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Abstract: Influenza A virus (IAV) causes seasonal epidemics and occasional but devastating
pandemics, which are major public health concerns. Because the effectiveness of seasonal vaccines is
highly variable and the currently available drugs are limited in their efficacy because of the emergence
of drug resistance, there is an urgent need to develop novel antivirals. In this study, we characterized
a recombinant IAV-carrying Gaussia luciferase (Gluc) gene and determined its potential as a tool for
evaluating therapeutics. We demonstrated that this recombinant IAV is replication-competent in
tissue culture and pathogenic in mice, although it is slightly attenuated compared to the parental virus.
Luciferase expression correlated well with virus propagation both in vitro and in vivo, providing a
simple measure for viral replication in tissue culture and in mouse lungs. To demonstrate the utility of
this virus, ribavirin and oseltamivir phosphate were used to treat the IAV-infected cells and mice, and
we observed the dose-dependent inhibition of viral replication by a luciferase assay. Moreover, the
decreased luciferase expression in the infected lungs could predict the protective efficacy of antiviral
interventions as early as day 2 post virus challenge. In summary, this study provides a new and
quantitative approach to evaluate antivirals against IAV.
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1. Introduction

Influenza A virus (IAV) is a major cause of respiratory infections in humans and is a serious public
health threat [1]. Each year, 3 to 5 million people are infected with influenza virus, resulting in up to
500,000 deaths worldwide [2]. Although vaccination is the most effective way to prevent IAV-related
diseases for seasonal flu, there is no universal vaccine, and the current vaccination strategies have
limitations [3]. Moreover, as a result of widespread associated mutations, resistance to currently
available antivirals, including neuraminidase inhibitors (oseltamivir and zanamivir) and M2 inhibitors
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(amantadine and rimantadine), is increasing [4–7]. Therefore, there is an urgent need to develop and
evaluate vaccines and novel antiviral therapies.

IAVs belong to the Orthomyxoviridae family of enveloped viruses, the genome of which contains
eight negative sense, single-stranded viral (v)RNA segments, including PB2, PB1, PA, HA, NP, NA,
M, and NS [8]. The vRNAs vary in length from 2341 to 891 nucleotides (nt’s) and are named after the
main proteins they encode [9]. However, all eight vRNAs share the same genetic organization: the
central coding region, which is in antisense orientation, is flanked at both terminal ends by non-coding
regions (NCRs). The NCRs differ in length and in sequence between vRNAs, except for the highly
conserved 12- and 13-nt-long sequences at the 3′ and 5′ ends, respectively [9,10].

The reverse genetics of IAVs was originally developed in 1999 and has been well established
since then [11,12]. Nowadays, a common method to generate recombinant IAVs is to use the
eight-plasmid-based rescue system, of which the core is the “ambisense cassette” within each
plasmid [13,14]. This cassette includes both RNA pol I and II sequences, which drive the transcription
of vRNAs (pol I) and protein (pol II) expression from the same viral cDNAs [13,14]. The reverse genetics
techniques have had an important effect on expanding our knowledge of the molecular biology and
pathogenesis of influenza viruses, as well as on developing novel live-attenuated vaccines [8]. In the
past decade, influenza reverse genetics systems were further modified by inserting reporter genes
such as green fluorescent protein (GFP) and luciferase genes. These reporter IAVs allow for effective
tracking of viral infection in vitro and in vivo, enabling a robust quantitative readout. This readout
can be used in high-throughput screenings (HTSs) and to assess viral infection easily and reliably
without the need for using a secondary assay [15]. However, the complex architecture of the segmented
genome confounds the generation of replication-competent reporter IAVs. Firstly, the virus segments
are small, and they do not tolerate large insertions. Secondly, insertion of a reporter gene at either end
of viral segments disrupts packing signals. Thirdly, most insertions severely attenuate replication and
are lost over time [15,16].

Multiple strategies have been employed to overcome these hurdles. Manicassamy et al. generated
a recombinant IAV carrying a GFP reporter gene fused with NS1 [17]. Although it was attenuated
compared with the parental virus, the reporter virus replicated efficiently in mouse lungs and
showed pathologic signs in mice [17]. A similar strategy has also been employed to generate IAV
expressing Gaussia luciferase (Gluc), which was successfully used as a tool for the in vitro study of
viral replication, antivirals, and viral host interactions [18]. Avilov et al. utilized a “split-GFP”, in
which the 16 C-terminal amino acids of GFP were fused to PB2 and GFP reconstitution occurred in
trans-complementing transiently transfected cells [19,20]. This recombinant virus was successfully
used to examine intracellular vRNP trafficking [19]. Pena et al. rearranged the NEP gene from the
NS segment to PB1, followed by inserting reporter genes downstream from either full-length or
truncated NS1 [21,22]. The rearranged viruses were further adapted as live-attenuated vaccines or for
antiviral drug screening [21,22]. More recently, several bioluminescent reporter IAVs were developed
by inserting the luciferase gene into PA, PB2, or NA for in vivo imaging [16,23,24]. These reporter
viruses allowed real-time tracking of viral load and dissemination of influenza virus infections in the
lungs of mice, facilitating the evaluation of candidate vaccines or novel antiviral interventions on
infections in vivo [16,23,24].

In the present study, we examined a recombinant IAV-carrying Gluc reporter gene in NS1
(PR8–NS1–Gluc) in terms of its replication, pathogenicity, and dynamics both in vitro and in vivo and
demonstrated that PR8–NS1–Gluc can be used as an easy and reliable means for antiviral evaluation
and therapeutic efficacy studies.
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2. Materials and Methods

2.1. Cells and Plasmids

Human embryonic kidney cell line 293T and Madin-Darby canine kidney (MDCK) epithelial
cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Cellgro, Manassas, VA, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA), 1000 units/mL
penicillin, and 100 µg/mL streptomycin (Invitrogen, Carlsbad, CA, USA). Infections were performed
in Opti-MEM containing 2 µg/mL N-tosyl-L-phenylalanine chloromethyl ketone (TPCK)–trypsin
(Sigma-Aldrich, St. Louis, MO, USA). All cells were grown at 37 ◦C in 5% CO2.

The previously described pDZ–NS–GFP plasmid was modified by substituting the GFP gene
with the Gluc gene, generating pDZ–NS–Gluc [25]. The Gluc gene was amplified with the primers FR
(5′-ggcggtaccgaggccaagcccaccgagaacaacgaagacttc-3′) and RV (5′-gccggatccgtcaccaccggcccccttgatcttg
tccacctgg-3′) and inserted into a MCS using Kpn I and BamH I. Other IAV rescue plasmids, pDZ–PA,
–PB1, –PB2, –NP, –HA, –NA, –M, and –NS1, were used as previously described [25]. All the plasmids
were kindly provided by Adolfo Garcia-Sastre (Mt Sinai School of Medicine, New York, NY, USA).

2.2. Virus Rescue and Titration

PR8–NS1–Gluc virus (A/Puerto Rico/8/34 background) as well as parental virus PR8 were
rescued as previously described [25]. Briefly, 0.5 µg of each of eight pDZ plasmids representing the
eight segments of the IAV genome were transfected into 293T/MDCK cocultures using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s instructions. After 48 h, the PR8–NS1–Gluc or
IAV–PR8 virus was harvested from the supernatant. After plaque purification, the virus was amplified
in 9-day-old embryonated eggs.

The TCID50 values of viral stocks were determined by inoculation of serial 10-fold dilutions of
stock virus onto MDCK cells, and the titer was calculated by the Reed–Muench method [26].

2.3. Multicycle Replication Assay

In order to perform a multicycle replication assay, MDCK cells growing in 24-well plates were
infected by indicated viruses at multiplicities of infection (MOIs) of 0.01 TCID50 per cell. After 1 h
incubation at 37 ◦C, the cells were washed, and fresh Opti-MEM containing 2 µg/mL TPCK–trypsin
was added. Aliquots were removed at various time points, followed by determination of Gaussia
luciferase activity and viral titers.

2.4. Gaussia Luciferase Assay

Luciferase assays were performed with a BioLux Gaussia Luciferase Assay Kit (NEB, Ipswich,
MA, USA) according to the manufacturer’s instructions. In cell culture, 50 µL of culture medium
was removed and assayed with 50 µL of luciferase substrate. For animal samples, 20 µL of lung
homogenate (appropriate dilution adopted) was added to 50 µL of luciferase substrate, and the relative
lighting unit was detected.

2.5. Antiviral Determination

For antiviral determination, infected cells (0.01 MOI) were cultured in Opti-MEM (2 µg/mL
TPCK–trypsin) containing increasing concentrations of ribavirin (Sigma-Aldrich) or oseltamivir
phosphate (Medchemexpress, Monmouth Junction, NJ, USA). At around 24 h post infection (p.i.),
aliquots were removed, and Gaussia luciferase activity was determined.

2.6. Mouse Infections

Female BALB/c mice (4 to 6 weeks old) were inoculated intranasally with the indicated amount
of virus in 30 µL PBS under light isoflurane anesthesia. Body weight was monitored daily. Mice losing
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20% of their original body weight were humanely euthanized. At the indicated time, the mice were
euthanized, and the lungs were removed for further analysis. Viral load in lung homogenates was
determined by both TCID50 and the luciferase assay.

For antiviral treatments, mice were treated with either 80 mg/kg/day of ribavirin or
20–50 mg/kg/day of oseltamivir phosphate in PBS, administered by intraperitoneal injection. The
treatments were started 2 h before infection and were given twice daily until the end of the experiment.

All mouse experiments were performed under protocols approved by the Animal Care and Use
Committees at Shandong University of Traditional Chinese Medicine, Shandong, China (Approval:
SDUTCM-2018007, 5 March 2018). The mice were maintained under specific pathogen-free conditions,
and all efforts were made to minimize any suffering as well as the number of animals used in the study.

2.7. Haematoxylin and Eosin Staining

The mouse lungs were fixed in 10% buffered formalin, dehydrated, embedded in paraffin, and
cut into 5 mm thick sections, followed by staining with haematoxylin and eosin (HE).

3. Results

3.1. In Vitro Properties of PR8–NS1–Gluc

A luminescent reporter IAV (PR8–NS1–Gluc) was modified from a previously described NS1–GFP
virus [17] by replacing the GFP gene with the Gluc gene. To determine the replication properties of
this recombinant virus in tissue culture, we compared the growth kinetics of PR8–NS1–Gluc and the
parental PR8 in MDCK cells. MDCK cells were infected with either PR8–NS1–Gluc or PR8 at a MOI of
0.01, and at various time points p.i., the viral titers in the supernatants were quantified. As shown in
Figure 1a, PR8–NS1–Gluc showed a slight delay in replication kinetics, with titers reaching 2 × 107

TCID50/mL, which was slightly lower than the parental virus (7.5 × 108 TCID50/mL).
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Figure 1. In vitro characterization of PR8–NS1–Gluc. (a–c) Madin-Darby canine kidney (MDCK) cells
were infected with PR8–NS1–Gluc and influenza A virus (IAV)–PR8 at a multiplicity of infection
(MOI) of 0.01 and incubated with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK)–trypsin for
the indicated times. Aliquotes were removed for determination of (a) viral titers and (b) Gaussia
luciferase activity. (c) The correlation between supernatant luminescence and infectious virus titers of
IAV were fit by linear regression using GraphPad Prism 5 (La Jolla, CA, USA) (R2 = 0.807, p < 0.0001).
(d) Gaussia luciferase signals derived from supernatants of virus-infected cells at MOI of 0.001, 0.01, or
0.1. * p < 0.05; ** p < 0.01; *** p < 0.001.
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We also characterized the expression of the luciferase reporter over the viral growth period
of PR8–NS1–Gluc in MDCK cells. The supernatants of the infected cells were assayed to detect
the luminescent signal; the luciferase signal from PR8–NS1–Gluc increased over 36 h, when both
the luciferase signal and viral titer peaked (Figure 1b). The correlation between the luminescence
kinetics and the accumulation of infectious virus in the culture supernatants was confirmed (Figure 1c).
Additionally, the luciferase signal correlated well with the MOI in the PR8–NS1–Gluc-infected MDCK
cells (Figure 1d).

Collectively, these observations demonstrated that the luciferase activity in the supernatants of
the infected cells accurately reflected the proliferation of PR8–NS1–Gluc in vitro.

3.2. PR8–NS1–Gluc Virus Is Pathogenic in Mice

To assess the virulence of PR8–NS1–Gluc, BALB/c mice were infected intranasally with
PR8–NS1–Gluc virus at different doses, and the body-weight loss and survival were monitored
daily. Mice that received 103 TCID50 or higher doses of the virus showed rapid body-weight loss at
and after day 3 p.i. (Figure 2a). The median lethal dose (LD50) of PR8–NS1–Gluc was measured to be
610 TCID50 on the basis of the survival data (Figure 2b). We conclude that a lethal dose of this virus
in this mouse model is easily achievable, suggesting that it can be used as an IAV infectious model
in mice.
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Figure 2. PR8–NS1–Gluc is virulent in mice. (a,b) BALB/c mice were intranasally inoculated with
indicated doses of PR8–NS1–Gluc virus (n = 10 in each group). The body weight (a) and survival (b)
were monitored daily. (c,d) BALB/c mice (n = 3) were infected with 103 TCID50 of PR8–NS1–Gluc or
were mock infected. Three days after infection, the indicated organs were collected, and the levels of
luciferase in these organs were determined (c). Six days after infection, the lung tissue sections were
collected for hematoxylin and eosin staining (d). *** p < 0.0001.

IAV infection is an acute infection of the respiratory tract. To determine whether PR8–NS1–Gluc
displayed the expected tropism, the indicated tissues of the infected mice were collected for Gluc
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detection. As expected, the infected lungs showed a roughly 100,000-fold increase in the luciferase
signal, which was highly significant statistically (Figure 2c). Further, histopathological analysis
revealed evidence of severe pulmonary inflammation, characterized by neutrophil-predominant
inflammatory infiltrate, acute alveolar edema, and occasional necrotic debris (Figure 2d).

3.3. Dynamics of Luciferase Expression in the Lungs of the Infected Mice

To better characterize the virus in vivo, BALB/c mice were infected with two doses (103 and 105

TCID50) of PR8–NS1–Gluc, and the luciferase levels and virus loads in the infected mouse lungs were
monitored daily over 6 and 8 days, respectively.

For the mice infected with 103 TCID50 of the virus, the luciferase level increased and peaked
around day 4 p.i., and afterward the luciferase level declined (Figure 3a). A similar trend was observed
for virus loads in the infected mouse lungs over time, with a high correlation between the two variables
(R2 = 0.609, p < 0.0001; Figure 3b,c). For the mice infected with the higher dose (105 TCID50), however,
both the luciferase level and virus load in the lungs peaked at day 1 p.i. and started declining afterward
(Figure 3d,e). The correlation between the two variables was lower (R2 = 0.367, p < 0.01; Figure 3f),
which was likely due to the high doses of the viruses used in infection. These results provide insight
into the dynamics of virus infection in mice.
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Figure 3. Kinetics of PR8–NS1–Gluc spread and clearance in lungs of BALB/c mice. Mice were
intranasally infected with 103 or 105 TCID50 of PR8–NS1–Gluc. At the indicated times, lungs were
collected from infected animals, and the amounts of luciferase and viral titers were determined. The
correlation between the two variants were fit by linear regression using GraphPad Prism 5. (a–c) Data
correspond to the time course for the dose of 103 TCID50. (d–f) Data correspond to the time course
for the dose of 105 TCID50. The R2 and p-values for the linear regression analysis are indicated on
each graph.
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3.4. Evaluation of Antivirals In Vitro

We next focused on testing PR8–NS1–Gluc as a robust means to evaluate the efficacy of antiviral
therapeutics. Ribavirin, a nucleoside inhibitor, and oseltamivir phosphate, a neuraminidase inhibitor,
were tested for their antiviral properties with PR8–NS1–Gluc. Briefly, MDCK cells were infected with
PR8–NS1–Gluc at a MOI of 0.01 and incubated for 1 h; unattached viruses were removed, followed by
culturing in the absence or presence of increasing concentrations of ribavirin or oseltmivir phosphate,
respectively. At 24 h p.i., the luciferase levels in the supernatants were determined. As shown in
Figure 4, both ribavirin and oseltamivir phosphate showed antiviral properties in a dose-dependent
manner, with IC50 values of 3.39 and 14.00 µM, respectively, while no obvious toxicity was observed
for either drug at the highest concentrations tested. These results suggest that PR8–NS1–Gluc can be
used as a simple means to identify and evaluate antivirals in vitro.
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3.5. Evaluation of Antiviral Interventions in a Mouse Model

To demonstrate the feasibility of using PR8–NS1–Gluc for the evaluation of antiviral interventions
in mice, female BALB/c mice were infected with 103 TCID50 of PR8–NS1–Gluc via intranasal
inoculation and treated with ribavirin and oseltamivir phosphate using the infected mice treated
with vehicle alone as a control.

The luciferase levels in the infected lungs of the control group and drug-treated groups were
determined at days 2 and 4 p.i., respectively. As shown in Figure 5a, the mice that received treatments of
either ribavirin (80 mg/kg/day) or oseltamivir phosphate (50 or 20 mg/kg/day) showed a significant
decrease in luciferase expression in the lungs at both time points. We note that the mice treated with
the higher dose (50 mg/kg/day) of oseltamivir phosphate had a more drastically reduced luciferase
expression than those treated with the lower dose (20 mg/kg/day).

The viral loads in the lungs of the mice from all groups were also monitored. As shown in
Figure 5b, the viral loads in the ribavirin-treated lungs were significantly lower than those in the
control group at day 4 p.i. but not at day 2. While viral loads in the oseltamivir phosphate (50 or
20 mg/kg/day) treated lungs showed significant decreases at both day 2 and day 4, the significance at
day 2 (p = 0.008 or 0.012) was less when compared with the decrease in luciferase levels (p = 0.0002 or
0.0004). The results suggest that the decrease in the luciferase level reflected the therapeutic efficacy
earlier and more sensitive than the decrease of viral load in mouse lungs.
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Figure 5. In vivo evaluation of therapeutic interventions using PR8–NS1–Gluc as a tool. Mice were
intranasally infected with 103 TCID50 of PR8–NS1–Gluc and were treated with indicated drugs by
gavage (n = 8 in each group). The treatments were started 2 h before infection and were given twice
daily until mice were sacrificed. At days 2 and 4 after infection, four mice in each group were dissected
and the Gaussia luciferase level (a) and viral load (b), respectively, in infected lungs were determined
(ns: no significance; * p < 0.05; ** p < 0.01; *** p < 0.001).

In order to validate the efficacy of the antiviral treatments, we evaluated the lung index at day 6
after challenge, considering previous studies have shown that a low lung index correlates well with
strong protection against virus infection [27]. All antiviral interventions prevented the lung index
of the infected mice from increasing (Supplementary Figure S1a). The body weights of the mice in
each group were also monitored daily, and body-weight loss was prevented by all antiviral treatments
(Supplementary Figure S1b). These data suggest that ribavirin and oseltamivir phosphate at either of
the tested doses efficiently restrict virus replication in infected animals.

Together, these data suggest that the luciferase level in the PR8–NS1–Gluc-infected lungs could
predict the therapeutic outcome accurately. Moreover, the decrease in the luciferase level could
sensitively predict the therapeutic properties as early as day 2 p.i.

4. Discussion

Animal models are of great importance in the development of antiviral drugs, with regard to
performing preclinical assessments of antiviral candidates. For influenza virus, mice are extensively
used as the animal model in these studies [28]. Although mice are not natural hosts for influenza
viruses, laboratory strains of mice can be infected with some influenza viruses, including the
mice-adapted A/H1N1 strains A/Puerto Rico/8/1934 (PR/8) and A/WSN/1933 (WSN) and the
influenza B virus B/Lee/1940 [28].

The establishment of viral reverse genetics and reporter viruses has greatly facilitated the
development of animal models as tools for the evaluation of candidate vaccines and therapeutic
drugs. So far, luciferase-expressing recombinant viruses have been well demonstrated for herpes
simplex virus [29,30], enterovirus 71 [31], Japanese encephalitis virus [32], and Sendai virus [33], as well
as for IAV [1,16,24]. Infection of these viruses allows for real-time monitoring in virus replication
and dissemination in living animals by noninvasive in vivo imaging [34], facilitating the evaluation
of candidate vaccines and therapeutic antibodies. However, the application of noninvasive in vivo
imaging, at least in the case of IAV, is still limited because of drawbacks [34]. First, the bioluminescent
signal has a limited sensitivity for detection. In most cases, imaging fails to reveal the rapid viral
replication shortly after inoculation, although the bioluminescence can be detected when infection is
almost peaking or when IAV starts to be cleared [15,35]. Second, manipulation for noninvasive in vivo
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imaging is complicated [34]. Moreover, the substrate of the most frequently used reporter, Gaussia
luciferase, among the reporter influenza viruses has flash kinetics and an extremely short imaging
window, which makes the data acquisition more difficult and less accurate [36].

In this study, a simple and robust mouse model was applied for the evaluation of antiviral
therapeutics. To achieve this, a replication-competent recombinant IAV-carrying Gaussia luciferase
gene (PR8–NS1–Gluc) was generated and further characterized in detail both in vitro and in vivo.

Our study demonstrated that PR8–NS1–Gluc is replication-competent in MDCK cells and is
infectious and pathogenic in mice. Moreover, the expression level of the reporter Gluc could reflect the
propagation of the virus in both MDCK cells and the infected lungs. This property allowed us to use
Gluc expression to accurately monitor the replication profiles of IAV using Gluc expression with either
a sublethal or lethal dose of IAV.

The kinetics of the luciferase level in the infected lungs was monitored and compared to viral
loads, giving insight into the dynamics of IAV infection in mice. For the mice infected with the lower
dose (103 TCID50), the luciferase level and the viral load of the infected lungs were elevated by day 4
and then declined, indicating virus clearance (Figure 3a,b). However, for the mice infected with the
higher dose (105 TCID50), the luciferase level and viral load peaked earlier, and the dynamics of IAV
was less drastic (Figure 3d,e). Our primary experiment showed that oseltamivir phosphate treatment at
50 mg/kg/day could effectively reduce luciferase levels in the lungs for mice infected with 103 TCID50

of PR8–NS1–Gluc but showed no efficacy for infection with 105 TCID50 (Supplementary Figure S2).
These results suggest that the dose of infection is an important factor for animal models aiming to
evaluate antiviral interventions.

The feasibility of PR8–NS1–Gluc as a tool for the evaluation of antiviral therapeutics was
further validated by testing the anti-influenza drug ribavirin (80 mg/kg/day) and two doses of
oseltamivir phosphate (50 and 20 mg/kg/day), all of which showed remarkable therapeutic efficacy
(Supplementary Figure S1). On treatment with ribavirin, the monitoring of both the Gluc expression
and viral load in the infected lungs produced significant differences between the treated and untreated
groups at day 4 p.i. However, at day 2, the viral load failed to reflect the protection by ribavirin, in
contrast to the Gluc assay, which demonstrated the protective property significantly (Figure 5). For the
mice treated with oseltamivir phosphate, the decrease in both Gluc expression and viral load in the
infected lungs could be detected as early as day 2, in a dose-dependent manner. However, the Gluc
assay gave a more sensitive measure than the viral load and other traditional measures such as the
decreased lung index and mitigated body-weight loss (Figure 5).

In summary, the rapid and sensitive assay developed in this study can significantly reduce the
number of animals required, the amount of the candidate therapeutic agents to be administrated, and
the duration of the experiment. Therefore, we believe that this approach will be particularly useful as a
metric in the primary evaluation of novel therapeutic agents. Moreover, while our study here focused
on the evaluation of therapeutics, PR8–NS1–Gluc has potential to be used in basic research on IAV.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/6/325/s1.
Figure S1: in vivo evaluation of therapeutic interventions; Figure S2: evaluation of the therapeutic efficacy of
Oseltamivir for infection of different doses.
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