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Abstract: An objective and effective method to distinguish the influence of climate change and
human activities on vegetation dynamics has great significance in the design and implementation
of ecosystem restoration projects. Based on the Moderate Resolution Imaging Spectroradiometer
(MODIS) remote data and the Miami and Carnegie–Ames–Stanford Approach (CASA) model,
this study simulated and used net primary productivity (NPP) as an indicator to identify vegetation
dynamics and their driving forces in the Jinghe River basin from 2000 to 2014. The results showed
that: (1) The vegetation in the Jinghe River basin, which accounted for 84.4% of the study area,
showed an increasing trend in NPP; (2) Human activities contributed most to vegetation restoration,
which accounted for 54.5% of the areas; 24.0% of the areas showed an increasing trend in the NPP
that was dominated by climate factors. Degradation dominated by human activities accounted for
4.3% of the study area, and degradation dominated by climate factors resulted in 17.2%; (3) The rate
of vegetation degradation in areas dominated by climate factors rose with increased slope, where the
arid climate caused shortages of water resources, and the human-dominated vegetation restoration
activities exacerbated the vegetation’s water demand further, which surpassed the carrying capacity
of regional water resources and led ultimately to vegetation degradation. We recommend that future
ecological restoration programs pay more attention to maintaining the balance between ecosystem
restoration and water resource demand to maximize the benefits of human activities and ensure the
vegetation restoration is ecologically sustainable.

Keywords: net primary productivity; Loess Plateau; climate fluctuation; human activity; vegetation
restoration; simulation modeling; CASA; MODIS; remote sensing

1. Introduction

Climate and human activities are the primary driving forces of changes in terrestrial ecosystems [1–3].
Commonly, regional vegetation dynamics are related closely to changes in local climate conditions and
human activities [4–6]. However, it is difficult to distinguish the influence of these two driving factors
when both function in the process of vegetation growth [7]. Particularly in arid and semi-arid regions
such as the Loess Plateau, the water-limited environment makes the vegetation there highly sensitive
to changes in temperature and precipitation [8,9], and high-intensity human activities easily may
lead to degradation of the local vegetation [10–13]. To improve the ecological environment, the local
government has implemented a series of ecological restoration programs, such as the Grain for Green
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Program (GGP), which complicates the effects of human activities on vegetation [14]. Our previous
studies showed that the changes between different land use types contribute significantly to the changes
in vegetation coverage, especially for the transformation between farmland and forests/grasslands,
which were related closely to topographical factors; for example, the implementation of GGP requires
that farmland with slopes between 15 to 25◦ are returned to grassland or forest, while farmland
with slopes >25◦ should be returned to forest [15,16]. These ecological restoration programs have
increased the coverage and net primary productivity (NPP) of vegetation in the Loess Plateau and
improved the local ecological environment gradually [17,18]. However, recent studies have shown that
restoration is reaching the plateau’s sustainable water resource limits [19]. The water resources of the
natural environment are unable to meet the growing demand of a large amount of vegetation planted
recently [20]. Inappropriate selection of ecological restoration species increases the consumption of soil
moisture and causes a low survival rate of revegetated trees and shrubs [21,22]. Therefore, studies that
identify and quantify the effects of climate conditions and human activities on vegetation dynamics
have great significance in the design and implementation of ecosystem restoration projects. The results
of studies such as this will help in the selection of suitable sites and methods for ecological restoration
that are adapted to local climate conditions or mitigate the negative effects of human activities,
and achieve sustainable development of regional ecological restoration [23,24].

Previous studies designed to differentiate the effects of climate and human activities on vegetation
dynamics have focused primarily on statistical analyses, such as principal component, correlation,
and significance analyses. Limited by the study methods, these studies failed to tell us the spatial
distribution pattern and the change trend of vegetation, which is driven by climate change or
human activities [25–28]. With the development of remote sensing technology, recent studies have
begun to use the Normalized Difference Vegetation Index (NDVI) remote data and residual analysis
methods to distinguish the influence of climate conditions and human activities on vegetation
dynamics [15,29]. The concept on which this method is based is that the NDVI and precipitation
are correlated significantly, and based on the NDVI and precipitation data, a regression relation is
established to simulate the NDVI expected. The difference between the expected and actual NDVI
indicates the effect of human factors on vegetation dynamics [30,31]. However, research that relies
solely on the relation between NDVI and precipitation fails to reflect temperature’s influence on
vegetation dynamics. Meanwhile, there are uncertainties about the results of the NDVI expected,
which is calculated according to the precipitation–NDVI relation, and thus, the influence of climate
and human activities on vegetation dynamics cannot be differentiated fully [28,32]. Therefore, it is
necessary to use an objective and effective method to distinguish the influence of the two factors on
vegetation [33].

NPP is the net energy that vegetation converts through photosynthesis to biomass [34]. As an
important part of ecosystem function and carbon circulation, NPP often is used as an indicator of
vegetation’s sensitivity to climate change and human activities [33,35]. Previous studies have adopted
NPP to discriminate the response of vegetation to climate change [36,37], and today, researchers have
begun to use NPP to identify the effects of human activities on vegetation dynamics [4,38]. Based on
models of different ecological processes and remote sensing data, the NPP expected (NPPe) can be
calculated to simulate the climate-induced production, and the actual NPP (NPPa) to simulate the
combined induced production [39,40]. The difference between the NPPe and NPPa indicates the
effects of human factors on vegetation dynamics. Because different ecological models are used to
simulate both the NPPe and NPPa, the results can avoid the errors and uncertainties associated with
the precipitation–NDVI linear regression method effectively [41–43]. Therefore, this study adopted
NPP as an indicator to assess the driving forces in vegetation dynamics.

The Jinghe River is a secondary tributary of the Yellow River that plays an important role in the
ecological security of the Loess Plateau, and both the natural environment and human activities
have experienced significant changes there in recent years [44,45]. However, few studies have
focused on spatial quantificational analysis of the driving forces in vegetation dynamics in this
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region [46]. This study uses NPP as an indicator to identify the vegetation change trend and its driving
forces in Jinghe River basin from 2000 to 2014. The ultimate objectives of this study were to: (1)
explore the vegetation change trend in Jinghe River basin; (2) distinguish the role of climate change
and human activities in vegetation dynamics; and (3) quantify the effects of these two factors and
introduce topographical factors to determine their spatial distribution. This study can be considered a
reproducible method for the analysis of driving factors in vegetation dynamics at the basin scale and
provides a scientific basis for the development of local ecological restoration.

2. Data and Methods

2.1. Study Area

The Jinghe River basin is located in the southwest of the Loess Plateau and covers an area
of 70,040 km2 (Figure 1). The basin is in the transitional zone between the temperate semi-humid
and temperate semi-arid and has a typical temperate continental climate. The temperature and
precipitation in the Jinghe River basin decrease gradually from southeast to northwest. The annual
average temperature and average annual precipitation in the region are approximately 10 ◦C and
290–560 mm, respectively. The primary vegetation types in this area are forest, shrub, and grassland
(Table 1) [47]. In the past decade, high-intensity human activities in the basin have led to an increasing
trend in soil erosion and decreasing trend in vegetation coverage [45]. Thus, to improve the ecological
environment, the local government has implemented a series of ecological programs, such as the Grain
for Green Program (GGP). However, the continuous population growth and rapidly expanding towns
continue to exert considerable pressure on the natural environment [46]. Therefore, this study focused
on the Jinghe River basin as the study area to analyze changes in vegetation dynamics and distinguish
the effects of climate change and human activities. The results of this research are of great scientific
significance in understanding the rules of regional vegetation changes, as well as summarizing and
improving ecological restoration measures.
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Table 1. The land use types in percentage terms in the Jinghe River basin (Unit: %).

Land Use Types Forest Shrub Grassland Farmland Others

Area in percentage 28.7 10.2 32.1 27.3 1.7

2.2. Remote Sensing Data Sets

Land use map and vegetation classification map for the Jinghe River basin were obtained from the
Center for Earth Observation and Digital Earth, China (http://www.ceode.cas.cn/sjyhfw/) (Table 1).
Based on the Landsat remote data and the vegetation classification map, a series of 30 m resolution
land use maps were created with an accuracy rate higher than 94%.

Temperature and precipitation were adopted in this study as the meteorological factors that
affect vegetation dynamics, and the data were obtained from the China Meteorological Data Sharing
Network (http://data.cma.cn/). The monthly temperature and precipitation data of 676 stations in
China were used to calculate the spatial distribution of the meteorological factors by using ArcGIS
v10.2 software (Environmental Systems Research Institute, Inc., Redlands, CA, USA) with Kriging
interpolation method. The spatial resolution of the results was set to 250 m. Based on the range of the
Jinghe River basin, the meteorological data for the Jinghe River basin from 2000 to 2014 were obtained
using the Extract by mask function of ArcGIS. Then, the spatial meteorological data were used in the
Miami model to simulate the NPPe.

The NDVI data (2000–2014) that were used to simulate the NPPa using the
Carnegie–Ames–Stanford Approach (CASA) model were obtained from the MODIS NDVI
product (MOD13Q1). This dataset can be downloaded from https://ladsweb.modaps.eosdis.nasa.gov
and has a spatial resolution of 250 m and a temporal resolution of 16-day intervals. To reduce the noise
attributable to bare soil and clouds, we converted all NDVI remote data to monthly data using the
maximum value method, and eliminated those grid cells with a NDVI value less than 0.05 [48,49].

2.3. Net Primary Production Estimates

2.3.1. Estimation of the Expected NPP

The Miami model was used to estimate the NPPe, which is affected only by meteorological
factors [40]. This model is the first NPP estimation model used widely worldwide. The Miami model,
which is based on Liebig’s “Law of minimum” and the relation between vegetation NPP and annual
average temperature and annual precipitation, was used to determine the values of NPP [50,51].
Because of its simple parameters and reasonable estimates of NPP, the Miami model has been used
widely in NPP estimation studies in different regions of the world [52]. The formula of the model is as
follows:

NPPe = min
{(

3000
1 + exp(1.315 − 0.119 t)

)
, (3000[1 − exp(−0.000664 r)])

}
(1)

where the unit of NPPe is g C·m−2·year−1, t is the annual average temperature (◦C), and r is the
annual precipitation (mm). Based on the raster calculator function of the ArcGIS v10.2 software
(Environmental Systems Research Institute, Inc., Redlands, CA, USA), the monthly spatial temperature
and precipitation data obtained in Section 2.2 were converted into annual data, with a spatial resolution
of 250 m. Then, the annual NPPe was estimated based on the annual spatial meteorological data, and
the spatial resolution of the results were set to 250 m.

2.3.2. Estimation of the Actual NPP

The NPPa, which is affected both by climate and human activities factors, was estimated with the
CASA model [4,53]. Based on the principle of light energy use, Monteith first proposed the concept
of estimating NPP based on photosynthetically active radiation (APAR) and light energy use (ε) in
1972 [54]. Moreover, in 1993, Potter proposed the CASA model and realized the estimation of regional
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and global NPP using the principle of light energy use based on remote sensing data [55,56]. As it is
possible to reflect the influence of climate and human factors on NPP, this is used widely in remote
sensing retrieval research on NPP [17,32]. The main formula of the model is as follows:

NPPa (x, t) = APAR (x, t) × ε (x, t) (2)

where APAR (x, t) is the photosynthetically active radiation (g C·m−2·month−1) absorbed by vegetation
in pixel x at time t, and ε (x, t) is the actual light energy use (gC·MJ−1) of vegetation in pixel x at time t.

APAR (x, t) can be calculated as follows:

APAR (x, t) = SOL (x, t) × 0.5 × FPAR (x, t) (3)

where SOL (x, t) indicates the total solar radiation (MJ·m−2) in pixel x at time t, FPAR (x, t) indicates the
proportion of photosynthetically active radiation vegetation absorbs, and a constant of 0.5 indicates
the proportion of total solar radiation (0.4–0.7 µm) available for vegatation.

The SOL were obtained from the China Meteorological Data Sharing Network (http://data.cma.cn/).
The monthly SOL data of meteorological stations were used to calculate the spatial distribution of the
SOL by using ArcGIS v10.2 software (Environmental Systems Research Institute, Inc., Redlands, CA,
USA) with Kriging interpolation method. The spatial resolution of the results was set to 250 m.

FPAR can be expressed as follows:

FPAR =
(NDVI(x, t)− NDVIi,min)(FPARmax − FPARmin)

NDVIi,max − NDVIi,min
+ FPARmin (4)

where NDVI (x, t) indicates the NDVI value in pixel x at time t, NDVIi,max and NDVIi,min are the
maximum and minimum NDVI value of the vegetation type i. FPARmax and FPARmin are constants of
0.95 and 0.001, respectively.

ε (x, t) can be calculated as follows:

ε (x, t) = Tε1 (x, t) × Tε2 (x, t) × Wε (x, t) × εmax (5)

where Tε1 (x, t) and Tε2 (x, t) are the temperature stress coefficients at low and high temperatures,
Wε (x, t) is the water stress coefficient, and εmax is the maximum light energy conversion rate under
ideal conditions, which is 0.389 g C·MJ−1.

Tε1 (x, t) and Tε2 (x, t) can be presented as follows:

Tε1(x, t) = 0.8 + 0.02 · Topt(x)− 0.0005 ·
[
Topt(x)

]2 (6)

Tε2(x, t) = 1.184/
{

1 + exp
[
0.2 ·

(
Topt(x)− 10 − T(x, t)

)]}
·1/
{

1 + exp
[
0.3 ·

(
−Topt(x)− 10 + T(x, t)

)]} (7)

where Topt (x) is the optimum temperature for vegetation growth, which is the average monthly
temperature (◦C) when the NDVI value in pixel x reaches the maximum within one year. T is the
annual average temperature (◦C).

Wε (x, t) can be calculated as follows:

Wε(x, t) = 0.5 + 0.5 · EET(x, t)/EPT(x, t) (8)

where EET is the actual evapotranspiration (mm), EPT is the potential evapotranspiration (mm),
which are both obtained from the meteorological data in Section 2.2.

The time and spatial resolution of all the parameters of the CASA model for estimating NPP are
set to monthly and 250 m, respectively. The monthly NPP was calculated and then summed to the
annual NPP used in this study.

http://data.cma.cn/
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2.3.3. Estimation of the NPPh and Condition Analysis

The difference between the NPPa and the NPPe is the human-induced NPP (NPPh), which is
affected only by human activities. The formula can be expressed as follows:

NPPh = NPPa − NPPe (9)

To measure the change trend in the NPP, the ordinary least-squares regression formula was used,
which is as follows:

Slope =
∑n

i=1 xiyi − 1
n (∑

n
i=1 xi)(∑n

i=1 yi)

∑n
i=1 x2

i −
1
n (∑

n
i=1 xi)

2 (10)

where xi is 1 to n for years 2000 to 2014, and yi is the NPP in year xi. Areas with a positive slope indicate
that both the NPP and vegetation dynamics in these areas showed an increasing trend, while conversely,
areas with a negative value indicate a decreasing trend [48,57].

Consequently, five types of possible conditions that lead to vegetation dynamics change can be
defined by the slopes of the NPPa (Sa), NPPe (Se), and the NPPh (Sh) (Table 2). Combined with the
effects of climate change and human activities on vegetation dynamics, Condition 1 is the vegetation
with no change (NC), Condition 2 is the restoration of vegetation dominated by meteorological
conditions (RDC), Condition 3 is the restoration of vegetation dominated by human activities (RDH),
Condition 4 is the degradation of vegetation dominated by meteorological conditions (DDC),
and Condition 5 is the degradation of vegetation dominated by human activities (DDH) [32,58,59].

Table 2. Conditions to assess the effects of climate change and human activities on vegetation dynamics.

Number Method Cause of Vegetation Dynamics Change

Condition 1 Sa = 0 the vegetation had no change (NC)
Condition 2 Sa > 0 and Se > Sh the restoration of vegetation dominated by climate factors (RDC)
Condition 3 Sa > 0 and Se < Sh the restoration of vegetation dominated by human factors (RDH)
Condition 4 Sa < 0 and Se > Sh the degradation of vegetation dominated by climate factors (DDC)
Condition 5 Sa < 0 and Se < Sh the degradation of vegetation dominated by human factors (DDH)

2.4. Correlation Coefficient and Significance Test

Correlation analysis can be used to indicate the relevance and change trend of research
factors [15,60], therefore, this study used the Pearson’s correlation coefficient formula to calculate the
significance of the NPP change trend. The calculation formula is as follows:

r =
n ∑n

i=1 xiyi − ∑n
i=1 xi · ∑n

i=1 yi√
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2 ·
√

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
(11)

where xi is 1 to n for years 2000 to 2014 (n = 15), and yi is the NPPa in year xi, r is the Pearson’s
correlation coefficient for each pixel. When r > 0, the pixel experienced an increasing trend of NPP,
while conversely, when r < 0, the pixel experienced a decreasing trend of NPP. When 0.514 < r < 1
or −1 < r < −0.514, the pixel experienced a significant increasing or decreasing trend of NPP at the
p < 0.05 confidence intervals.

2.5. Validating NPP

The measured aboveground NPP data included 45 sites (five plots per site) of different
vegetation types. The details of the sampling time and methods can be found in [19,60]. NPP simulated
by the CASA model was compared with the measured NPP (Figure 2). The result indicated that the
simulated NPP showed a good correlation with the measured NPP (R2 = 0.8, p < 0.001).
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Figure 2. Comparison between the CASA model simulated NPP and the measured NPP in the Jinghe
River basin. CASA model, Carnegie–Ames–Stanford Approach model; NPP, net primary productivity.

3. Results

3.1. Spatio-Temporal Trends of NPP

The annual average NPP in the Jinghe River basin from 2000 to 2014 was calculated and is shown
in Figure 3. Generally, the NPP in the study area showed an increasing trend, with an increase rate of
9.438 g C·m−2·year−1. The highest value of annual average NPP in the 15 years was in 2014, while the
lowest was in 2000. The change process can be divided into two parts: from 2000 to 2006, the NPP
increased relatively moderately, then increased rapidly with fluctuations from 2007 to 2014.
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Figure 3. Interannual variations in the annual average NPP in the Jinghe River basin from 2000 to 2014.

The spatial distribution of the annual mean NPP and the change trend in the NPP are shown
in Figure 4. The annual mean NPP of the Jinghe River basin showed a decreasing trend from
the southeast to the northwest, which largely is consistent with the regional water and heat
distribution (Figure 4a). There was a relatively clear dividing line around Weiyuan, Zhenyuan,
and Heshui counties, in which the annual average NPP value was lower north of the dividing line,
with the lowest value 52.6 g C· m−2, and was higher in the south, with the highest value 677.33 g C· m−2,
which is more than ten times the low value and indicates obvious spatial changes.

Figure 4b shows the change trend in the NPP of the Jinghe River basin from 2000 to 2014.
The results indicated that less than 0.1% of the study area showed no change trend, while 84.4% of the
area showed an increasing trend. Specifically, 34.3% of the total area showed a significant increasing
trend (p < 0.05), which was located primarily in the middle of the basin where the terrain is gentler
and human activities are more frequent. Meanwhile, areas with decreasing trends in NPP accounted
for 15.5% of the Jinghe River Basin area, 3.0% of which showed a significant decreasing trend (p < 0.05).
These areas are concentrated primarily in the Ziwuling Mountain and Liupan Mountain areas on the
east and west sides of the basin, respectively. The vegetations in these areas are forests and shrubs,
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which had a high average value of NPP (Figure 4a). In addition, compared with the areas in which
the NPP increased significantly, the terrain in these areas is relatively steep and human activities
are limited.
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3.2. Driving Forces in Vegetation Dynamics

The spatial pattern and area statistics of the NPP change caused by different driving factors in the
Jinghe River basin from 2000 to 2014 were analyzed and are shown in Figures 5a and 6. The results
indicated that human activities contributed most to the vegetation restoration in the 54.5% of the areas
in which the NPP changed, which were located largely in the middle and south of the study area.
Meanwhile, 24.0% of the areas in which NPP changed showed an increasing trend in the NPP that was
dominated by climate factors and was located primarily in the north of the study area. Climate factors
and human activities also caused vegetation degradation. Degradation dominated by human activities
accounted for 4.3% of the areas in which NPP changed and were concentrated primarily in the middle
of the study area. Climate factors produced 17.2% of the vegetation degradation in the areas in which
NPP changed and were concentrated largely in the Ziwuling Mountain and Liupan Mountain regions.
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Figure 5. Spatial pattern of different conditions of the NPP change of the entire basin (a); areas with a
slope less than 15◦ (b); areas with a slope between 15 and 25◦ (c); and areas with a slope greater than 25◦

(d) in the Jinghe River basin from 2000 to 2014. NC is the vegetation with no change, RDC is the
restoration of vegetation dominated by meteorological conditions, RDH is the restoration of vegetation
dominated by human activities, DDC is the degradation of vegetation dominated by meteorological
conditions, DDH is the degradation of vegetation dominated by human activities.

As human activities including urban expansion and ecological restoration were closely related
to topographical factors, this study adopted the requirements of the GGP to introduce topographical
factors to achieve a better understanding of the spatial patterns in the NPP change trend and its
driving forces. Slope gradients were divided into three levels according to the GGP requirements,
slopes <15◦, those between 15 and 25◦, and slopes >25◦, respectively (Figure 5b–d). The area statistics
results in Figure 6 show that the positive effect of climate factors on the NPP declined continuously as
the slope increased. A total of 26.6% of areas with slopes <15◦ demonstrated a restoration trend in
vegetation dominated by climate factors (RDC). However, in areas with slopes >25◦, the rate decreased
to only 11.9%. Furthermore, the rate of vegetation degradation in areas dominated by climate factors
(DDC) increased from 16.4% to 19.6% with increasing slope. Conversely, the positive effect of human
activities on the NPP continued to increase as slope increased; 52.6% of areas with slopes <15◦ indicated
a restoration trend of vegetation dominated by human activities (RDH), and the rate increased to 68.4%
in areas with slopes >25◦. At the same time, the rate of vegetation degradation in areas dominated by
human activities (DDH) decreased from 4.4 to 0.1% with increased slope. Thus, the factors that drove
vegetation dynamics changed clearly depending on the terrain.
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Figure 6. Area statistics of the driving factors in NPP change in the Jinghe River basin and different
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dominated by meteorological conditions, DDH is the degradation of vegetation dominated by
human activities.

4. Discussion

4.1. Methodology

Assessing the spatial patterns of the influence of climate change and human activities on
vegetation dynamics accurately is of great significance in the management and restoration of regional
ecological environments. However, distinguishing the effect of human activities on vegetation
dynamics from those of climate factors traditionally has been difficult [40]. Several studies have
adopted the NPP, which is an efficient and accurate indicator of vegetation growth status, to distinguish
vegetation change dominated by human factors from that dominated by climate by comparing the
difference between the expected and actual NPP [61,62]. Both the Miami and CASA models that
estimate the expected and actual NPP have been used successfully in several studies at the global and
regional scale [63–65]. The results of this study showed that the actual NPP in the Jinghe River basin
increased from 2000 to 2014, which is consistent with previous studies and supports the feasibility
of applying NPP models in this region [17,46]. Therefore, this study adopted NPP as an indicator to
assess the relative roles of climate factors and human activities in vegetation change.

Although the expected and actual NPP distinguished the effects of climate factors and human
activities on vegetation dynamics successfully, this method may have its own limitations. In the process
of estimating the NPP expected, the Miami model includes only temperature and precipitation as the
two climate factors that simulate an ideal environment of vegetation growth. Similarly, we assessed
the actual NPP and the relative roles of climate and human factors in vegetation dynamics based on
the NPP variation, and established conditions based on the hypothesis that vegetation dynamics is
only affected by climate and human activities. However, vegetation productivity and its simulation
results may be affected by several factors, such as wind, soil organic matter, vegetation types, herbivore
activities, and the accuracy of the remote sensing data used in the NPP estimate models [42,66–68]
Future studies should incorporate additional driving factors based on the characteristics of the study
area. Meanwhile, because of the errors inherent in the remote sensing data and the NPP simulation
methods itself, there can be some errors in the NPP simulation results and the differences of NPPe

and NPPa. However, according to previous studies, these errors may exist in the assessment of
the slope, vegetation communities, and other small-scale studies. For regional and global scales,
the methodology introduced in this study can be considered as a feasible method of evaluating the
spatial distribution of the relative roles of climate and human activities [28,40,42].
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4.2. Driving Forces

Previous studies have shown that both the NPP and vegetation in the Loess Plateau have increased
significantly because of human activities, such as reducing grazing pressure and returning farmland to
forests [69–71]. The results of this study confirmed that vegetation in the Jinghe River basin experienced
similar change trends, with 85.5% of the vegetation in the study area showing an increasing trend.
Among them, 54.5% of the increased vegetation was dominated by human activities. This rate is
similar to Li’s research, which indicated that human activities account for 55% of vegetation changes
from 2000 to 2015 in the Loess Plateau [72]. Meanwhile, the rate of vegetation increase dominated
by human activities rose with increased slope, from 52.6% in areas with slopes less than 15◦ to 68.4%
in those with slopes greater than 25◦. These areas were located primarily in valleys in the middle of
the basin, where the land use changed more dramatically during the past decade [73]. These results
are consistent with the implementation of a series of ecological projects, including the GGP. Under the
guidance of government policies, farmland in valleys with steep slopes has been converted to grassland
and forest, which enhances vegetation and soil carbon fixation effectively [72,74]. However, the study
also confirmed that 4.3% of the NPP showed a decreasing trend in the Jinghe River basin that was
dominated by negative human activities. These areas were concentrated largely in the middle of the
study area, in which Qingyang city is located and has the largest population density in the Jinghe River
basin. Because of its rapid population growth, the pace of urbanization has accelerated significantly
and has led to drastic changes in the local environment around the city that have decreased the
vegetation cover and carbon fixation [60,75].

Changes in climate factors are another important force that affects the vegetation dynamics, and
the vegetation changes in the Jinghe River basin that climate forcing dominated showed clear spatial
characteristics. The results of this study indicated that vegetation restoration dominated by climate
factors in the study area is distributed primarily in the northern part of the basin (Figure 5a). Based on
the zonal statistics results of the spatial annual temperature and precipitation data in the Jinghe River
basin from 2000 to 2014, the annual mean temperature in the study area is between 7.8 to 12.5 ◦C and
increased at a change rate of 0.2 ◦C/10 year; while the annual precipitation is between 334.2 to 620.8 mm
and decreased at a change rate of 24 mm/10 year over the past 15 years, respectively (Figures 7 and 8).
These results indicate that the climate in the study area is becoming warmer and drier, which leads
to drought, as Li et al. and Zhao et al. reported [76,77]. In a water-limited area, the spatial distribution
of precipitation determines the vegetation distribution and growth [9]. Zhang et al. pointed out that,
compared with other areas that suffered drought, precipitation in the northern part of the Jinghe River
basin is relatively sufficient, which is likely to be the reason that vegetation restoration dominated by
climate factors is concentrated in that area [78].
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The vegetation degradation dominated by climate factors was located generally in the Ziwuling
Mountain and Liupan Mountain regions on the east and west sides of the basin, respectively.
Because of the drought climate, the vegetation in the mountain areas showed significant vegetation
degradation dominated by climatic factors. Although ecological restoration measures, such as
returning farmland to forests and protecting vegetation, also must be implemented in these areas,
the terrain there restricts follow-up human management activities such as irrigation. Therefore,
the water demand of the vegetation in the mountain areas relies primarily on natural precipitation and
soil moisture [19,79]. However, vegetation planted recently has increased the local water demand and
accelerated the consumption of regional water resources, which eventually had led to degradation of
the vegetation [80,81].

5. Conclusions

This study assessed the driving forces in vegetation dynamics in the Jinghe River basin from 2000
to 2014 using NPP as the indicator. The results showed that the vegetation increased in the study area,
and human activities played an active role in the vegetation restoration, especially in valleys in the
middle of the basin, where the rate of vegetation change in the areas dominated by human activities
rose continuously with the increase in slope. This result is consistent with the implementation of
ecological projects such as GGP. The degradation of vegetation caused by human activities was located
primarily in populous areas and was related closely to urban expansion. The vegetation restoration
that was dominated by climate factors was concentrated largely in the northern part of the basin,
where the precipitation was relatively sufficient. However, the vegetation degradation dominated
by climate factors generally was located in the Ziwuling Mountain and Liupan Mountain regions on
the east and west sides of the basin, where the vegetation degradation rate in areas attributable to
climate factors rose with increases in slope. In these regions, the arid climate caused a shortage of
water resources, and the human dominated vegetation restoration activities exacerbated the water
demand of vegetation further and surpassed the carrying capacity of the regional water resources,
which led ultimately to vegetation degradation.
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The methodology of comparing the expected and actual NPP to distinguish the effect of climate
factors and human activities on vegetation dynamics in this study demonstrated a relatively higher
accuracy and can be applied at different regional scales. Further, as unsustainable vegetation
restoration measures may cause regional imbalances in water supply, and lead eventually to
vegetation degradation, we recommend that future ecological restoration programs pay more attention
to maintaining the balance between ecosystem restoration and water resource demands to maximize
the benefits of human activities and ensure that the vegetation restoration is ecologically sustainable.
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