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Abstract: Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral
immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune
responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The
major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and
activator of transcription) pathway, a complex pathway involved in both viral and host survival
strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses
evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved
to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote
viral pathogenesis. In this review, recent progress in our understanding of the virus-induced
IFN-independent STAT signaling and its potential roles in viral induced inflammation and
pathogenesis are summarized in detail, and perspectives are provided.

Keywords: Interferons; JAK/STAT signaling; non-canonical STAT activation; viral antagonism;
inflammation

1. Introduction

Interferons (IFNs) are a group of secreted proteins that play key roles in host antiviral immunity.
IFNs are typically induced by the activation of host pattern-recognition receptors (PRRs), mainly
retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLR) and Toll-like receptors (TLR) during viral
infection [1,2]. To date, three types of IFNs (I, II, and III) have been characterized. Type I IFNs,
or generally called IFNs (mainly IFN-α/β), compose the largest IFN family [3]. Almost all cell types
are capable of producing IFN-α/β; however, plasmacytoid dendritic cells (pDC) are considered as
the major cell type for IFN-α production during the course of an viral infection [4,5]. Type II IFNs
comprise only IFN-γ [6]. Different from type I IFNs, IFN-γ production is restricted to activated T
cells, natural killer cells, and macrophages [6]. Type II IFN plays a major role in establishing cellular
immunity; however, it induces expression of a group of genes that respond to type I IFN as well [7,8].
Type III IFNs were the latest IFN family and contain IFN-λ1 to 4 [9,10]. IFN-λ signals through unique
receptors, but activates the same pathway as type I IFNs [9,11,12].

Induction of IFNs typically results from activation of host PRRs during virus infection. PRRs
mainly include RLRs and TLRs [1,2]. After induction, IFNs stimulate cells via activation of
specific signaling pathways, mainly the JAK/STAT (Janus kinase/signal transducer and activator of
transcription) pathway [13]. Subsequent cascade events after the triggering of the pathway result
in expression of IFN-stimulated genes (ISGs) [14]. Generally, hundreds to thousands ISGs can be
upregulated by type I IFNs [15]; ISGs include antiviral effectors that restrict virus replication.
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The JAK/STAT pathway was initially characterized based on its role in type I IFN-mediated
responses [16]. The STAT proteins have also been shown to be critical for transmission of signals of
many diverse membrane receptors, such as cytokine and hormone receptors [17]. The JAK/STAT
pathway cascade consists of three major components: a surface receptor, JAK, and downstream STAT
proteins [18]. Disruption or dysregulation of JAK/STAT function can result in immune deficiency
syndromes and cancers [18].

Notably, viruses antagonize JAK/STAT signaling pathway [19]. Therefore, it has been proposed
that JAK/STAT pathway antagonism is a virulence factor that could be exploited as a novel strategy to
achieve virus attenuation for modified live virus (MLV) vaccine development [20]. This is consistent
with observations that mice lacking intact JAK/STAT signaling (IFN receptor or STAT1 knockout mice)
are more susceptible to virus infection than wild-type mice [21–24]. However, our understanding
has grown regarding the JAK/STAT pathway and virus-mediated antagonism. It appears that the
interplay between virus and the JAK/STAT pathway is more complicated than expected, with opposing
effects existing concurrently instead of mutual exclusion. In this review, several topics are discussed:
the discovery of the JAK/STAT pathway, including the canonical JAK/STAT pathway activated by
IFNs, tyrosine phosphorylation-independent non-canonical STAT activation, virus-induced serine
monophosphorylation of STATs, as well as the role of monophosphorylation of STATs during
inflammation triggered by viral infection.

2. Canonical and Non-Canonical JAK/STAT Activation

2.1. Tyrosine Phosphorylation-Dependent Canonical JAK/STAT Activation

There are three key components in the JAK/STAT pathway: a membrane-bound receptor, JAKs,
and STATs [17]. So far, four members have been identified within the JAK family: JAK1, JAK2, JAK3,
and tyrosine kinase 2 (TYK2). All JAKs are characterized by a C-terminal catalytic kinase domain,
and a related, but enzymatically inactive pseudokinase or kinase-like domain [25]. In addition, five
other domains are present within the N-terminal regions of JAKs, and these domains share sequence
similarity [17]. All seven JAKs domains are now grouped together for designation as the Janus
homology domain (JHD) and are numbered in reverse-order from 7 to 1, from the amino- to the
carboxyl-terminal region of JAKs [17]. The pseudokinase domain is thought to regulate JAKs kinase
activity by interacting with the kinase domain, which is responsible for JAKs basal activity [26,27].

In mammalian species, there are seven members (encoded by individual gene) of the STAT
family: STAT1, 2, 3, 4, 5A, 5B, and 6 [28]. Existence of splicing variants (derived from the same
pre-mRNA progenitor) is also confirmed for STAT1, STAT3 [29–31], STAT4, and STAT6 [32,33]. These
STAT isoforms share a common splicing pattern similar to that of STAT1, which generates shorter
STAT forms with incomplete transactivation domains (TADs), and function as negative regulators
of STATs [31,33,34]. For STAT5s, proteolytic processing of full length protein generate shorter forms
of STAT5s with incomplete TADs, which are similar to splicing pattern of other STATs as well [35].
Meanwhile, bioinformatics analysis suggests a remarkable similarity among STAT genes, with the
exception of STAT2 [28]. Moreover, all STATs share a similar structure comprised of the following
domains: N-terminal domain (ND), coiled-coil domain (CCD), DNA-binding domain (DBD), linker
domain (LD), Src homology 2 (SH2) domain, and TAD [36].

Before activation of the JAK/STAT pathway, JAKs non-covalently associate with the cytoplasmic
tails of cytokine receptors, and are functionally inactive. Upon ligand binding, dimerization or
oligomerization of specific membrane receptors leads to JAKs apposition and autophosphorylation of
tyrosine residues, thereby switching on tyrosine kinase activities of JAKs. Next, the activated JAKs
phosphorylate tyrosine residues located in the cytokine-receptor cytoplasmic domains to provide
binding sites for STATs SH2 domains, which recruit STATs to interact with JAKs. STATs are then
phosphorylated by JAKs on tyrosine residues around amino acid (aa) 700, depending on the length
of a particular STAT (750–850 aa in length) [17]. Finally, depending on the ligands binding to the
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receptors, homologous or heterologous STAT interactions occur immediately after phosphorylation,
through reciprocal SH2 interactions that lead to formation of both STAT homodimers or heterodimers,
as transcription factor complexes for nuclear translocation [17,37,38].

STAT1 and STAT2 are the major players involved in type I IFN-mediated signaling and form
interferon-stimulated gene factor 3 (ISGF3) complex along with IRF9 [38]. Other complexes induced by
type I IFNs also include homodimers for STAT1 to STAT6, and heterodimers, including STAT1-STAT3,
STAT1-STAT4, STAT1-STAT5, STAT2-STAT3, and STAT5–STAT6 [38]. Type II IFN activates JAK1
and JAK2, resulting in phosphorylation of STAT1 on the tyrosine residue Y701, as observed in
type I IFN signaling. However, this event only leads to the formation of STAT1 homodimers,
also known as γ-interferon activation factor (GAF), which binds to interferon-γ-activated-sequence
(GAS) elements [38]. Karyopherin-α1 (KPNA1) is the essential importin for nuclear transport of
phosphorylated STAT1 [39]. The interaction of STAT1 and KPNA1 involves a non-classical nuclear
localization signal (NLS) [39,40]. Besides IFN signaling, STATs are also responsible for transducing
signals involving several other families of cytokines. Schematic illustration of IFN-mediated JAK/STAT
activation was shown in Figure 1.
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Figure 1. Schematic illustration of Type I, Type II, and Type III Interferon (IFN) signaling.

2.2. Tyrosine Unphosphorylated STATs during Non-Canonical STATs Activation

It is believed that phosphorylation of tyrosine resides (around residue 700) in STATs is an
essential step for canonical activation of the JAK/STAT pathway induced by cytokines, including
IFNs [41]. However, in the absence of tyrosine phosphorylation, STATs still perform unique
functions by constantly shuttling between cytoplasmic and nuclear compartments, and are now
considered part of non-canonical STATs activation [42]. The STAT3 was the first well-characterized
unphosphorylated STAT (U-STAT) in mammalian cells, due to its constant trafficking into the
nucleus in the absence of tyrosine phosphorylation [43]. It was demonstrated that aa150 to 162
in the coiled-coil domain are indispensable for U-STAT3 nuclear import [43]. Interestingly, U-STAT3
and tyrosine-phosphorylated STAT3 dimers were found to interact with the same importin-α
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isoforms, importin-α3 and importin-α6 [43]. Similar to U-STAT3, a series of mutations and deletions
has revealed a region within the coiled-coil domain of STAT5A is critical for nuclear import of
unphosphorylated STAT5A [44]. Since then, U-STAT1 [45], U-STAT2, and U-STAT5B all have been
identified, and have unique functions which differ from their tyrosine-phosphorylated forms [46–48].
Therefore, unphosphorylated STAT forms appear to exist for all STATs, and exhibit unique functions
that are distinct from their tyrosine phosphorylated forms [49–51].

The functions of U-STATs have been extensively investigated for STAT1 and STAT2, since these
STATs have been linked to IFN-mediated signaling. After stimulation of the JAK/STAT pathway
by high dose IFN treatment (1000 U/mL), tyrosine phosphorylation of STAT1 and STAT2 could
be observed within a half hour, but steadily decreased after two hours, and to basal levels by
eight hours [52]. This result is also consistent with previous observations of the maximal nuclear
accumulation of STAT1, as visualized by GFP-fused proteins two hours after 500 U/mL IFN-β
stimulation [53]. However, IFN-activated ISG expression could last far longer than 24 h after high
dose IFN treatment. Conversely, if cells were stimulated with low dose IFN-β (5 U/mL), expression
of ISGs increased after six hours and persisted after 48 or 72 h, long after tyrosine-phosphorylated
STAT1 returned to basal levels [45]. These observations cannot be fully explained by a canonical STAT
activation model, requiring tyrosine phosphorylation of STAT as a prerequisite for downstream gene
activation [45]. However, when exogenous STAT1 was introduced into cells without IFN-treatment,
a subset of IFN-induced genes was upregulated, suggesting that U-STAT1 promoted expression of
certain ISGs in the absence of IFN stimulation [45].

Further analysis has indicated that U-STAT1 and U-STAT2, along with IRF9, can support the
formation of unphosphorylated ISGF3 (U-ISGF3) [54]. U-ISGF3 formation requires high levels of IRF9,
STAT1, and STAT2 in the absence of tyrosine phosphorylation, although U-ISGF3 could be induced
by low level IFN-β as well. It has been proposed that phosphorylated ISGF3 first drives a rapid
response phase by binding to canonical ISRE, while U-ISGF3 drives a second prolonged response by
binding to distinct ISREs with variable flanking sequences that differ from canonical ISREs during
the rapid phase [54]. Nonetheless, the exact function of U-ISGF3 still requires further investigation,
although available data suggest that U-ISGF3 drives basal expression of ISGs to protect cells against
viral infection under homeostatic conditions [45,55,56]. Some U-ISGF3-induced proteins are capable to
mediate resistance to DNA damage in many cancers in which U-ISGF3 is overexpressed [45,54]. In
addition to forming U-ISGF3, U-STAT2 is constitutively bound to many IFN-activated promoters in
the absence of IFN stimulation, contributing to their basal regulation [46]. Meanwhile, STAT2 and IRF9
can form complexes as well, and direct a prolonged ISGF3-like transcriptional response to achieve
antiviral activity in the absence of STAT1 [57]. In fact, these results are consistent with previous reports
demonstrating that STAT2 mediates innate immunity in the absence of STAT1 [58].

The function of U-STAT3 has been investigated as well, since STAT3 is linked with oncogenesis
and IFN-activated responses [59]. When a STAT3-Y705F mutant is overexpressed in STAT3-null
cells, some well-known oncoproteins, such as MRAS and MET, are upregulated by U-STAT3,
but not by activated STAT3 dimers [59]. These results suggest that U-STAT3 activates gene
expression by a novel mechanism distinct from canonical STAT3 dimers [59]. This observation is
consistent with recent research demonstrating that U-STAT3, during Interleukin (IL)-6 stimulation,
drives a second wave of gene expression that does not respond directly to STAT3 containing
phosphorylated tyrosine [60]. Meanwhile, it appears that U-STAT3-responsive genes contain nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) response elements that are activated
by a novel transcription factor complex formed when U-STAT3 binds to unphosphorylated NF-κB
(U-NF-κB). NF-κB response elements come into play after U-STAT3/U-NF-κB trafficking to the
nucleus that depends on the presence of the nuclear localization signal (NLS) of STAT3. Once
in the nucleus, U-STAT3/U-NF-κB activates a subset of NF-κB-dependent genes [60]. Moreover,
the U-STAT3/NF-κB complex appears to activate NF-κB-regulated genes in B-cell neoplasms, and
contributes to pathogenesis of those cells as well [61]. These observations are also consistent with
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another report demonstrating that nuclear U-STAT3 accumulation correlates with a poor prognosis
for human glioblastoma [62], suggesting an important role of U-STAT3 in oncogenesis [63]. For
IFN-mediated signaling, a recent study suggested that U-STAT3 plays an important role in the IFNs
response pathway and showed that 60% of interferon-stimulated genes are STAT3-dependent and
30% are independent of STAT3 tyrosine phosphorylation [49]. In fact, U-STAT3 has been shown
to be recruited to promoters of STAT3-regulated ISGs as well. With the exception of U-STAT1 and
U-STAT3, tyrosine-unphosphorylated STAT5 (U-STAT5) has been reported to restrain megakaryocytic
differentiation and activation of a canonical pSTAT5-driven response that includes regulators of
apoptosis and proliferation [48,50].

2.3. Serine Monophosphorylation of STATs during Non-Canonical STAT Activation

In addition to tyrosine phosphorylation, STAT serine residues within the C-terminal
transactivation domain (TAD) can be phosphorylated as well [41]. Initially, phosphorylation of
serine at the TAD was thought to contribute to the attainment of maximal STAT transcriptional activity
in addition to tyrosine dependent STAT activation [64]. An earlier in vitro study had suggested that
IFN-γ-induced phosphorylation of serine 727 (S727) in STAT1-TAD occurs only on promoter-bound
STAT1 [65], which is similar to IL-6-induced S727-phosphorylation of STAT3 [66]. These data suggest
that cytokine-induced TAD serine phosphorylation of STATs is accomplished by components of
the general transcription machinery that are assembled at the promoter. These hypotheses are
further supported by identification of chromatin-associated cyclin-dependent kinase 8 (CDK8) as
the kinase responsible for IFN-γ-induced STAT1-Ser727 phosphorylation inside the nucleus [41].
During IFN-γ stimulation, CDK8-mediated STAT1 serine phosphorylation has both positive and
negative effects on over 40% of IFN-γ-responsive genes. Moreover, siRNA-mediated silencing of
CDK8 renders cells more susceptible to vesicular stomatitis virus (VSV) infection, with a 10-fold higher
IFN-γ requirement for efficient protection against VSV [41]. Conversely, a report from another group
demonstrated that STAT1-S727 could be phosphorylated by mitogen-activated protein (MAP) kinases
as well [67]. A recent study also demonstrated diptoindonesin G-induced extracellular signal–regulated
kinases (ERK)-mediated phosphorylation and nuclear translocation of pSTAT1 (S727) in acute myeloid
leukemia cells is independent of tyrosine phosphorylation at aa701 of STAT1 [68]. Meanwhile, nuclear
translocation of pSTAT1 (S727) promotes specific expression of ISGs, such as Interferon-induced
protein with tetratricopeptide repeats (IFIT)3 and The chemokine (C-X-C motif) ligand 1 (CXCL1) [68].
Therefore, monophosphorylation of serine residues of STATs in TAD domains represents a novel
non-canonical pathway of STATs activation.

So far, the in vivo function of serine monophosphorylation within the TAD of STATs has been
exclusively investigated for STAT1. Previous studies in Stat1−/− cells demonstrated the occurrence of
STAT1-independent, STAT2-dependent gene expression is a delayed event during the transcriptional
response to type I IFNs [57]. Intriguingly, in vivo data from STAT1-Y701F mice demonstrated that
the presence of STAT1 (Y701F) partially repressed STAT2/IRF9-dependent, STAT1-independent ISG
expression during the late stages of the IFN-β response. Moreover, macrophages obtained from
STAT1-Y701F-mutated mice were more susceptible to Legionella pneumophila infection than were
wild-type macrophages [69]. However, macrophages from STAT1Y701F mice exhibited a modest
gain-of-function in antibacterial immunity in comparison with Stat1−/− mice upon infection with
intracellular microbe Listeria monocytogenes [69,70]. Meanwhile, STAT1Y701F mutants partially retained
NK cell cytotoxicity compared to the complete loss of that function in Stat1−/− mice. However, the NK
maturation defect in the STAT1Y701F mice was similar to that observed in Stat1−/− mice [69,70].
Conversely, Stat1-S727A mice exhibited slightly elevated numbers of mature NK cells (mNKs) in
bone marrow, spleen, and blood [71]. Unexpectedly, purified and in vitro-expanded NK cells derived
from Stat1-S727A mice show significantly higher cytotoxicity against a range of tumor cells [71,72].
Although IFN-mediated signaling has not been completely investigated in these animal models to
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elucidate the exact role of STAT1-S727, it is possible that phosphorylation of STAT1-S727 plays a role in
a cell-specific manner.

Current understanding of tyrosine phosphorylation-independent non-canonical STATs activation
remains limited. Previous studies focusing on U-STATs mainly investigated phosphorylation of
tyrosine, but rarely examined serine phosphorylation status within the TAD domain at the same
time [45,55,73]. Therefore, it is not known if U-STATs or components of U-ISGF3 are completely
unphosphorylated at both tyrosine and serine residues, or actually contain phosphorylated serine
reside within the TAD domain [74]. Notably, in STAT1-Y701F mice, decreased expression of
STAT1-Y701F protein was observed, and impaired U-STAT1-mediated U-ISGF3 signaling as a high
level of STAT1 is required for formation of U-ISGF3 [70]. Therefore, the link between U-STATs and
serine monophosphorylation of STATs remains elusive, and it is unclear whether they have the
same or distinct functions. Further clarification is required to define the role of U-STATs and serine
monophosphorylated STATs.

The kinase responsible for monophosphorylation of serine residues of STAT TAD domains
in the absence of tyrosine phosphorylation remains elusive so far. Screening of specific CDK8
kinase inhibitors as targeted drugs for cancer therapy has demonstrated that inhibition of CDK8
kinase can result in decreased phosphorylation of STAT1 at S727 in a variety of cancer cells, and
phosphorylation of STAT1-S727 could serve as a biomarker of CDK8 kinase activity in vitro and
in vivo [75–77]. Moreover, when examining TAD serine phosphorylation for other STATs, other reports
have demonstrated that CDK5 is responsible for phosphorylation of STAT3 at S727 when T cells were
stimulated with Transforming growth factor(TGF)-β and IL-6 during tyrosine phosphorylation of
STAT3 [78]. Meanwhile, a higher level of serine monophosphorylation of STAT5 was found in acute
myelogenous leukemia (AML), and appears to be CDK8-dependent [79]. However, these reports only
examined CDK-mediated TAD serine phosphorylation of STATs under the context of canonical STAT
activation in cancer. To date, little is known regarding whether CDKs are able to phosphorylate TAD
serine residues of STATs in the absence of tyrosine phosphorylation (non-canonical STAT activation)
or whether they are also involved in regulation of IFN-related functions beyond the proliferation of
cancer cells.

3. Function of STAT Family Members and Regulation of STAT Activation

3.1. Function of STAT Family Members

In addition to be activated by IFNs, STAT1 also responds to other cytokines. Studies from
gain-of-function mutations suggest that increased and prolonged phosphorylation of STAT1 is
observed in response to IL-6 and IL-21 [80]. STAT2 appears unable to bind to DNA directly [81,82],
but contributes a potent transactivation as a component of ISGF3. This complex recruits additional
co-factors, such as p300/CBP, GCN5, and DRIP150, to initiate gene expression [81,82]. STAT2 can
form alternative complexes with IRF9 without STAT1, which is different from the canonical IFN-α
signaling [82,83].

STAT3 was initially identified as an IL-6-dependent transcription factor that promotes acute phase
gene expression [84]. It is now known that STAT3 transduces signals for the entire IL-6 family (IL-6,
IL-11, IL-31, LIF, CNTF, CLC/CLF, NP, CT1, OSM) and the IL-10 family (IL-10, IL-19, IL-20, IL-22,
IL-24, IL-26), as well as granulocyte colony stimulating factor (G-CSF), leptin, IL-21, and IL-27 [85].
IL-6 is known largely for its role in induction of acute phase proteins [86]. It is interesting to note that
the functions of IL-6 and IL-10 are diametrically opposite: IL-6 contributes to inflammation, whereas
IL-10 blocks inflammation, even though both cytokines transmit signals through STAT3 [28]. Since
the JAK/STAT interactions appear to be more complex than previously expected, it is possible that
STAT3 is not the only STAT activated by IL-6 or IL-10. Ultimately, other STATs and their corresponding
domain-negative isoforms may all influence the final outcome.
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STAT3 has also been shown to be involved in mammary gland development. Lack of STAT3 causes
a severe delay in post-lactational regression of the mammary gland, as observed in epithelium-specific
STAT3-knockout mice [87]. However, unexpected suppression of apoptosis of epithelial cells was
observed, as well, in STAT3 conditional knockout mice with delayed mammary gland involution [88],
implying that STAT3 plays a role in cell transformation. Moreover, it has been demonstrated that
STAT3 is constitutively active in some murine and human tumors, and regulates Src-dependent
transformation of fibroblasts [89]. Indeed, constitutively phosphorylated STAT3 has served as a disease
marker in a large number of breast cancer patients [90]. However, another study demonstrated that
STAT3 controls lysosome-mediated cell death in the mammary gland during post-lactational regression
in vivo [91]. These conflicting results indicate that STAT3 assumes complex roles depending on context
and interactions among multiple factors. Meanwhile, some reports suggested an involvement of
STAT3 in the IFN-mediated antiviral response as STAT3 is specifically required for induction of a
subset of IFN-α driven ISGs [49,92]. These observations are also consistent with the antiviral function
of oncostatin M (OSM), a member of the IL-6 family, which is demonstrated to induce an antiviral
response via JAK/STAT3 signaling [93].

STAT4 was initially identified through screening for STAT homologues, and was found to share
52% identical amino acids with STAT1 [94]. Expression of STAT4 was found to be limited to myeloid
cells, NK cells, dendritic cells, and T lymphocytes [94,95]. Subsequent studies showed that STAT4 is
activated by IL-12, a cytokine that plays a critical role in the development of the Th1 subset of T helper
cells by stimulating IFN-γ production and enhancing expression of T-box 21 (TBX21 or T-bet) [85,96,97].
Although it was initially thought that neither IFN-α nor IFN-γ could activate STAT4 [94], a later study
revealed that activation of STAT4 by IFNs is species-specific [98]. In humans, IFN-α/β can drive
Th1 development by activating STAT4 without IL-12-induced signaling, but the same phenomenon
is not observed in mouse [98]. Further study demonstrated that IFN-α induced STAT4 activation
requires the presence of activated STAT2 [99]. However, instead of being directly recruited to the IFN-α
receptor complex, STAT4 is indirectly recruited by a mechanism involving STAT2 [99]. Although both
Th1 and Th2 cells express STAT4, STAT4 is only activated by IL-12 in Th1 cells, since IL-12 receptors
are absent from Th2 cells [100]. STAT4 has highly specific functions, as observed in STAT4-deficient
mice. Although these mice exhibit normal total T cell counts, they exhibit Th1 defects and enhanced
development of Th2 cells [101]. Meanwhile, STAT4 is required for cytolytic functions of NK cell [102].

Although STAT4 plays important roles in driving differentiation of T helper cells, its
molecular mechanism of action is largely unknown. By using chromatin immunoprecipitation and
high-throughput sequencing to compare the transcriptional profiles of STAT4 and STAT6, STAT4 was
found to bind over 4000 genes with distinct binding motifs [103]. Among those 4000 genes, more than
2300 genes are specific targets of STAT4 and these genes may be involved in Th1 differentiation [103].
Meanwhile, STAT4 plays a more dominant role in promoting active epigenetic marks [103]. Moreover,
a recent study demonstrated that STAT4 deficiency in mice causes a failure to induce lung Th2 or Th17
immunity upon RSV challenge, but enhances the lung RSV-specific CD8+ T cell response to secondary
RSV challenge [104].

STAT5A and STAT5B were found to be encoded by two linked genes, STAT5a and STAT5b [85].
These two proteins share 96% identity and are only divergent at their carboxyl termini. STAT5 was
originally identified as mammary gland factor (MGF), which is the central mediator of the lactogenic
hormone response in mammary epithelial cells [105]. In addition to its role as a prolactin-activated
transcription factor, STAT5 proteins are activated by various cytokines and other factors, including
members of the IL-3 family (IL-3, IL-5, and GM-CSF), the IL-2 family (IL-2, IL-7, TSLP, IL-9, IL-15,
and IL-21), growth hormone (GH), Epo (erythropoietin) and Tpo (thrombopoietin) [85]. Although
STAT5A and STAT5B display functional redundancy due to their structural and functional similarities,
STAT5A single knockout mice are predominately defective in prolactin (RPL)-dependent mammary
gland development, while STAT5B single knockout mice exhibit defects similar to those observed in GH
receptor-deficient mice [85]. Meanwhile, STAT5A and STAT5B double knockout mice demonstrated
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that STAT5 is necessary for T cell proliferation and generation of NK cells [106], as well as IL-2-mediated
signaling [107]. STAT5 can also act as an oncogene, and was found to be constitutively phosphorylated
in cancer cells, especially in some myeloid leukemias [108,109]. It has been demonstrated that STAT5
can be phosphorylated constitutively by oncogenic tyrosine kinases, such as fusion tyrosine kinases
(FTKs) generated by chromosomal translocations [110]. Moreover, two isoforms of STAT5A have been
identified: wild-type STAT5A (794 amino acids) and a deletion mutant expressing truncated STAT5A
(772 amino acids); the latter lacks the C-terminal transactivation domain [34], and this domain-negative
isoform is generated by specific proteolytic processing, not by RNA splicing [35]. In addition, a recent
report shows that STAT5B is a dominant player in both effector and regulatory (Treg) responses,
suggesting that it is necessary for immunological tolerance [111]. Analyses of genomic distribution
and transcriptomic output indicate that STAT5B has great impact on gene expression, but its relative
abundance determines functional specificity.

STAT6 was originally identified from cellular extracts as an IL-4-stimulated STAT, and was
soon shown to be activated by IL-13 as well [112,113]. STAT6 plays an important role in regulating
acquired immunity involving IL-4 secretion by activated T and B lymphocytes, mast cells, and
basophils, whereby STAT6 promotes activation of several cell types, most notably, Th2 cells [85].
In STAT6-deficient mice, IL-4-induced signaling in lymphocytes is impaired, and is unable to
induce upregulation of class II MHC expression and CD23, and consequently exhibit impaired
immunoglobulin isotype switching [114,115]. Data gained from chromatin immunoprecipitation
studies demonstrate that STAT6 binds over 4000 genes, with more than 2000 genes shared with
STAT4 [103]. However, the molecular basis for STAT6 function is still largely unknown. Meanwhile,
it has been demonstrated that STAT6 regulates lung inflammatory responses in animal models [116].
In this role, STAT6 has been found to contribute to alternative activation of macrophages and lung
antiviral responses in a JAK-independent manner [117].

3.2. Regulation of the JAK/STAT Pathway

Since STAT proteins function as essential mediators of cytokine- or hormone-induced signaling
to promote cell development, proliferation, and differentiation, activation of STATs is tightly regulated.
Suppressive regulators of STAT activity include protein inhibitors of activated STAT (PIAS) family,
suppressors of cytokine signaling (SOCS), and ubiquitin carboxy-terminal hydrolase 18 (USP18) [118,119].

In mammals, PIAS proteins are encoded by four genes: PIAS1, PIAS2 (also known as PIASx),
PIAS3, and PIAS4 (also known as PIASy) [120]. Except for PIAS1, each PIAS gene encodes two
isoforms. Functionally, PIAS family proteins are currently known as Small Ubiquitin-like Modifier
(SUMO) E3 ligases [121–123] and all PIAS family members appear to regulate STAT signaling [120].
PIAS1, PIAS3, and PIAS2 have been shown to inhibit STATs activation via interactions with STAT1,
STAT3, and STAT4, respectively [124–126], while STAT1 also interact with PIAS4 [127]. PIAS proteins
negatively regulate activation of STATs after binding to them. However, PIAS proteins only interact
with the STAT dimer, which indicates that only phosphorylated STATs can interact with PIAS [128]. In
addition to STATs, PIAS members also affect functions of other transcription factors by acting as SUMO
E3 ligases [129]. Meanwhile, SUMOylation of STATs by PIAS has been identified as a modulatory
mechanism as well [130–133]. It was suggested that SUMOylation of STAT1 obstructs phosphorylation
of the proximal tyrosine residue, leading to semiphosphorylated STAT dimers which compete with
their fully phosphorylated counterparts and interfere with activation of the JAK/STAT pathway [132].

The suppressor of cytokine signaling (SOCS) family is another group of negative regulators for
the JAK/STAT pathway [134]. The SOCS family of mammalian hosts is comprised of eight members,
SOCS1 to 7, and CIS (cytokine-induced SH2 domain-containing protein) [135]. All SOCS proteins
share a common structure containing an SH2 domain and a C-terminal SOCS box domain [135]. The
SOCS box domain is critical for proteasome-mediated degradation of SOCS-associated proteins [135].
However, SOCS1 and SOCS3 contain an kinase inhibitory region (KIR) that inhibits kinase activity of
JAKs [119]. Therefore, SOCS family members inhibit JAK/STAT via different mechanisms, such as
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blocking of STAT recruitment to cytokine receptors, targeting of STATs for proteasome degradation,
binding to JAKs, and targeting JAKs for proteasome degradation [136–138]. SOCS1 and SOCS3 are the
major inhibitors for type I IFN-mediated signaling [139]. SOCS1 inhibits IFN signaling via interaction
with TYK2 [140], while SOCS3 binds to JAK2 in a similar manner via its KIR to inhibit IFN signaling as
well [141].

USP18, a protein of 368 aa in length and an ISG15 isopeptidase, is a negative regulator of type I
and III IFN-activated JAK/STAT signaling [142], and is rapidly upregulated by viral infection and IFNs.
Absence of USP18 strengthens IFN signaling, whereby the inhibitory role of USP18 is independent of
its activity as an isopeptidase. Moreover, USP18 inhibits JAK/STAT signaling via specific binding of
IFNAR2 to block JAK1 interaction with IFNAR2 and downstream signaling [143].

Besides the well-defined inhibitors described above, JAK/STAT signaling can also be regulated
by cysteine-based protein tyrosine phosphatases (PTPs), which dephosphorylate pTyr residues in
the JAK/TYK activation loop or phosphorylation sites within cytoplasmic domains of cytokine
receptors [144]. However, the detailed mechanism of PTPs regulation of the JAK/STAT pathway
is still unclear.

In addition to SUMOylation of STATs by PIAS, post-translation modification (PTM) has been
shown to regulate STATs activation as revealed by proteomic technologies. Modification of certain sites
among STATs can result in either positive or negative effects on STATs activation [145]. Acetylation
has been detected of STAT1, STAT2, STAT3, STAT5b, and STAT6, and is reviewed elsewhere [146].
STAT acetylation is dependent on the balance between histone deacetylases (HDACs) and histone
acetyltransferases (HATs), such as CBP/p300 [146]. Generally, acetylation of STATs increases their
DNA binding affinity and promotes transcriptional activation, protein–protein interaction, and STAT
dimerization. Moreover, acetylation of STATs can occur at various lysine residues located within
different domains that include the DNA-binding, SH2, N-terminal, and C-terminal domains [146,147].
Furthermore, it is interesting that SUMOylation and acetylation can involve the same lysine residue
in STAT5 lysine 696 (K696), although not concurrently [148,149]. This finding therefore suggests that
SUMOylation and acetylation might maintain a balance in STATs function.

Another mechanism for regulating STAT activation involves both arginine- and lysine-based
methylation of STATs [150,151]. The role of STAT methylation is complicated, as it exhibits both
negative and positive roles during STAT activation. As the first identified arginine methylation
site in STAT1, arginine 31 (R31) methylation was shown to be required for transcriptional
activation [152]. However, a later study reported that inhibition of STAT1 methylation at R31
results in prolonged half-life of STAT1 tyrosine phosphorylation [150], and thus, R31 methylation
negatively regulates STAT1 activation. However, methylation at R27 of STAT6 is necessary for optimal
STAT6 phosphorylation, nuclear translocation, and DNA-binding activity, all of which have effects
distinct from those reported for STAT1 [153]. Recently, a new methylation site in STAT1 (K525) has
been identified, and is required for STAT1-mediated antiviral immunity [154]. Moreover, STAT3
could be reversibly methylated at K140 and K180 by histone methyltransferases SET9 and EZH2,
respectively [66,155]. In addition, mass spectroscopy analysis reveals that unphosphorylated-STAT3
(U-STAT3) is acetylated at K685, and that K685 integrity is required for expression of most
U-STAT3-dependent genes [156].

Besides methylation and acetylation, ISGylation involving covalent bonding of targets to
interferon-stimulated gene 15 (ISG15, a ubiquitin-like protein) has been shown to regulate IFN signaling
as well [157,158]. An earlier study revealed that mice lacking UBP43, a protease that removes ISG15
from conjugated targets, are hypersensitive to type I IFN. Furthermore, in UBP43-deficient cells,
IFN induced prolonged STAT1 tyrosine phosphorylation [159]. A recent study has suggested that
ISGylation of STAT1 increases stability of STAT1 and prevents premature termination of the immune
response in LPS-stimulated microglia [160]. Therefore, it appears that both in vitro and in vivo data
indicate that ISGylation is a positive regulator of IFN signaling.
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Collectively, PTM of STATs represents a novel mechanism for JAK/STAT regulation. However,
more studies are needed to understand this regulatory mechanism, since crosstalk between methylation,
SUMOylation, and acetylation is still not understood. Moreover, a recent study demonstrated that
inhibition of HDAC enhances STAT acetylation but blocks NF-κB signaling during renal inflammation
and fibrosis in haplotype Npr1+/− male mice [161]. Therefore, crosstalk between the JAK/STAT
and NF-κB pathways under the same PTM conditions is complicated, and needs further study. On
the contrary, although dysregulation of STAT PTM during virus infection has been reported as an
important viral tactic to evade the antiviral response mediated by IFNs [162,163], there has been little
investigational focus on this issue, to learn whether virus infection could affect PTM of STATs to
regulate the JAK/STAT pathway.

3.3. Virus-Induced Serine Monophosphorylation of STATs and Inflammatory Responses during Virus Infection

Since the discovery of virus-encoded IFN antagonists, it has been proposed that JAK/STAT
pathway antagonism is a virulence factor that might be exploited to achieve virus attenuation during
vaccine development. This speculation is further supported by the observation that mice lacking
intact JAK/STAT signaling machinery (IFN receptor or STAT1 knockout mice) are highly susceptible
to virus infection [21–24]. Meanwhile, in vivo data suggest that a rapid type I interferon response
protects astrocytes from flavivirus (tick-borne encephalitis virus, Japanese encephalitis virus (JEV),
West Niles virus (WNV), and Zika virus (ZIKV)) infection and virus-induced cytopathic effects [164].
Antagonism of JAK/STAT signaling by both DNA and RNA viruses has been extensively reviewed by
Fleming [165]. It appears that almost all viruses examined so far encode antagonists for the JAK/STAT
pathways, as well as for IFN induction or NF-κB-mediated signaling [19]. However, one mystery that
cannot be fully explained regarding the interaction between virus and host signaling is how virus
induces an inflammatory response while concurrently generating antagonists of both upstream and
downstream IFN signaling (or of other cytokines) within the JAK/STAT axis.

As a typical example, porcine reproductive and respiratory syndrome virus (PRRSV) is known for
its ability to inhibit both IFN induction and IFN-activated JAK/STAT signaling, with several PRRSV
antagonists of JAK/STATs previously identified [52,93,166,167]. For detail about PRRSV mediated
antagonism for IFN induction and signaling, please see reviews by Nan et al. [168]. For a long time, the
antagonism for both IFN induction and IFN activated signaling by PRRSV was considered to contribute
PRRSV virulence and pathogenesis [168]. However, in vivo studies comparing the pathogenesis of
high-pathogenic PRRSV strain (HP-PRRSV, the most virulent type of PRRSV), classical PRRSV strain
(less virulent than HP-PRRSV) and attenuated vaccine strain of PRRSV tell a different story. It has been
demonstrated that rapid replication of HP-PRRSV in pigs could trigger aberrant sustained expression
of pro-inflammatory cytokines and chemokines, leading to a robust inflammatory response that is
likely to contribute to virulence of HP-PRRSV [169]. Meanwhile, in another in vivo study comparing
HP-PRRSV-HuN4 (a strain belongs to HP-PRRSV) to its homologous vaccine strain HuN4-F-112
(attenuated strain by serial passage of HP-PRRSV-HuN4 in tissue culture) [170], the HP-PRRSV-HuN4
strain generated earlier and higher levels of inflammatory cytokines [171]. This result indicates that
HP-PRRSV-HuN4 may enhance inflammation to cause more damage to tissues and organs. However,
the attenuated HuN4-F112 vaccine strain induced lower levels of inflammatory cytokines that enhanced
immune responses against infection [171]. Therefore, it appears that IFN-JAK/STAT axis antagonist
genes identified within the PRRSV virus genome during in vitro studies are not consistent with the
observed phenotypes difference of PRRSV in vivo.

As discussed in the previous section, monophosphorylation of serine residues in STATs has
been frequently reported as non-canonical TAD serine phosphorylation in the absence of tyrosine
phosphorylation [41]. This observation may imply novel functions of STATs during virus infection
and pathogenesis. Except for the identification of JAK/STAT pathway antagonists within the PRRSV
genome, our previous research demonstrated that PRRSV infection promotes IFN-independent serine
monophosphorylation of STAT1 (S727) via non-structure protein (nsp) 12, resulting in higher levels
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of pro-inflammatory cytokines expression in vitro [74]. Meanwhile, it is notable that PRRSV-induced
serine monophosphorylation of STAT1 (S727) and cytokine expression could be blocked by SB203580,
a MAP kinase-specific inhibitor. Taken together, these results suggest that generation of virus-induced
pSTAT1-S727 depends on the p38 MAP kinase pathway [74].

As mentioned above, HP-PRRSV infection in pigs is characterized by aberrant expression of
pro-inflammatory cytokines and chemokines, leading to a robust inflammatory response [169,171].
Our data also demonstrated that PRRSV-induced serine monophosphorylation of STAT1 appears to be
linked to PRRSV virulence, since the MLV vaccine has a minimal effect on induction of pSTAT1-S727
in vitro, while the heterogeneous virulent strain VR2385 strongly induces serine monophosphorylation
of STAT1 (S727) and expression of pro-inflammatory cytokines [74]. Although these lines of
evidence require further investigation, these in vitro data are consistent with in vivo observations of
phenotypic differences in inflammatory responses between HP-PRRSV strain (HP-PRRSV-HuN4) and
attenuated homologous vaccine strain (HP-PRRSV-HuN4-F-112) [169,171]. Therefore, it appears
that expression of pro-inflammatory cytokines and chemokines promoted by IFN-independent
monophosphorylation of STAT1 comprise an alternative explanation for the cytokine storm observed
during HP-PRRSV infection.

In addition to PRRSV, virus-induced serine monophosphorylation of STAT1 has been reported for
other DNA and RNA viruses, such as Epstein–Barr virus (EBV) and human immunodeficiency virus-1
(HIV-1), as well [172–174]. Although EBV was shown to inhibit IFN activated JAK/STAT pathways
via a variety of mechanisms [175,176], abnormal activation of STAT1 and STAT3 (as defined by nuclear
translocation and binding with DNA by STAT proteins) was observed very earlier in EBV-related
lymphoma cell lines, as well as samples from patients with Burkitt’s Lymphoma (a malignant neoplasm
of the haemopoietic system associated with EBV) [177]. In fact, EBV was the first virus reported to
induce serine monophosphorylation of STAT1 during infection, and serine monophosphorylated
STAT1 is able to bind DNA in EBV-infected cells [172]. However, this earlier study did not offer a clear
linkage between DNA-bound STAT1 (serine monophosphorylation), and evaluated expression of genes
normally responsive to STAT1 [172]. Instead, the authors postulated that serine monophosphorylated
STAT1 could be employed by EBV as an alternate strategy to override the antiviral response evoked by
IFNs. In their scenario, competition between serine monophosphorylated STAT1 and IFN-stimulated
STAT1 for DNA-binding sites would block IFN-activated JAK/STAT signaling [172]. In another
study, it had been shown that an early lytic nuclear protein encoded by EBV, the SM protein, is
capable of specifically promoting the expression of several ISGs that are known to be strongly induced
by IFN in the absence of IFN induction or JAK/STAT activation, except through the induction of
STAT1 expression [174]. This is interesting because several mechanisms of interference of JAK/STAT1
activation by IFN have been proposed for EBV, such as activation of SOCS3 to dampen JAK/STAT
signaling [178], or the use of virus-encoded miRNA (BART16) to target the CREB-binding protein [179].
Therefore, it appears that EBV is capable to block IFN-induced canonical JAK/STAT activation and
stimulate ISG expression in an IFN-independent manner. These observations mirror a similar scenario
as observed for PRRSV. Ultimately, EBV-induced serine monophosphorylated STAT1 might be the key
to explaining these controversial observations.

Besides EBV, participation of STATs in viral pathogenic responses was also observed in human
immunodeficiency virus (HIV)-1 as well. The Tat protein of HIV-1, a regulatory protein for
viral transcription enhancement, contributes to the immune evasion of HIV by inducing SOCS3
expression to antagonize IFN-induced canonical STAT activation [180]. However, HIV-1 infection of
the central nervous system leads to HIV-1 encephalitis (HIVE), which is fueled by viral infection and
immune activation of brain mononuclear phagocytes (MPs: blood-derived perivascular macrophages
and microglia) [181]. It was believed that HIV-1 activates pro-inflammatory and IFN-inducible
genes in human brain microvascular endothelial cells (HBMECs) and is a contributing factor to
HIVE [182]. A later study confirmed that serine monophosphorylated STAT1 and STAT3 were both
observed in HIV-1-infected HBMECs and correlated with HIV-1-induced inflammatory responses and
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neuropathogenesis [173]. By contrast, a specific STAT1 inhibitor, fludarabine (FLUD), blocked HIV-1
induced serine monophosphorylation of STAT1, and thus decreased IL-6 expression and secretion [173].
It is also notable that direct exposure of HBMECs to HIV-1 virion induced phosphorylation of STAT1
and STAT3 at S727 [173]. However, the tyrosine phosphorylation of STAT1 and STAT3, as well as serine
phosphorylation of STAT-2, STAT-5, or STAT-6, were not observed [173]. These data suggested that
serine monophosphorylated STAT1 and STAT3 might serve as contributing factors to HIV-1-induced
inflammatory responses in HBMECs.

Meanwhile, studies on Kaposi’s sarcoma-associated herpesvirus (KSHV) demonstrated that
latent protein kaposin B promotes serine monophosphorylation of STAT3 at S727 in the absence of
tyrosine phosphorylation at Y705 [183]. KSHV infection in human umbilical vein endothelial cells
(HUVECs) induces consecutive phosphorylation of STAT3 at serine 727 while phosphorylation of
STAT3 at tyrosine 705 is transient [183]. After transduction of HUVECs via retroviruses encoding
kaposin B, HUVECs expressing kaposin B protein harbored increased pSTAT3 S727 in the nucleus,
while tyrosine phosphorylation is absent for these STAT3 [183]. Unlike STAT1, evidence suggests
that serine monophosphorylation of STAT3 at S727 is activated by MAP kinase-activated protein
kinase 2 (MAP2K2) [183]. However, serine monophosphorylated STAT3 still leads to elevation of
STAT3-dependent genes, including CCL5, IL-6, and transforming growth factor β (TGF-β) [183].
This observation is consistent with proposed function of KSHV kaposin B, which is linked with
evaluated inflammatory cytokine level during KS pathogenesis [184]. Therefore, it appears that serine
monophosphorylated STAT3 induced by either KSHV or HIV-1 is linked with increased inflammatory
cytokine responses akin to those observed for serine monophosphorylated STAT1 during PRRSV
infection [74,173,183].

So far, serine monophosphorylation induced by virus infection has been only reported for STAT1
and STAT3. Although it is still unknown if other STATs could have monophosphorylation of serine
residues at TAD domains, neither tyrosine phosphorylation nor serine phosphorylation of STAT2,
STAT5, and STAT6 was observed in HBMECs exposed to HIV-1 virion. [173]. Therefore, it is also
notable that available data implies a correlation between viral-induced serine monophosphorylation of
STATs (STAT1 and STAT3) and pro-inflammatory responses caused by virus infection. It is interesting
that most virus-encoded antagonists block canonical JAK/STAT activation, while some viruses are
still capable of inducing expression of ISGs or other inflammation responses both in vitro and in vivo.
However, it remains unknown whether virus-induced serine monophosphorylation is common to
all STATs, or if it is restricted to certain STATs, such as STAT1 or STAT3, since canonical activation of
STAT1 and STAT3 trigger pro-inflammatory responses. Meanwhile, it would be meaningful to study
whether unphosphorylated ISGF3 (U-ISGF3) harbors serine monophosphorylated STAT1 or completely
unphosphorylated STAT1 (lacking both tyrosine and serine phosphorylation), since previous reports of
U-ISGF3 only focused on tyrosine phosphorylation without examining serine phosphorylation [54,55].
Taken together, the correlation of non-canonical STATs activation, serine monophosphorylated STATs,
and unphosphorylated STATs during viral infection needs further investigation. Such studies may
yield information insightful to understanding viral pathogenesis, especially regarding virus-induced
cytokine storms and inflammation-related immune pathogenesis.

4. Conclusions and Perspectives

Since induction and signaling pathways of IFNs are well-defined, and great progress has been
made to understand virus antagonism of the IFN-JAK/STAT axis, many questions regarding the
IFN-JAK/STAT axis remain unanswered. Although IFN types and subtypes (type I and type III)
appear to be redundant in their functions due to the activation of common downstream JAK/STAT
pathway, the exact differences between those IFN subtypes remain unknown. Indeed, such distinctions
may be an artifact of an arbitrarily simple classification of IFNs that overlooks the functionally
heterogeneous nature of IFN types and subtypes. Additionally, since the antiviral functions of IFNs
rely on ISGs, elucidation of ISG functions is also of interest, as most ISGs are not well-defined. Notably,
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some ISGs also respond to other transcription factors, such as members of the IRF family, activator
protein 1 (AP-1), and NF-κB [2,185]. Therefore, crosstalk between the JAK/STAT pathway and other
signaling pathways merits further study.

Meanwhile, the roles of IFN-activated JAK/STAT signaling in viral virulence and pathogenesis
also require further investigation. This is especially true with regard to the in vivo role that
IFN antagonists play, since most of these viral antagonists have been identified using in vitro
screening methods. Moreover, crosstalk between virus-mediated antagonism of canonical JAK/STAT
activation, viral-induced activation of non-canonical JAK/STAT pathway, and inflammatory responses
promoted by viral infection may be also linked to viral pathogenesis. In the coming decades,
additional mechanisms likely will be revealed to further our understanding of the connection between
non-canonical JAK/STAT activation and inflammation-linked viral pathogenesis.
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