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Abstract: As part of the Pr55Gag polyprotein, p6 fulfills an essential role in the late steps of
the replication cycle. However, almost nothing is known about the functions of the mature
HIV-1 p6 protein. Recently, we showed that p6 is a bona fide substrate of the insulin-degrading
enzyme (IDE), a ubiquitously expressed zinc metalloprotease. This phenomenon appears to be
specific for HIV-1, since p6 homologs of HIV-2, SIV and EIAV were IDE-insensitive. Furthermore,
abrogation of the IDE-mediated degradation of p6 reduces the replication capacity of HIV-1 in an
Env-dependent manner. However, it remained unclear to which extent the IDE mediated degradation
is phylogenetically conserved among HIV-1. Here, we describe two HIV-1 isolates with IDE resistant
p6 proteins. Sequence comparison allowed deducing one single amino acid regulating IDE sensitivity
of p6. Exchanging the N-terminal leucine residue of p6 derived from the IDE sensitive isolate
HIV-1NL4-3 with proline enhances its stability, while replacing Pro-1 of p6 from the IDE insensitive
isolate SG3 with leucine restores susceptibility towards IDE. Phylogenetic analyses of this natural
polymorphism revealed that the N-terminal leucine is characteristic for p6 derived from HIV-1 group
M except for subtype A, which predominantly expresses p6 with an N-terminal proline. Consequently,
p6 peptides derived from subtype A are not degraded by IDE. Thus, IDE mediated degradation of p6
is specific for HIV-1 group M isolates and not occasionally distributed among HIV-1.
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1. Introduction

Within Gag, the HIV-1 p6 protein is synthesized as the C-terminal domain [1]. It consists of only
52 amino acids (aa), thereby belonging to the smallest lentiviral proteins. After autocatalytic activation
of the viral protease and concomitant to budding of immature viral particles, it is released from the
Pr55Gag precursor during virus morphogenesis [2–4]. Pivotal roles during the late steps of the viral
replication cycle have been described to be regulated by the p6 domain of Gag. By its two Late (L-)
domains, it regulates the interaction of Gag with components of the cellular endosomal sorting complex
required for transport (ESCRT). Thereby, the PT/SAP motif binds to the tumor susceptibility gene
101 (Tsg101), while YP(X)nL recruits the apoptosis-linked gene 2-interacting protein X (ALIX) [5–8].
Eventually, these proteins will recruit further ESCRT components, resulting in the final abscission of
budding virions from the plasma membrane [9]. The original function of the ESCRT-machinery is the
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regulation of topologically equivalent membrane fission events during membrane protein trafficking
and cytokinesis [10–12]. Deletion of the PTAP L-domain in p6 results in a severe budding defect that
can be rescued by overexpression of ALIX [5–9]. In contrast, mutation of the ALIX-binding site has
less prominent implications for the budding virion [5,6,13]. Furthermore, the incorporation of Vpr into
budding virions is mediated by the p6 protein [14,15].

Hitherto, all known functions ascribed to p6 during assembly, release, and maturation of progeny
virions take place with p6 being the C-terminal part of the Gag precursor. However, the role of free p6,
either as part of a mature virion infecting a new host cell or stemming from decayed virions in the
extracellular space has not been investigated yet. Recently, we were able to show that the mature HIV-1
p6 protein is a bona fide substrate for a cellular protease, the insulin-degrading enzyme (IDE) [16].
IDE is a 120 kDa highly conserved zinc-metalloprotease with homologs in plants, fungi and even
bacteria [17–21]. In humans, it is involved in the degradation of short peptide hormones like its
eponymous substrate insulin and the clearance of amyloidogenic peptides like amyloid β [22,23].
Furthermore, IDE is ubiquitously expressed in human tissues and cells, including CD4+ T cells and
macrophages [18,24–26]. Stabilization of p6 under certain conditions impaired the replication capacity
of HIV-1 in an Env-dependent manner, indicating a potential function of p6 that exceeds its hitherto
described L-domain function [16].

We were able to show that this phenomenon appears to be specific for HIV-1, since none of
the tested p6 sequences from HIV-2 and SIV, nor the p6 homolog from EIAV, p9, were degraded by
IDE [16]. However, the phylogenetic background of the degradation of HIV-1 p6 by IDE has not been
investigated thoroughly. Notably, it is unclear to which extent the degradation of p6 is conserved
within HIV-1.

In the phylogenetic history of HIV-1, four transmission events across the species barrier of
SIV to humans have been identified, each leading to a distinct group of HIV-1 [27–31]. However,
only the HIV-1 group M established a worldwide pandemic, while the other groups are mostly locally
distributed [29,31,32]. Group M can be further classified into distinct subtypes, characterized by their
genetic relation. While HIV-1 isolates from the same subtype can genetically differ in 10% to 20%
to a reference sequence, the intersubtype genetic variation is usually 20% to 35%, depending on the
genetic region compared [33]. The formation of circulating recombinant forms (CRF), resulting from
recombination events in superinfected patients, further increases the complex subtype diversity of
HIV-1 group M [34–36].

Here, we describe two HIV-1 isolates that contain IDE-insensitive p6 variants. Sequence
comparison of those p6 proteins allowed us to deduce one single aa substitution that impairs
degradation of p6 by IDE, namely proline-1 (Pro-1) at the N-terminus of p6. Replacement of the
leucine residue at position one of p6 derived from the IDE sensitive HIV-1NL4-3 by a proline impairs
IDE-dependent degradation of p6. Vice versa, substitution of the proline at position one of the
IDE-insensitive p6 variant derived from HIV-1 SG3 by a leucine residue restores the susceptibility
towards IDE. In contrast to our previously generated IDE-insensitive p6 mutant, this substitution
represents a naturally occurring polymorphism of HIV-1 p6 [16,37].

The HIV-1 p6 L1P mutant mostly behaves like previously described IDE insensitive p6 mutants
regarding virus release, Gag processing to p24 and replication capacity. This particular N-terminal
aa grants insight in the phylogenetic background and the extent of the p6 IDE interaction in HIV-1.
The N-terminal leucine is characteristic for HIV-1 group M, since HIV-2, SIV of sooty mangabeys
(SIVsm) and the other HIV-1 groups have a proline or a heterogenic N-terminus at position one of
p6. Intriguingly, the HIV-1 subtype A has restored the IDE-insensitive p6 by exclusively expressing
p6 variants with an N-terminal proline. Our data so far indicate that the susceptibility of p6 towards
IDE-mediated degradation was phylogenetically formed alongside the leucine residue at position one
of p6, which is characteristic for most non-A subtypes of HIV-1 group M.
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2. Materials and Methods

2.1. Cell Culture and Transfection

HeLa, HeLa TZMbl wild type (wt)/IDE KO and HEK293T cells were maintained in DMEM
containing 10% (v/v) inactivated fetal calf serum (FCS), 2 mM L-glutamine, 100 U/mL penicillin and
100 µg/mL streptomycin. CEMx174 M7 R5 cells and peripheral blood mononuclear cells (PBMC) were
maintained in RPMI medium 1640 containing 10% (v/v) FCS, 2 mM L-glutamine, 100 U/mL penicillin
and 100 µg/mL streptomycin. All cell culture media and reagents were purchased from Gibco (Life
Technologies, Carlsbad, CA, USA).

Cells were transfected with Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s protocol. Then, 24 h post transfection cells were lysed in RIPA buffer
(150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 10 mM EDTA)
containing 5 mM N-ethylmaleimide (NEM), and 1 mM phenylmethylsulfonylfluoride (PMSF).

2.2. HIV-1 Isolates and Expression Plasmids

The proviral HIV-1NL4-3 and HIV-1 SG3 expression constructs have been described
elsewhere [38,39]. The HIV-1NL4-3 derived expression construct pNLenv1 wt has been described
previously [40]. The isolates 93BR020, 99ET_14, 92UG024, VI557, 92UG029 and 00KE_KER2008
are isolates of various HIV-1 group M subtypes obtained from the National Institute for Biological
Standards and Control (NIBSC, Ridge, Herts, UK). Isolate 4lig7 is a multidrug-resistant recombinant
virus of HIV-1 subtype B that has been generated in the diagnostic laboratory of the Institute of Clinical
and Molecular Virology of the Universitätsklinikum Erlangen (Erlangen, Bavaria, Germany) [41].

Mutations of p6 were inserted by site-directed mutagenesis PCR (QuikChange Lightning, Agilent
Technologies, Santa Clara, CA, USA) using a pair of complementary primers. Thereby, the pNLenv1
L1P and HIV-1NL4-3 L1P mutants were generated using the primer 5’-gg cca ggg aat ttt ccg cag
agc aga cca gag cc-3’ and its corresponding reverse complement, whereas the mutant SG3 P1L was
obtained using the primer 5’-gga cca ggg aat ttt ctg cag agc aga cta gag cc-3’ and its corresponding
reverse complement.

2.3. Virus and VLP Isolation

Virus or virus-like particles (VLP) containing cell culture supernatant was harvested 48 h after
transfection of 293T cells and passed through a 0.45 µm pore-size filter. Alternatively, CEMx174 M7
R5 cells were infected with cell culture supernatant containing infectious HIV-1 particles. Infected
cells were provided with 5 × 106 uninfected CEMx174 M7 R5 cells along with fresh medium on day
two and four post infection to increase virus yield. After syncytium formation or seven days post
infection (dpi), the supernatant was harvested and passed through a 0.45 µm pore-size filter. The viral
particles were pelleted through a 20% (w/v) sucrose cushion (20,000× g, 4 ◦C, 90 min) and stocks
were normalized for p24, as quantified by p24 ELISA (Aalto Bio Reagents LTD, Rathfarnham Village,
Dublin, Ireland).

2.4. Infection of Cells

Replication assays were performed as reported previously [16]. In short, PBMCs were isolated
from buffy coats of several blood donors and stimulated with phytohaemagglutinin (PHA-P) and
Interleukin 2 (IL-2) for three days. Then, 1 × 106 PBMCs were incubated overnight with virus
preparations equivalent to 0.031 ng of p24 for HIV-1NL4-3 or 0.016 ng of p24 for HIV-1SG3, respectively
and cell culture supernatants were collected every second or third-day post infection (dpi). Where
indicated, the cells were treated with 10 µM 6bk (Phoenix Pharmaceuticals, Burlingame, CA, USA),
and, as part of the medium change on the designated dpi, fresh 6bk was added. Virus replication was
assessed by quantification of the virus-associated RT activity by [32P]-TTP incorporation, using an
oligo(dT)-poly(A) template as described elsewhere [42].
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The respective replication profiles were depicted as a diagram (y-axis: RT activity; x-axis: dpi) and
the area under the curve was calculated and defined as the replication capacity. In every experiment,
the replication capacity of the untreated cells was set to 100% and compared with the indicated variants.

2.5. SDS PAGE and Western Blotting

Protein samples were separated by SDS-PAGE [43] and subsequently transferred onto 0.2 µm
nitrocellulose (NC) membranes (GE Healthcare, Chicago, IL, USA). Membranes were fixed with 4%
(w/v) paraformaldehyde (PFA). Subsequently, fixation was stopped by washing with 1 M glycine
in PBS, followed by blocking with 3% (w/v) bovine serum albumin (BSA) supplemented with 0.1%
sodium azide. Membranes were incubated with the appropriate primary antibody (Ab) in 1% BSA.
Gag was detected using a rabbit antiserum recognizing p24 (Seramun Diagnostica GmbH, Heidesee,
Brandenburg, Germany). The HIV-1 p6-specific antiserum (Seramun Diagnostica GmbH) has been
described earlier [44]. The anti-rabbit secondary Ab coupled to HRP was obtained from Dianova
(Dianova GmbH, Hamburg, HH, Germany) and diluted 1:10,000 in 5% nonfat dry milk/PBS-T. In some
experiments, the amount of protein blotted on NC membranes was densitometrically quantified with
the software AIDA (Elysia Raytest GmbH, Angleur, Walloon, Belgium).

2.6. In Vitro Degradation Assay

For production of S10, confluent dishes with HeLa cells were extensively washed, cells were
harvested and subsequently lysed with IDE enzyme buffer (150 mM NaCl, 50 mM Tris pH 7.4, 0.5%
(v/v) Triton X-100). Debris and nuclei were removed by centrifugation at 10,000× g for 10 min. Protein
content was determined by BCA-Assay (Pierce™, Thermo Fisher Scientific, Waltham, MA, USA) and
aliquots stored at −80 ◦C.

For the in vitro degradation of viral p6 (vp6), VLPs were pelleted and lysed in IDE enzyme buffer.
Subsequently, 5 µg of S10 were incubated with the virus lysate containing vp6 at 37 ◦C. Reactions were
stopped at the time points indicated by heat inactivation at 95 ◦C and addition of sodium dodecyl
sulfate (SDS) sample buffer. Remaining p6 was detected by Western blotting using an anti-p6 rabbit
antiserum [44]. Experiments carried out with recombinant IDE (rIDE, Calbiochem, Merck Millipore,
Burlington, MA, USA) were performed in a HEPES-based IDE enzyme buffer (150 mM NaCl, 50 mM
HEPES pH 7.4, 0.5% (v/v) Triton X-100).

2.7. Peptide Synthesis and Mass Spectrometry

The synthesis of the peptide was performed on a CEM Microwave Peptide Synthesizer Liberty 1 on
a 0.1 mM scale with 125 mg H-Gln(Trt) Hmpb-Chematrix-resin (capacity 0.47 mmol/g; PCAS BioMatrix
Inc, St-Jean-sur-Richelieu, QC, Canada) or 100 mg Gln-TCP resin (capacity 0.5 mmol/g, Intavis, Köln,
K, Germany) using the Fmoc-strategy (N-(9-fluorenyl)methoxycarbonyl). Couplings were carried out
with N, N, N′, N′-Tetramethyl-O-(1H-benzotriazole-1-yl)uronium hexafluoro-phosphate (HBTU) in
N-methylpyrrolidone as coupling agent by a temperature of 50 ◦C. Deprotection of the Fmoc group
was performed during the complete synthesis with 5% Piperazine, 0.1 M 1-Hydroxybenzotriazole
(HOBt) in N, N-dimethylformamide. The final deprotection from the resin was performed with 95%
TFA in water containing 3% triisopropylsilane. The crude peptide was purified by reverse phase HPLC
on a 10 µm Phenomenex Gemini C18 column (21.2 × 250 mm, 110 Å) with a linear gradient of 40%
A to 65% B in 50 min (A: 1000 mL water, 2 mL TFA; B: 500 mL acetonitrile, 100 mL water, 1 mL TFA)
at a flow rate of 15 mL min-1 with spectrophotometric monitoring at λ = 220 nm. The fractions were
checked by RP-HPLC (Shimadzu LC10) on a Zorbax 300SB C18 column (4.6× 250 mm, 5 µ, 300 Å) with
a linear gradient of 10% to 100% B over 45 min and mass spectrometry (Voyager DE PRO MALDI-TOF
mass spectrometer, Applied Biosystems, Foster City, CA, USA, linear mode) [16].
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2.8. In Silico Analysis

Sequence alignments were generated using the Clustal Omega multiple sequence alignment
software [45–47]. For the phylogenetic tree analysis, all genome sequences from the HIV-1/SIVcpz
compendium 2016 and the HIV-2/SIVsm compendium 2015 were collected and merged [48,49].
Circulating recombinant forms of HIV-1/SIVcpz were removed. Furthermore, SIVcpz sequences
closely related to HIV-1 group M were added manually to the sequence collection. Namely, the inserted
sequences (with the corresponding Genbank accession number) were derived from the SIVcpz isolates
MB897 (EF535994), MB66 (DQ373063), LB7 (DQ373064), EK505 (DQ373065), MT145 (DQ373066), CAM3
(DQ373065), CAM5 (DQ373065), CAM13 (AY169968), GAB1 (X52154), GAB2 (AF382828) and DP943
(EF535993) [28,31]. Subsequently, a phylogenetic tree was generated using the software package
SATé© version 2.2.7 for Windows [50–52]. Visualization and processing of the phylogenetic tree were
conducted with the software FigTree version 1.4.3 [53]. The phylogenetic tree for HIV-1 and HIV-2 was
generated in circular form as cladogram with a mid-point root using whole genome DNA sequences.
The isolates have been colored with respect to the first aa of the p6 protein.

The first codon of the p6 protein from the HIV-1/SIVcpz and HIV-2/ SIVsm filtered web-alignment
2017 has been collected and translated into the corresponding aa [54]. The aa occurrences at position one
of the p6 protein for the HIV-1 groups and subtypes, and for HIV-2 as well as for SIVsm were quantified.

Protein structure prediction was performed using the Phyre2 protein folding recognition
server [55]. Visualization of the .pdb-files was carried out using the software PyMOL [56].

2.9. Ethical Statement

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the Medical Faculty of the Friedrich-Alexander University
Erlangen-Nürnberg (Project identification code: 3761; 2 March 2017).

3. Results

3.1. p6 Derived from the HIV-1 Isolates SG3 and 4lig7 is not Degraded by IDE

Upon virus entry, p6 becomes highly susceptible to IDE mediated degradation. Previously,
we reported that at least 12 different p6 variants of HIV-1 are a substrate of IDE. In contrast, neither one
of the investigated p6 proteins derived from HIV-2 or SIV, nor the EIAV homolog p9 were degraded
by IDE [16]. To investigate, to which extent this phenomenon is conserved within HIV-1, we further
analyzed the susceptibility of different p6 variants of HIV-1 to IDE mediated degradation.

To analyze the susceptibility of p6 derived from various isolates to IDE mediated degradation,
we performed an in vitro degradation assay using a cytosolic HeLa cell extract (S10) [16]. One of
the tested isolates is SG3, an X4-tropic molecular HIV-1 clone of the subtype B with a pronounced
cytopathic effect in human and chimpanzee lymphocytes [40]. Furthermore, we analyzed the stability
of p6 derived from the X4-tropic HIV-1 field isolate 4lig7. This isolate also belongs to the subtype B and
is known for several resistance mutations within the reverse transcriptase (RT) and the protease (PR)
open reading frame, causing resistance to all nucleoside RT inhibitors and to most PR inhibitors [57].

To obtain sufficient amounts of viral p6 (vp6) isolated from released virions, HEK293T cells were
transiently transfected with the proviral expression construct SG3 and, as a control, the subgenomic
HIV-1 expression plasmid pNLenv1, representing an env-deleted version of pNL4-3 [16,38,39]. Since no
molecular clone of 4lig7 is available, CEM cells were infected with 4lig7 and the released virions
were isolated. Viral particles were lysed in IDE buffer and incubated with S10 at 37◦C for the times
indicated. Surprisingly, vp6 proteins derived from HIV-1 SG3 or 4lig7, respectively, were completely
stable, while the positive control, vp6 derived from HIV-1NL4-3, was entirely degraded within 60 min
(Figure 1A). Sequence comparison of the p6 peptides revealed that the SG3 p6 peptide differs in seven
aa and 4lig7 in six aa compared to the sequence of HIV-1NL4-3 p6. Furthermore, SG3 and 4lig7 share
three aa polymorphisms not present in the sequence of HIV-1NL4-3, namely the proline residue at
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position one, leucine residue at position five and the asparagine residue at position 47 of p6 (Figure 1B).
Interestingly, also the IDE-insensitive p6 proteins of HIV-2 and SIVmac239 and the p9 protein of EIAV
contain an N-terminal proline residue, indicating that the presence of an N-terminal proline might
correlate with insensibility of p6 to IDE-mediated degradation (Figure 1C).
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Figure 1. p6 derived from the HIV-1 isolates SG3 and 4lig7 is not degraded by IDE. (A) vp6 derived from
NL4-3, SG3 or 4lig7 was incubated with S10 extract. p6 and p24 probings were detected by Western
blotting. sp6 served as staining control. Representative Western blots of three independent experiments
are shown. (B) Alignment of the p6 aa sequences of HIV-1 NL4-3, SG3, and 4lig7. Aa that differ in the
sequence of SG3 and 4lig7 compared to NL4-3 are written in bold. Common polymorphisms of SG3
and 4lig7 are highlighted by arrows. Conserved aa positions in the sequence alignment are indicated
by asterisks. Furthermore, aa exchanges between strongly (colon) and weakly (dot) similar aa residues
are specified [45–47]. (C) Sequence alignment of IDE insensitive p6 peptides from HIV-2, SIV and EIAV
p9 peptide [16]. The sequence of HIV-2 p6 originates from the isolate ROD10, SIV p6 from SIVmac239,
and EIAV p9 from the isolate EIAVWyoming [16,58]. Colors of the sequence alignments according to the
physicochemical properties of the aa, as proposed by the Clustal Omega multiple sequence alignment
software [45–47].

3.2. Proline at the N-Terminus of p6 Prevents IDE-Mediated Degradation

Since every naturally occurring IDE-insensitive p6 analyzed so far possesses an N-terminal proline,
we hypothesized that the introduction of Pro-1 could stabilize the IDE-sensitive p6 of HIV-1NL4-3.
To challenge this hypothesis leucine at position one of pNLenv1 p6 was replaced with proline resulting
in the construct pNLenv1 L1P. The corresponding vp6 was incubated with S10 for the times indicated
in a steady state in vitro degradation assay and analyzed by Western blot. While p6 derived from
pNLenv1 wt is degraded in S10 as reported previously [16], p6 derived from pNLenv1 L1P shows
enhanced stability towards IDE-mediated degradation (Figure 2A). Vice versa, after replacement of
the Pro-1 of the IDE-insensitive SG3 p6 with leucine, SG3 p6 loses its resistance to IDE (Figure 2B).
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As previously reported, kinetic analyses of wt p6 derived from pNLenv1 incubated with S10 revealed a
rapid, exponential decay with a half-life of about 5 min (Figure 2C,E). In contrast, the half-life of the
pNLenv1 L1P vp6 peptide is greater than 60 min. Vice versa, while SG3 wt vp6 shows no detectable
degradation after 60 min, the mutant SG3 P1L vp6 has restored susceptibility to IDE and is degraded
in S10 with a half-life of approximately 20 min (Figure 2D,E). Altogether, these results indicate that
indeed the N-terminus of p6 regulates susceptibility of p6 to IDE-mediated degradation. Introduction
of Pro-1 is sufficient to strongly enhance the stability of p6 that was previously a bona fide substrate
for IDE [16].
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Figure 2. Pro-1 in p6 impairs IDE-mediated degradation. Lysates of VLPs derived from pNLenv1 wt
and L1P (A) or viral particles of SG3 wt and P1L (B) were incubated with S10. Reactions were stopped
by heat inactivation either immediately or after incubation for 60 min at 37 ◦C. Representative Western
blots of three independent experiments are shown. vp6 derived from NL4-3 wt and L1P (C) or SG3
wt and P1L (D) were incubated with S10 for the times indicated. Samples were analyzed by Western
blotting. (E) Time kinetics of three independently performed experiments are shown. Values represent
the arithmetic mean ± SD.

Proteolysis of the p6 L1P mutant is significantly reduced, but not completely impaired as shown
by the in vitro degradation kinetic assay (Figure 2E). To compare t1/2 of p6 P1L and to examine whether
the residual degradation of p6 is still IDE-mediated, we performed long-time degradation experiments
with vp6 derived from NL4-3 wt and L1P in an S10 extract derived from HeLa TZMbl wt (S10 TZMbl
wt) and IDE knock out cells (S10 TZMbl IDE KO). While wt vp6 is rapidly degraded in S10 TZMbl wt
with a t1/2 of 5 min, comparable to S10 derived from HeLa SS6 cells, no degradation was detected
after 4 h incubation of wt vp6 in S10 TZMbl IDE KO (Figure 3A,C). In contrast, the half-life of vp6
derived from NL4-3 L1P was increased to up to 70 min in S10 TZMbl wt. However, as in the case of
vp6 derived from pNLenv1 wt, no degradation was detected in S10 TZMbl IDE KO, indicating that the
residual proteolysis of p6 L1P is IDE-mediated (Figure 3B,C).
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Figure 3. Longtime degradation kinetics of p6 derived from NL4-3 wt and L1P. NL4-3 vp6 derived from
the mutants NL4-3 wt (A) and L1P (B) were incubated with S10 derived from TZMbl wt or IDE KO
cells, respectively. After incubation for the times indicated, reactions were stopped by heat inactivation.
Samples were analyzed by Western blotting using a p6-reactive antiserum. Representative Western
blots of three independent experiments are shown. (C) Time kinetics of three independently performed
experiments is shown. Values represent the arithmetic mean ± SD.

Under membranous conditions, the HIV-1 p6 protein consists of two α-helices linked by a
flexible domain [59]. Thereby, the N-terminus, containing the PTAP motif, should be unstructured.
To investigate if the N-terminal proline residue affects the secondary structure of p6, structure
prediction was conducted using the Phyre2 protein folding recognition server. The protein alignment
of the predicted structures indicates that the Pro-1 within the sequence of NL4-3 p6 does not influence
the structure of p6 (Figure S1A). Furthermore, for SG3 the prediction shows no major influence of the
mutation P1L on the overall structure of p6 (Figure S1B).

3.3. Effect of the pNLenv1 L1P Mutation on Late Steps of the HIV-1 Replication Cycle

Previously, we were able to show that neither the artificial stabilization of p6 by triplication of the
PTAP motif nor expression of HIV-1NL4-3 wt in IDE KO cells had any implication on Gag processing,
viral budding or incorporation of Vpr [16]. However, according to previous reports, Gag cleavage-site
mutants, like the mutant p6 L1F, can affect the efficiency of Gag processing by the viral protease [60].
Furthermore, a proline at position one of p6 is, in some cases, connected to certain mutations in the
viral protease gene occurring under antiretroviral treatment [60,61]. The mutants described here,
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indeed, also showed increased amounts of NC-p6 in the steady state degradation assay (Figure 2A,B).
Consequently, we wanted to quantify this delayed processing of p6 and investigate if the mutation p6
L1P has any further effects on the late steps of the viral replication cycle.

Therefore, HeLa SS6 cells were transiently transfected with pNLenv1 wt or L1P, respectively.
Western blot analysis of cell lysates and VLP fractions revealed that the mutant pNLenv1 L1P does not
affect the viral budding and maturation of p24 (Figure 4A,C,D). However, the L1P mutant exhibits
a reduction in the maturation of p6 (Figure 4B,E). In line with this, the amount of NC-p6 is slightly
increased. Furthermore, the mutant pNLenv1 L1P lacks non-canonical Gag-cleavage products between
NC-p6 and CA-NC-p6 that are present in VLPs derived from pNLenv1 wt [62].
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Figure 4. Influence of the mutation L1P on virus release and Gag-processing. HeLa SS6 cells were
transfected with pNLenv1 wt or pNLenv1 L1P, respectively. Cell lysates and VLP fractions were
analyzed by Western blotting using a p24-reactive (A) or a p6-reactive (B) antiserum. (C) The efficiency
of virus release was calculated as the ratio of Gag (Pr55 and p24) present in the VLP fraction relative
to the total amount of Gag detected in cells and released VLPs. (D) The rate of p24 processing was
determined by calculating the ratio of p24 vs. Gag (Pr55 and p24) detected in released VLPs. (E) The
rate of p6 processing was determined by calculating the ratio of p6 vs. Gag (Pr55, NC-p6, and p6)
detected in released VLPs. (C–E) Band intensities were densitometrically quantified with AIDA. Values
of pNLenv1 wt were set to 100%. Scattered blots with columns representing mean values of four (C,D)
or three (E) independent experiments ± SD. One sample t-test was conducted to determine statistically
significant differences in virus release (C), p24 processing (D) and p6 processing (E) between the mutant
pNLenv1 L1P and pNLenv1 wt (*p < 0.05; not significant (n.s.) p ≥ 0.05).
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3.4. Stabilization by an N-Terminal Proline Renders HIV-1 Replication Resistant to Treatment with an
IDE Inhibitor

Previously, we reported that stabilization of p6 via triplication of the PTAP motif results in reduced
replication capacity of X4 tropic HIV-1 in PBMC. Furthermore, the IDE specific inhibitor 6bk reduces
the X4-tropic replication capacity of HIV-1NL4-3 wt, while 6bk does not affect the mutant HIV-1NL4-3

3xPTAPPA [16]. Although duplications of the PTAP motif are described to occur in patients under
antiretroviral therapy (ART), the triplication of this motif is merely artificial. In contrast, HIV-1 p6
variants with an N-terminal proline occur as natural polymorphism in up to 20% of the isolates [37].
Hence, we wanted to investigate the influence of 6bk on the replication capacity of the natural occurring
IDE-insensitive p6-variants.

Therefore, activated human PBMCs were infected with standardized amounts of X4-tropic
HIV-1NL4-3 wt or L1P, respectively. Cell culture supernatants were collected on the indicated dpi
and analyzed for release of virus particles by measuring the virus associated RT activity. For each
virus, one representative replication profile is shown with and without treatment with 10 µM 6bk
(Figure 5A–D left). Since the replication of HIV-1 in PBMCs generally exhibits donor-dependent
differences, the area under the curve (AUC) representing the replication capacity in PBMCs was
determined (Figure 5A–D right). Comparison of the replication profiles of HIV-1NL4-3 wt under
treatment with 10 µM 6bk compared to the replication profiles of untreated PBMCs derived from three
different donors reveals a 30% reduction in the HIV-1 replication capacity (Figure 5A). These results
are consistent with previous reports [16]. However, by replacing just one leucine residue by proline
in HIV-1NL4-3 p6 resulting in the mutant HIV-1NL4-3 L1P, X4-tropic replication of HIV-1 in activated
PBMCs becomes utterly insensitive towards treatment with 10 µM 6bk (Figure 5B). Similar results
have been observed with the IDE-insensitive p6 mutant 3xPTAPPA [16]. Thus, these data confirm that
the reduction of the replication capacity of X4-tropic HIV-1NL4-3 by the IDE inhibitor 6bk in activated
PBMCs is p6-dependent.

We also tested the influence of 6bk on the replication profile of SG3. Since SG3 harbors a naturally
IDE-insensitive p6 variant, we hypothesized that replication should not respond to treatment with
6bk. In Figure 5C, a representative replication profile of SG3 is depicted in activated PBCMs with
and without treatment with 10 µM 6bk. Consistent with our hypothesis, 6bk does not influence the
replication of SG3 in PBMCs derived from five different donors. In contrast, the N-terminal mutation
of the proline residue, resulting in an IDE-sensitive variant, leads to a reduction in the replication
capacity by up to 20% following treatment with 6bk (Figure 5D).
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Figure 5. Influence of the IDE inhibitor 6bk on the replication capacities of X4-tropic HIV-1 NL4-3 L1P
and SG3 P1L. Representative replication profiles are shown for infected PHA-IL2-stimulated PBMCs.
Cells were infected with X4-tropic HIV-1NL4-3 wt (A), HIV-1NL4-3 L1P (B) (each 30 pg p24, MOI 10−4),
SG3 wt (C) or SG3 P1L (D) (each 60 pg p24, MOI 10−2) with or without permanent treatment with 10
µM 6bk (left). Uninfected and untreated PBMCs served as mock control. Replication was assessed by
quantification of the virus-associated RT activity contained in cell culture supernatant collected on the
indicated dpi. The replication capacity of X4-tropic HIV-1NL4-3 wt, HIV-1NL4-3 L1P, SG3 wt or SG3 P1L
following infection of PHA-IL2-stimulated PBMCs with and without permanent treatment with 10 µM
6bk was assessed by calculating the area under the curve (AUC) from each replication profile (right).
The replication capacity of untreated cells in each experiment was set to 100%. Scattered blots with
columns representing mean values of three (A,B) or five (C,D) independently performed experiments
± SD. One sample t-test was conducted to determine statistically significant differences between the
replication capacity of treated and untreated cells (*p < 0.05; n.s. p ≥ 0.05).
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3.5. Phylogenetic Background of the N-Terminus of p6

Based on the results obtained with the HIV-1 isolates SG3 and 4lig7, we were able to identify one
single aa substitution that regulates susceptibility of p6 towards IDE-mediated degradation. Since the
N-terminal proline exhibits a naturally occurring polymorphism, we investigated the phylogenetic
background of the p6 N-terminus.

To gain a better understanding of the phylogenetic relationships of the different subtypes in the
context of the N-terminus of p6, we constructed a midpoint rooted, polar cladogram of HIV-1, several
SIV sequences and HIV-2 using complete genome sequences. Several SIVcpz isolates derived from
chimpanzees of the subspecies Pan troglodytes troglodytes that are closely related to HIV-1 have been
included in the phylogenetic tree [31,63]. Withal, we colored the labeling of the isolates corresponding
to the first aa of p6. Depicted in green are isolates with a p6 peptide beginning with a leucine residue,
red for isolates in which p6 starts with a proline residue or blue for p6 proteins that have neither a
leucine residue nor a proline residue at their N-terminus (Figure 6A).

In contrast to HIV-1, HIV-2 is not categorized in distinct subtypes, but several groups have been
identified, each most likely originating from a separate species transmission of SIV to humans [64].
However, neither the p6 derived from different HIV-2 groups nor p6 derived from any other SIVsm
isolate contains an N-terminus that is different from proline.

In the clade of HIV-1, the groups O and P are the most distantly related groups to the pandemic
HIV-1 group M. In contrast, the HIV-1 group N is more closely related to HIV-1 group M. However,
the HIV-1 groups O and P are the most heterogenic groups regarding the N-terminus of p6, whereas
the p6 protein of HIV-1 group N exclusively begins with an N-terminal proline.

Surprisingly, the predominant N-terminal leucine residue is a characteristic of HIV-1 group M.
Within HIV-1 group M, the clade containing the subtypes A and G split early from the other subtypes.
Intriguingly, while all subtypes in the phylogenetic tree share the characteristic of a predominant
leucine residue at the N-terminus of p6, subtype A exclusively expresses p6 proteins with an N-terminal
proline. Within the viruses analyzed herein, some SIVcpz isolates are positioned near the clade of
HIV-1 group M. Concerning p6, two of these three isolates, MB66 and MB897, begin with leucine,
while the isolate LB7 has an N-terminal proline [31,65]. Our phylogenetic analysis indicates that the
N-terminal leucine of p6 formed in the SIVcpz population even before the pandemic HIV-1 group M
was established in humans.

Except subtype A, the HIV-1 group M is primarily characterized by a p6 protein that begins with
an N-terminal leucine. However, although the Los Alamos sequence compendium is designed to
provide a representative overview of known HIV-1 and HIV-2 sequences, the manual selection might
bias the actual aa occurrences of the different isolates [48,49]. To gain a more accurate quantification of
the discrepancy between subtype A and the other subtypes and groups, we analyzed a total of 2088
sequences derived from HIV-1, SIVsm and HIV-2 in silico regarding the aa at position one of p6 [54].
Depicted in Figure 6B is the ratio of p6 sequences beginning with a leucine residue (green), a proline
residue (red) or another aa (blue). As already indicated by the phylogenetic tree, the p6 protein derived
from HIV-2 and SIVsm sequences is consistent regarding the N-terminal aa. Here, all analyzed p6
sequences code for a p6 protein that begins with a proline, without any exception. Similarly, the HIV-1
group N is the only group, in which proline is the only aa at the N-terminus of p6. In contrast, none of
the p6 proteins of group O have an N-terminal proline, and only 11.1% of the isolates of group O have
an N-terminal leucine residue in p6.

Around 80% to 100% of the p6 sequences derived from the HIV-1 group M subtypes B-K begin
with an N-terminal leucine. In contrast, proline is only the second most common aa at position one of
mature p6 in group M, with 14.5% of all sequences. For subtype B, the subtype of HIV-1NL4-3, SG3,
and 4lig7, only 7.4% of the isolates contain p6 sequences with an N-terminal proline, whereas 90.1%
of the sequences have an N-terminal leucine residue. In contrast, the HIV-1 subtype A is the only
exception for this characteristic N-terminus of p6. Here, 98.9% of all available p6 sequences begin with
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an N-terminal proline. It should be mentioned that the total amount of available sequences for each
group and subtype are highly variable.
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Figure 6. Phylogenetic background of the aa at position one of p6. (A) SATé HIV-1/SIV/HIV-2
phylogeny in circular form. In the phylogenetic tree, the isolates have been colored corresponding
to the first aa of p6. Isolates with a proline at position one of p6 are depicted in red, isolates in
which p6 begins with leucine are colored green, and all other isolates are written in blue. The labeled
rings indicate the virus species HIV-1 or HIV-2, respectively (outer), groups (middle) and subtypes
(inner). (B) A total of 2088 representative sequences from the Los Alamos Sequence Database have been
analyzed in silico regarding the first aa of p6. Depicted are the aa occurrences at position one of the p6
peptides of all HIV-1 groups and subtypes, SIVsm (including SIVmac sequences) and HIV-2. Sequences
of p6, which begin neither with proline (red) nor with leucine (green), have been summarized as others
(blue). The number of analyzed sequences is indicated in brackets and was set to 100% for each column.
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3.6. IDE-Susceptibility of p6 Derived from Various Subtypes

The phylogenetic analysis of the N-terminal aa of HIV-1 group M revealed that the proline at
position one of p6 is a particularity of subtype A. Since the proline at the N-terminus of p6 renders
p6 IDE-insensitive, we hypothesized that p6 peptides from subtype A viruses are not degraded by
IDE. To investigate this hypothesis, we infected CEMx174 M7 R5 cells with several HIV-1 field isolates,
representative of different HIV-1 subtypes. After syncytia formation or five dpi, we collected the cell
culture supernatants and isolated the viral particles. After the lysis of the viral particles, we performed
a steady state in vitro degradation assay with rIDE.

While most non-A isolates are degraded by rIDE within 60 min at 37 ◦C, no degradation was
detected for both HIV-1 subtype A isolates 92UG029 and 00KE_KER2008, respectively (Figure 7A).
Both subtype A isolates have a proline at the N-terminus of p6. In contrast, even the subtype F
isolate 93BR020, harboring a p6 sequence with an N-terminal isoleucine residue is degraded by IDE
(Figure 7A,C). However, the subtype F 93BR020 and the subtype D isolate 92UG024 might differ in
their degradation kinetics. Here, a faint band is still detectable after 60 min degradation, indicating
that there have been further adaptions to IDE-mediated degradation in different isolates. Furthermore,
p6 derived from the subtype H isolate HIV-1 VI557 is not degraded by rIDE (Figure 7A). Intriguingly,
the isolates 92UG024 (subtype D), VI557 (subtype H), and 92UG029 (subtype A) show a band slightly
larger than p6 which also is reactive with our polyclonal p6 Ab and which is not degraded by IDE.
In our experiments, subtype A correlates with the stability of p6 towards IDE-mediated degradation.
Intriguingly, the IDE-insensitive p6 variant of the subtype H isolate VI557 is, of all analyzed isolates,
the closest relative to the analyzed subtype A isolates.
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Figure 7. Degradation of p6 derived from various subtypes by IDE. (A) rIDE was incubated with
vp6 derived from the indicated field isolates. Reactions were stopped by heat inactivation either
immediately or after incubation for 60 min at 37 ◦C. p6 incubated with IDE buffer for 60 min at 37 ◦C
served as negative control. Representative Western blots of four independent experiments are shown.
(B) Sequence alignment of the isolates tested for sensitivity towards IDE-mediated degradation. Colors
of the sequence alignments according to the physicochemical properties of the aa, as proposed by
the Clustal Omega multiple sequence alignment software. Conserved aa positions in the sequence
alignment are indicated by asterisks. Furthermore, aa exchanges between strongly (colon) and weakly
(dot) similar aa residues are specified [45–47].

4. Discussion

The HIV-1 p6 protein is rapidly degraded by IDE. This phenomenon is specific for HIV-1 since
p6 from HIV-2 ROD10 and SIVmac239 proved to be IDE-insensitive [16]. Although proteolysis of p6
by IDE appears to be a common feature of HIV-1, the phylogenetic origin of the degradation of p6
remained unclear until now [16]. Here, we describe two p6 sequences of HIV-1 that are not degraded
by IDE: One originates from the molecular clone SG3, the other from the multiresistant recombinant
virus 4lig7 [40]. These isolates are part of the HIV-1 group M subtype B, the most common subtype in
the United States [66]. Intriguingly, both p6 sequences begin with an N-terminal proline, an attribute
they have in common with the IDE-insensitive p6 peptides from HIV-2 and SIV as well as the EIAV
p9 protein [16]. Thus, it was legitimate to hypothesize that the N-terminal proline regulates the
susceptibility of p6 to IDE-mediated degradation.
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To elaborate the role of an N-terminal proline in IDE-mediated degradation of p6, we mutated
the first aa of p6 from HIV-1NL4-3 derived pNLenv1 wt to proline, resulting in the construct pNLenv1
L1P. Accordingly to our hypothesis, p6 derived from pNLenv1 L1P has an increased half-life compared
to p6 wt. Furthermore, the reciprocal mutation of SG3 wt to SG3 P1L resulted in a p6 variant with
restored susceptibility to IDE-mediated degradation. These results indicate that the N-terminus of p6
is of importance for the degradation of p6 by IDE. This finding is supported by observations of Shen
et al., who found that the N-terminus of substrates is vital for substrate-binding to IDE. The first 3–5
aa of an IDE substrate, with the cleavage-site containing 7–13 aa, form a β-sheet together with the
IDE strands β12 and β6 [17]. Thus, an N-terminal proline might interfere with this β-sheet, thereby
preventing substrate-binding of p6 to IDE.

Previously, we described an IDE-insensitive p6 mutant bearing a triplication of the PTAPPA motif
(p6 3xPTAPPA). We assumed that the triplication of the PTAPPA motif increases the length of p6
beyond the size-exclusion limit of the IDE. However, due to a duplication of its N-terminus, the p6
protein from HIV-1 IIIB is of similar size as the p6 3xPTAPPA. Albeit, p6 derived from HIV-1 IIIB is
susceptible to degradation in S10 extract, contradicting the size-exclusion of the p6 3xPTAPPA [16].
The 3xPTAPPA is adjacent to an N-terminal cleavage site. Thus, the proline-rich PTAPPA motif near
the major N-terminal IDE cleavage site might also prevent the formation of the β-sheets with IDE
strands β12 and β6, necessary for binding to IDE [17]. Consistent with this, the p6 3xPTAPPA mutant
fails to compete with wt p6 for degradation by IDE, thus indicating that it cannot bind to IDE [16].

Regarding the role of p6 in late processes, the mutant pNLenv1 L1P shows wt phenotype. However,
maturation of p6 is slightly impaired compared to wt due to the mutation of the p1/p6 cleavage site.
Previously, the Gag cleavage site between p1 and p6 has been associated with several protease
mutations [60,61]. Particularly, a proline at the N-terminus of p6 has been associated with treatment
failure in HIV-1 positive patients. Thereby, this aa has been statistically associated with the protease
inhibitor (PI) resistance mutations K20I/R/M and L89M/I within the PR gene [67]. Consistent with
this, the IDE-insensitive multiresistant field isolate 4lig7 bears the PR mutation K20I alongside other
resistance mutations. Since the p6 protein of the mutant pNLenv1 L1P shows altered processing
by the viral PR compared to pNLenv1 wt, a natural L1P adaption in the p6 gene might occur to
compensate a PI resistance mutation in the protease, restoring viral fitness. However, the correlation
of the N-terminal proline to PI treatment and resistance mutations in PR is still part of an ongoing
debate. Verheyen et al. describe the N-terminal proline of p6 as natural polymorphism, without any
correlation to PI resistance mutations [37]. Furthermore, no correlation of p6 L1P to mutations in PR
has been described in the Swiss HIV-1 cohort [68]. Intriguingly, in this cohort, the N-terminal proline
is associated with three other mutations, namely an HIV-1 p6 S3G substitution and the mutation HIV-1
p6 P5L/T [68]. In the case of the formation of a β-sheet of p6 with IDE, all three mutations might be
involved in the binding to IDE [17].

Duplication of the PTAP motif frequently develops under antiretroviral therapy [69–71].
In contrast, the previously described IDE-resistant p6 mutant “3xPTAPPA” is merely artificial in
as much as triplications of the PTAP motif have not been found to arise naturally [16]. Thus, it has
not been possible to follow potential effects of stable p6 on the HIV-1 pathology in vivo. However,
the natural p6 polymorphism Pro-1 will now allow, for the first time, to investigate the biological
functions of IDE-mediated degradation of p6 in vivo. Thereby, stabilization of p6 by a naturally
occurring N-terminal proline does not only allow performing intersubtype evaluations, but also
enables evaluation of the IDE-dependent HIV-1 progression of patients infected with the same subtype.
Subtype B is the most prevalent in HIV-1 isolates and accounts for 66% of all global HIV-1 infections [72].
In future studies, it might be interesting to investigate if there are differences in the progression of
HIV-1 pathology between the 7.4% of the patients infected with subtype B coding for a p6 protein
with an N-terminal proline, and patients infected with a subtype B containing an IDE-susceptible p6.
The identification of one single aa substitution that regulates IDE susceptibility of p6 allowed us to
investigate the phylogenetic background of this natural polymorphism.
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Interestingly, all described HIV-2 and SIVsm isolates have an N-terminal proline in their p6
sequence indicating a general stability of HIV-2/SIVsm p6, not only for the described p6 variants
from HIV-2 ROD10 and SIVmac239 [16]. Towards HIV-1, the N-terminus of p6 becomes much more
polymorphic, indicating that the selection pressure in the recent evolutionary history of HIV-1 favored
more heterogenic N-termini for p6. The N-terminus of p6 derived from group O is genetically the
most heterogenic, while p6 from the HIV-1 group N exclusively consists of p6 with an N-terminal
proline. The HIV-1 group M is the only group of HIV-1 that predominantly consists of p6 variants
with an N-terminal leucine. However, the N-terminal leucine is also present in SIVcpz isolates closely
related to HIV-1 group M [31,63]. In contrast to the other subtypes, nearly all isolates of HIV-1 subtype
A have a proline at their N-terminus. A similar result has been observed previously by Torrecilla
and colleagues, who observed the conservation of PR cleavage sites among different subtypes [73].
Intriguingly, the proline at the N-terminus of p6 in subtype A is genetically exceptionally stable and
occurs in nearly all HIV-1 subtype A isolates described. Furthermore, the cleavage site between p1 and
p6 is significantly more conserved within subtype A compared to the other subtypes [73,74]. If the
transmitted virus that led to the formation of the HIV-1 group M had a p6 sequence with an N-terminal
leucine, then the subtype A achieved the N-terminal proline subsequently to the transmission of HIV-1
from chimpanzees to humans. According to Patiño-Galindo et al., the most recent common ancestor of
HIV-1 subtype A1 dates back to around the year 1949, being the earliest most recent common ancestor
described for all HIV-1 subtypes [75]. However, the phylogenetic data do not allow it to be said with
certainty that the virus transmitted to humans had leucine at the first position of p6, and another
possibility would be that the first HIV-1 group M virus had an N-terminal proline. Consequently,
this would mean that the predominant leucine residue formed at least two times independently within
HIV-1 group M. The first time, when HIV-1 subtype G split from subtype A, and some other time
when the other subtypes split from subtype A and G.

Although it has not a defined recognition motif, IDE is reported to be highly selective. Thus,
it degrades glucagon, while it spares related peptides like the glucagon-like peptide or the glucagon
fragment glucagon19-29 [76–78]. Our data suggest that susceptibility of HIV-1 p6 to IDE-mediated
degradation is entangled with the aa at the N-terminus of p6. However, while a proline at aa position
one of p6 prevents degradation of p6 by IDE, we cannot deduce as a rule that an N-terminal leucine
renders p6 susceptible to IDE-mediated degradation. Thus, the p6 protein derived from the subtype H
isolate VI557 is not degraded by rIDE, although it has an N-terminal leucine. Since several adaptions
can modify the susceptibility of p6 to IDE, as well as the high degradation rate of p6, this hints towards
a selective interaction of p6 and IDE.

Previously, we have shown that the reduced replication capacity of HIV-1 after stabilization of
p6 is env-dependent. While R5-tropic HIV-1 does not respond to stabilization of p6, replication of
X4-tropic HIV-1 is reduced under the same conditions in vitro [16]. Intriguingly, the HIV-1 subtype
A bearing IDE-insensitive p6 variants is more likely to be R5-tropic than subtype D in non-AIDS
patients [79]. Furthermore, we hypothesized that p6 might partially compete with the clearance of
amyloid β in the brain, thereby contributing to the progression of HIV-1 associated neurocognitive
disorders [16]. This is supported by the finding that, in comparison to HIV-1 subtype D, patients
infected with a subtype A virus have a lower risk to develop a cognitive impairment [80].

If stabilization of IDE substrates by an N-terminal Pro-1 is possible in principle, this might also be
of interest to increase the half-life of insulin preparations and thereby to enhance bioavailability of
administered insulin in diabetes patients. Furthermore, a potential role of IDE in the development of
diabetes and Alzheimer’s disease might be addressed using insulin or amyloid-β peptide, respectively,
that is not degraded by IDE but has a normal susceptibility to other degradation pathways [81–84].
However, it must be clarified whether stabilization of IDE substrates, other than p6, by mutation of their
N-terminus to proline is feasible and does not affect the processing of their precursor protein [85,86].

Stabilization of p6 by treatment with the IDE-specific inhibitor 6bk, or the infection with HIV-1
harboring an IDE-resistant p6 variant resulted both in a slightly but statistically significant reduction
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of the replication capacity. Simultaneously, all known functions of p6 described so far are not affected.
This, altogether, hints towards a completely unknown function of mature p6 [16]. Besides the
replication capacity, the p6 protein might affect other aspects of the HIV-1 infection that are not
represented in our cell culture systems, as it has been shown previously for several accessory HIV
proteins [87].

5. Conclusions

Overall, our data indicate that a proline residue at the N-terminus of p6 prevents the degradation
of the HIV-1 p6 protein by IDE. Intriguingly, the Pro-1 is characteristic for HIV-1 subtype A.
Consequently, IDE does not degrade p6 proteins derived from isolates of this subtype. In contrast,
susceptibility of p6 to IDE-mediated degradation is conserved in at least four other subtypes of HIV-1.

Supplementary Materials: The following is available online at http://www.mdpi.com/1999-4915/10/12/710/s1,
Figure S1: Mutation of the N-terminal aa does not affect the predicted secondary structure of p6.
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