evacuated gas sampling bags or vials for storage (Dalian
Delin Gas Packing Inc., Dalian, Liaoning, China). The air temperature inside the chamber was
measured simultaneously with the gas sampling.

All samples were transported to laboratory and analyzed within 24 h using an Agilent 7890A gas
chromatograph (Agilent Technologies Inc., Wilmington, DE, USA) equipped with a flame ionization
detector (FID) and a Poropak-Q column. The column and detector temperatures were set at 60 ◦C and
130 ◦C, respectively, with nitrogen as the carrier gas at a flow rate of 1200 mL s−1. Standard curves
were gained by injecting a series volume of pure CH4 (99.992%) and CO2 (99.999%) in high purity N2

(99.999%, HKO Co Ltd., Hong Kong, China). The CH4 and CO2 concentrations were quantified by
calculating the peak areas of samples against standards of similar concentration ranges. During the gas
measurement, standard gas (40 mL L−1 CH4 and 2000 mL L−1 CO2) was analyzed every 10 samples to
ensure data quality. Gas effluxes were calculated based on a linear least squares fit of the time series of
gas concentrations. Data were accepted if the slope of the linear fit had a R2 > 0.80.

2.3. Measurements of Environmental Factors

For each chamber measurement, soil cores (0–10 cm surface soil) were collected using a hand-held
PVC tube after gas sampling. The soil samples were divided into two subsamples: fresh soil and
air-dried soil. Soil moisture content was determined by oven-drying of 7 g fresh soil at 105 ◦C to a
constant weight. Soil inorganic N (NH4

+-N and NO3
--N) contents were extracted with 2 M KCl from

fresh soil samples and then analyzed using a UV-2501PC UV–VIS spectrophotometer (Shimadzu Inc.,
Japan) [23]. While both NH4

+-N and NO3
--N extraction methods require fresh soil samples, the samples

from ZJ-SW during the wet season and ZJ-LW and ZJ-MZ during the dry season were dried before we
could take any measurements. Air-dried soil was sieved through a 2 mm sieve. The pH and salinity
were measured at a w (soil): v (water) of 1:5 and 1:2.5 soil slurry using an electrochemistry benchtop
meter, Orion™ Versa Star Pro™ (Thermo Fisher Scientific Inc., Beverly, MA, USA). Soil total carbon
content (TC), total nitrogen content (TN), and C:N ratio of air-dried soil were measured using the an
elementar analyzer (Vario EL III, Elementar Analysensysteme GmbH Inc., Hanau, Germany). Analysis
of soil characteristics all followed the standard methods described by Page et al. (1982), and data were
expressed in term of 105 ◦C oven-dried weight.

2.4. Conversion to CO2—Equivalent Efflux

The global warming potential for CH4 was converted to CO2 equivalents using a multiplier of
28 for 100-year timescale [34] to compare their global warming effects.

2.5. Collecting CH4 Efflux Data from Literature

A total of 24 studies of CH4 efflux from mangrove soil were reviewed (Table S2). These studies
were selected because the same static chamber method was used as our study, which made the results
comparable. We divided the mangrove wetlands into undisturbed and anthropogenic sites according
to the eutrophic status of the chosen study sites (Table S3). Undisturbed sites are defined as not affected
by nutrient input from anthropogenic activities involving agricultural, domestic, aquaculture, or other
run-off from treatment plants as indicated by the reference’s study site descriptions. Anthropogenic
sites are those known to be influenced by activities described above.
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2.6. Statistical Analysis

Two-way analysis of variance (ANOVA) was used to determine significance of differences between
means of soil characteristics and effluxes of CH4 and CO2 among tidal positions and sampling time.
If the difference was significant at p < 0.05, a Post-hoc Turkey test was used to determine where
the difference lay. All data were expressed as means ± standard error (SE) with four replicates.
Paired t-test was used to compare the differences in soil characteristics and effluxes of CH4 and
CO2 among tropical and subtropical mangrove wetlands. Pearson correlation coefficient values (r)
were calculated to determine the relationship between soil characteristics and CH4 and CO2 effluxes.
All analysis processes were performed using SPSS 21.0 for Windows (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Soil CH4 and CO2 Effluxes

CH4 efflux was highly variable among the sampling sites, for most sampling sites; CH4 efflux
was small and almost negligible, ranging from 0.65 ± 0.91 to 14.18 ± 6.35 µmol m−2 h−1, while at
the landward zone in Zhangjiang Estuary site (abbreviated as ZJLW) during the wet season, CH4

efflux was about 10 times higher than the highest value found at other sites (123.59 ± 41.79 µmol m−2

h−1) (Figure 2a,b and Table S1). CO2 efflux ranged from 0.94 ± 0.41 to 9.50 ± 2.70 mmol m−2 h−1,
and the highest and lowest values were recorded at landward and seaward zones in Qinglan Harbour
mangrove wetland during wet season (Figure 2c, Figure 2d and Table S1). No significant difference
was found in soil CH4 and CO2 effluxes between ZJ and QL sites (p = 0.173 and p = 0.111).
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Figure 2. CH4 and CO2 effluxes from ZJ and QL mangrove soils. (a,b) Comparison of the mean soil
CH4 efflux among three tidal positions during wet and dry seasons at ZJ and QL site. (c,d) Comparison
of the mean soil CO2 efflux among three tidal positions during wet and dry seasons at ZJ and QL site.
Error bars represent the standard error (SE) of the means (n = 4). Different letters indicate significant
differences among tidal positions for each period (wet and dry seasons) according to analysis of
variance (ANOVA) test (Turkey HSD test, p < 0.05). Site abbreviations were the same as Figure 1.
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At ZJ site, CH4 efflux ranged from 0.73 ± 0.73 to 123.59 ± 41.79 µmol m−2 h−1 (Figure 2a),
and significant differences in CH4 efflux among tidal positions and sampling time were found
(p = 0.006 and p = 0.002, respectively). The highest and lowest CH4 values were recorded at landward
zone during wet season and middle zone during dry season, respectively. Soil CH4 efflux was higher
in wet season than that in the dry season at all sites. The CO2 efflux ranged from 1.52 ± 0.29 to
4.91 ± 0.98 mmol m−2 h−1 and did not differ significantly with tidal positions and seasons (p = 0.160
and p = 0.108) (Figure 2c).

At QL site, the value of soil CH4 efflux ranged from 0.65 ± 0.91 to 14.18 ± 6.35 µmol m−2 h−1

and showed no significant differences among different tidal positions and sampling time (p > 0.05)
(Figure 2b). CH4 efflux at the middle zone was the highest, followed by the CH4 efflux at seaward
zone. The CO2 efflux ranged from 0.94 ± 0.41 to 9.50 ± 2.70 mmol m−2 h−1 (Figure 2d) and changed
with tidal position and sampling time significantly (p = 0.045 and p = 0.042, respectively). The lowest
value of CO2 efflux was measured at seaward zone, and highest CO2 efflux was observed during wet
season rather than dry season.

3.2. Soil Characteristics

Soil characteristics measured during wet and dry season at ZJ and QL sites are shown in Table 1.
There were significant differences in soil temperature, pH, TC content, TN content, and C:N ratio
among subtropical (ZJ site) and tropical (QL site) mangrove wetlands (p < 0.05). The mangrove soils
had higher pH values (ranging from 6.62 ± 0.16 to 7.43 ± 0.14) at QL site than that at ZJ site (ranging
from 5.46 ± 0.31 to 7.11 ± 0.03). Higher soil temperature, TC content, TN content, and C:N ratio were
detected at QL site than at ZJ site (p < 0.05). Salinity and soil moisture content were not significantly
different between QL site and ZJ site and were not significantly influenced by tidal positions and
sampling time (p > 0.05).

At ZJ site, significantly higher soil temperatures were observed in the wet season rather than dry
season (p = 0.015). Tidal position had significant effect on pH, TN content, and C:N ratio (p < 0.05).
Lowest pH but highest TC content, TN content, and C:N ratio were observed in the middle zone
(p < 0.05).

At QL site, both soil temperature and C:N ratio were significantly different between wet and dry
season. Higher soil temperature and a lower C:N ratio were observed in wet season (p < 0.05). The pH
value, NH4

+-N content, NO3
--N content, TN content, TC content, and C:N ratio were significantly

affected by tidal position (p < 0.05). With an increase in tidal positions, salinity, pH value, and C:N
ratio gradually increased, while the NH4

+-N content, NO3
--N content, TN content, and TC content

gradually decreased.
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Table 1. Key characteristics for mangrove soils at various study sites measured during wet and dry seasons.

Mangrove Wetland Season Study Site Species Tsoil Salinity (ppt) pH Soil Moisture Content NH4
+-N (ug g−1) NO3

--N (ug g−1) TN (%) TC (%) C:N Ratio

ZJ Wet season LW KO 27.19 ± 0.19c 2.07 ± 0.25a 5.46 ± 0.31a 0.85 ± 0.15a 9.50 ± 0.92 0.14 ± 0.04 0.15 ± 0.03a 1.82 ± 0.18a 12.50 ± 1.07b
MZ KO 27.74 ± 0.05c 5.70 ± 0.66ab 7.11 ± 0.03c 0.89 ± 0.23a 9.09 ± 0.88 0.15 ± 0.05 0.15 ± 0.01a 1.36 ± 0.01a 9.25 ± 0.35a
SW KO 27.42 ± 0.09c 7.70 ± 1.45ab 6.82 ± 0.03ab 1.04 ± 0.45a 0.17 ± 0.01a 1.96 ± 0.18a 11.44 ± 0.65ab

Dry season LW KO 17.35 ± 0.19a 9.00 ± 1.27b 6.23 ± 0.10b 0.75 ± 0.07a 0.16 ± 0.02a 1.98 ± 0.16a 12.29 ± 0.47b
MZ KO 18.47 ± 0.09b 15.55 ± 2.56c 7.01 ± 0.14c 0.81 ± 0.50a 0.14 ± 0.01a 1.49 ± 0.09a 10.90 ± 0.31ab
SW KO

QL Wet season LW BS, HL 29.00D 12.09 ± 1.37A 6.81 ± 0.05AB 1.85 ± 0.25B 8.02 ± 0.90B 4.31 ± 0.45B 0.73 ± 0.10B 11.48 ± 2.00AB 15.44 ± 0.93A
MZ BS, RA 28.90D 17.84 ± 5.91AB 6.62 ± 0.16A 0.56 ± 0.12A 3.11 ± 0.55A 1.28 ± 0.13A 0.24 ± 0.05A 4.01 ± 0.66AB 17.03 ± 0.61A
SW Mixed 30.50E 25.91 ± 4.22B 6.85 ± 0.02AB 0.51 ± 0.01A 3.17 ± 0.13A 1.63 ± 0.05A 0.08 ± 0.01A 4.48 ± 0.12AB 57.81 ± 7.33B

Dry season LW KO 25.18 ± 0.07B 11.12 ± 1.21A 7.30 ± 0.11BC 2.08 ± 0.39B 8.14 ± 1.10B 3.55 ± 0.35B 0.79 ± 0.11B 12.41 ± 2.58B 15.10 ± 0.89A
MZ KO 23.34 ± 0.03A 15.60 ± 0.67AB 6.76 ± 0.16A 0.60 ± 0.14A 2.26 ± 0.75A 1.42 ± 0.30A 0.19 ± 0.05A 3.52 ± 0.88A 19.47 ± 0.74B
SW KO 25.45 ± 0.01C 19.90 ± 0.30AB 7.43 ± 0.14C 0.44 ± 0.06A 2.26 ± 0.33A 1.31 ± 0.01A 0.07 ± 0.01A 4.75 ± 0.16AB 74.26 ± 7.84C

ZJ: Zhangjiang Estuary Mangrove National Natural Reserve; QL: Qinglan Harbour Mangrove Provincial Natural Reserve; LW: Landward zone; MZ: Middle zone; SW: Seaward zone; KO:
Kandelia obovata Sheue, Liu & Yong (red mangrove) community; BS: Bruguiera sexangula (Lour.) Poir. (upriver orange mangrove) community; HL: Heritiera littoralis Aiton (looking-glass
mangrove) community; RA: Rhizophora apiculata Blume (red mangrove) community; Mixed: Mixed species community. Mean and standard error (SE) of four replicates are shown (n = 4).
Different letters indicated significant differences among different sampling sites according to analysis of variance (ANOVA) test (p < 0.05).
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3.3. The Relationship between Gas Effluxes and Soil Characteristics

Among soil characteristics measured in current study, soil temperature and pH were correlated
with CO2 efflux. The soil temperature had positive effect on CO2 efflux (p = 0.011, r = 0.342), while pH
had negative effect on it (p < 0.001, r = −0.506). No significant relationship among CH4 efflux and any
soil characteristics was recorded in this study.

4. Discussions

4.1. Magnitude of CH4 Efflux from Mangrove Wetland Soils

Combining our data and literature data, we found CH4 efflux from undisturbed mangrove
wetlands was negligible but can be stimulated significantly by anthropogenic activities
(Figure 3). The results from our direct field measurements indicated that low CH4 efflux was
recorded in undisturbed mangrove soils of Southeastern China, ranging from 0.65 ± 0.91 to
14.18 ± 6.35 µmol m−2 h−1, which was consistent with the results found by others in nearby
undisturbed mangrove areas [35–37]. The highest CH4 efflux (123.59 ± 41.79 µmol m−2 h−1) was
observed at landward zone in ZJ mangrove wetland, probably due to large and frequent discharge
of freshwater as indicated by very low salinity at this site (as low as 2 ppt) (Table 1). This result was
similar to the CH4 efflux in the Jiulong River mangrove, which was also heavily influenced by human
activities and positively correlated with NH4

+-N, organic carbon, and total Kjeldahl nitrogen [24].
Mangrove ecosystems are rich in carbon but nutrient-poor; in particular, they are limited by nitrogen
and phosphorus [38]. Anthropogenic nutrient input improves microbial metabolic process, enhancing
more emission of CH4 efflux from soils into the atmosphere [39].

In addition, the CH4 efflux data from literature for 24 sites of mangrove wetlands
worldwide showed that mangroves affected by anthropogenic activities (ranging from 0.19 to
5168.62 µmol m−2 h−1 with the median values of 52.80 µmol m−2 h−1) had emission rates 14 times
higher than those from undisturbed mangroves (ranging from −6.05 to 79.00 µmol m−2 h−1 with
the median of 3.57 µmol m−2 h−1). These CH4 efflux data revealed that the mangroves affected by
anthropogenic activities made a greater contribution to climate warming rather than those undisturbed
or not heavily disturbed mangrove forests. Anthropogenic activities cause significant increases in CH4

emission, and if anthropogenic activities continue at the current pace without protective measures,
these ecosystems could become potential major sources of CH4 emission and decrease their ability to
store carbon in the future [40]. The current study divided the mangrove wetlands into undisturbed
and affected by anthropogenic activities based on whether the chosen study sites have involved
agricultural, domestic, aquaculture, or other run-off from treatment plants in the references. Further
research is needed to quantify the stimulation effect of nutrient input from anthropogenic activities on
CH4 emissions, combined with controlled experiments and microbial community analysis to model
the extent of change.

4.2. Contribution of CH4 Efflux from Mangrove Wetlands to Climate Warming

We calculated CH4:CO2 efflux ratio and CH4:CO2 warming effect ratio to evaluate the relative
role of CH4 efflux for warming potentials (Figure 4) among different tidal zones in two mangrove
wetlands. The CH4:CO2 efflux ratio ranged from −0.06% ± 0.32% to 0.45% ± 0.57% in most sampling
sites except for the disturbed ZJLW site (4.95%± 1.46%). Considering CH4 global warming potential in
100-year term, CH4 accounted for −0.63% ± 3.21% to 4.54% ± 5.79% of the warming effect, a relatively
minor contributor to CO2 equivalents, except at the ZJLW site, which was 50.37% ± 14.85%, making
it a highly significant contributor. A higher CH4:CO2 warming effect ratio had been reported in the
Jiulong River mangrove (10.30% to 48.35%) [24] and Futian mangrove (18.36% to 255.96%) [21] in
South China, which received significant amounts of anthropogenic nutrient inputs. This reveals that
the magnitude and contribution of CH4 efflux from undisturbed mangrove soils to climate warming



Forests 2018, 9, 738 9 of 13

was marginal in comparison with CO2 efflux, but could be a potential major contributor to warming
effect under the influence of anthropogenic activities.Forests 2018, 9, x FOR PEER REVIEW  9 of 13 
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Figure 3. Comparison of CH4 efflux from undisturbed mangrove wetlands and mangroves wetlands
affected by anthropogenic activities. Detailed information on the literature sources of CH4 efflux data
is provided in Table S2. Nutrient concentrations and assignment of eutrophic status from mangrove
wetlands are shown in Table S3.

In addition, the global median CH4 efflux in mangrove wetlands (3.57 and 52.80 µmol m−2 h−1

for undisturbed mangroves and mangroves affected by anthropogenic activities, respectively) was
negligible in contrast to other wetlands, such as freshwater wetlands (69.44 to 6944.44 µmol m−2 h−1)
(Chmura et al., 2003), peatlands (31.39 to 59.93 µmol m−2 h−1) [41], and rice paddies
(709.38 µmol m−2 h−1) [42]. This indicates that mangrove wetlands were not significant contributors
to global wetland CH4 budget compared with other wetlands. Recent studies have also found that
mangrove soils acted as a net carbon sink after subtracting the effects of CH4 emission from carbon
sequestration [43]. Overall, mangrove wetlands should be restored and protected to mitigate climate
warming without great concern for warming effect caused by CH4 emission.
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positions during wet and dry seasons at ZJ and QL site. Site abbreviations were the same as Figure 1.

5. Conclusions

The current study suggests that undisturbed mangrove soils were minor contributors to climate
warming, but the CH4 efflux from mangrove wetlands was significantly increased by nutrient inputs
from anthropogenic activities including nutrient run-off and aquaculture activities. This phenomenon
should be considered in order to better quantify the emission of CH4 from regional or global mangrove
wetlands and to evaluate the potential roles of constructed or restored mangrove wetlands for
mitigating climate warming.
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