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Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique
immunological approaches to suppression of viral diseases upon infection. High-throughput
next-generation sequencing has been used in characterizing the virome of different bat species.
The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India
and southern China, however, little is known about their involvement in virus transmission. Here we
investigate the diversity and abundance of viral communities from a colony of Eonycteris spelaea
residing in Singapore. Our results detected 47 and 22 different virus families from bat fecal and
urine samples, respectively. Among these, we identify a large number of virus families including
Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and
Polyomaviridae. In most cases, viral sequences from Eonycteris spelaea are genetically related to a group
of bat viruses from other bat genera (e.g., Eidolon, Miniopterus, Rhinolophus and Rousettus). The results
of this study improve our knowledge of the host range, spread and evolution of several important
viral pathogens. More significantly, our findings provide a baseline to study the temporal patterns of
virus shedding and how they correlate with bat phenological trends.

Keywords: Metaviromics; Southeast Asia; adenovirus; bunyavirus; flavivirus; herpesvirus;
papillomavirus; paramyxovirus; parvovirus; picornavirus; polyomavirus; poxvirus; reovirus; rotavirus

1. Introduction

The advent of next generation sequencing (NGS) technologies has drastically increased the
discovery of novel viruses and estimates of virus diversity [1,2]. Though family-level specific primers
are often used to screen diagnostic samples, they are designed based on available reference sequences
and typically target the most conserved genetic region such as the polymerase genes [3–5]. These assays
often lack sensitivity at the expense of detecting an entire family of viruses. Next generation sequencing
can detect viruses at low concentrations and often provides sequence reads from across the entire
genome, providing sites for primer walking and gap closing [6–8]. This approach can also detect
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divergent lineages that may not be amplified using traditional polymerase chain reaction (PCR)
approaches [9]. However, as host and bacterial components can dominate sequencing reads, virus
reads of interest tend to be in low abundance in these data sets [10].

NGS has been employed to detect zoonotic pathogens and in numerous cases of virus discovery
and metavirome descriptions, including bats in China, Myanmar, New Zealand and North America [11–15].
This technique has also detected novel poxviruses and adenoviruses, divergent papillomaviruses, and
unique paramyxoviruses [16–18]. More recently, genetic regions from a novel filovirus were identified
from Rousettus bat in China in 2015, indicating the utility of this approach to ascertain the presence of
potentially pathogenic viruses in reservoir hosts [19].

Increasingly, these studies have focused on bats because this group of animals are unique
virus reservoirs. Bats are distinctive mammals, having ecological, immunological and behavioral
attributes that set them apart from other orders. Bats are exceptionally speciose, comprising 20% of all
mammalian species and are the only mammals that are capable of true flight [20]. Many species are
gregarious and roost in large colonies, which can number over one million individuals [21]. They are
relatively long-lived for their body size and temperate species often undergo torpor or hibernation [22].
There are several theories regarding why bats are exceptional viral reservoirs and rarely experience
pathogenesis with infection. One is that they have to deal with the physiological stress of flight, with
increased metabolic rates and a subsequent increase in reactive oxygen species [23,24]. Recent research
demonstrated that the unique innate immune system of bats may allow them to co-exist with viruses,
maintaining very low levels of viremia or keeping viruses in a quiescent state [25–27].

Eonycteris spelaea is a nectivorous bat with a distribution ranging from the Malay–Indonesian
archipelago to southern China, extending west into the Indian subcontinent [28]. These cave-roosting
bats are especially important pollinators of durian [29]. There are two known colonies of E. spelaea
in Singapore and both populations are restricted to roosting under bridges. This species forage at
distances greater than 30 km from their roosting site, but are threatened across their range by habitat
loss and hunting for human consumption [30]. Here we perform next generation sequencing on pooled
feces and pooled urine samples collected from one colony of E. spelaea to identify the viral diversity
and to examine the difference in virus communities between fecal and urine samples. Furthermore,
we conducted phylogenetic analysis to understand the evolutionary relationships of different families
of viruses detected from this study.

2. Material and Methods

2.1. Sample Collection for NGS Library Preparation

Urine and fecal samples were collected from 3 time points from a colony of the cave nectar
bats (Eonycteris spelaea) in Singapore for NGS. Feces were collected on 14 March, 28 March and
11 April 2013 while urine was collected on 24 April, 8 May and 20 May 2014. Disposable plastic drop
cloths were placed under the colony and approximately 25 g of feces was collected and placed in
a 50-mL tube. Urine samples from approximately 100 bats was placed into viral transport media
(penicillin, streptomycin, polymyxin B, gentamicin, nystatin, olfoxacin, sulfamethoxazole). Fecal
material was prepared for library preparation as previously described [31] while urine was centrifuged
at 10,000 × g for 3 min to pellet debris. RNA-zol was added to urine viral supernatant and RNA
extracted using Direct-zol™ RNA MiniPrep (Zymo Research Corporation, Irvine, CA, USA), then
subjected to in-column DNase I digestion (New England BioLabs Inc., Ipswich, MA, USA). Extracted
and DNase I digested RNA was treated with Ribo-Zero™ Gold rRNA Removal Kit (Epidemiology)
(Epicentre, Madison, WI, USA) and 500 bp cDNA libraries were constructed using NEBNext® Ultra™
Directional RNA Library Prep Kit for Illumina® (New England BioLabs Inc., Ipswich, MA, USA)
and visualized on 1.5% agarose gel, before being excised and purified using Zymoclean Gel DNA
Recovery Kit (Zymo Research Corporation, Irvine, CA, USA). All sequencing reactions were run at the
Duke-NUS Genome Biology Facility. Libraries from urine were run on an Illumina MiSeq machine with
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paired ends and a read length of 2 × 250 bp, while fecal sample libraries were processed as described
previously and run on an Illumina HiSeq 2000 with paired ends and a read length of 2 × 76bp.

2.2. NGS Data Analysis

All FASTQ files were assessed using FastQC to assess overall quality [32]. Trimming was executed
using Trimmomatic-0.3.2 to remove adapters, low quality bases (Q = 20 with a sliding window 4) and
reads with fewer than 50 bp length [33]. Taxonomic read classification was performed with DIAMOND
sequence similarity searches against a local National Center for Biotechnology Information (NCBI)
nr (non-redundant) protein database [34]. DIAMOND outputs were imported into MEGAN6 for the
taxonomic binning of reads and visualizing the distribution of virus family reads [35]. X174 phage
reads were removed from the final data set as these are spiked-in as control for the next generation
sequencing reaction. Virus family reads were exported for phylogenetic analysis. To confirm whether
the reads sorted by MEGAN were true positives, these were verified as viral hits using the BLASTX
tool from the National Center of Biotechnology Information.

2.3. Sample Collection and PCR Assays for Detection of Specific Viruses

Individual urine samples were collected from 59 time points and pooled by date (2014-03-27 to
2016-09-01). Pooled Eonycteris urine samples were centrifuged at 10,000 × g for 1 min. RNA was
extracted from the supernatant using QIAamp® Viral RNA Mini Kit (#52906; Qiagen Duesseldorf,
Germany) and cDNA made with Random Hexamers and SuperScript® II Reverse Transcriptase
(#18064-014, Invitrogen, CA, USA). This was used to screen for orthoreovirus and paramyxovirus
RNA-dependent RNA polymerase (RdRp) gene with family-specific primers [5,36]. PCR products
were visualized on a 1.5% agarose gel, and 500 bp bands from the paramyxovirus assay and 240 bp
bands from the orthoreovirus assay were excised, gel purified with Qiagen QIAquick Gel Purification
kit and sent for Sanger sequencing with both forward and reverse reads sequenced (1st Base DNA
Sequencing Services, Axil Scientific Pte Ltd., Singapore).

2.4. Phylogenetic Analysis

Candidate reads from mammalian-specific viruses were de novo assembled in Geneious 7.1.6
(Biomatters Ltd., Auckland, New Zealand) and consensus sequences were used for subsequent
phylogenetic analysis [37]. Representative nucleotide sequences specific to the gene of interest
were downloaded from the NCBI GenBank for the following virus families (Table 1): Adenoviridae,
Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and Polyomaviridae.
For each viral family, individual sequence data sets were aligned using Transalign [38] and
MAFFT [39] followed by manual curation of alignments. Gene phylogenies were initially reconstructed
using FastTree [40], and the final data sets were further down sampled to reduce redundant and
similar sequences. Altogether, 15 individual data sets were analyzed based on the following viral
genes: adenovirus polymerase, flavivirus envelope, flavivirus NS5, paramyxovirus nucleoprotein,
paramyxovirus polymerase, parvovirus VP1, parvovirus VP2, picornavirus 3D, picornavirus
polyprotein, orthoreovirus M2, orthoreovirus L2, rotavirus VP1, rotavirus VP7, polyomavirus
VP2, and 36 papillomavirus E1 (Table 1). Individual gene phylogenies were reconstructed using
RAxML [41] with a general time reversible model and robustness of the nodes was assessed using
1000 bootstrap replicates.
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Table 1. Virus family alignments and sequence lengths.

Virus Family
(Genus) Gene Initial Sequence

Alignment
Down Sampled

Sequence Alignment
Down Sampled

Alignment Length (bp)

Adenoviridae DNA Polymerase 227 37 885

Flaviviridae
E–Envelope 398 45 333

NS5–Non-structural protein 5 600 47 231

Papillomaviridae V3–minor capsid protein 368 36 969

Paramyxoviridae N–Nucleoprotein 15 14 720

L–Polymerase 743 32 471

Parvoviridae
VP1–Capsid 27 20 528

VP2–Capsid 501 28 323

Picornaviridae
3D–RNA polymerase 1753 20 246

Polyprotein 40 23 813

Polyomaviridae E1–major capsid protein 289 26 441

Reoviridae
(Orthoreovirus)

M2–viral outer capsid proteins
(σ1 and µ1c) 149 21 624

L2–core spike protein λ2 30 22 318

Reoviridae
(Rotavirus)

VP1–RNA-dependent RNA
polymerase 501 15 231

VP7–outer capsid protein 536 25 291

3. Results

3.1. Next Generation Sequencing Analysis

Four NGS data sets generated from the pooled urine and fecal samples: two libraries (Urine-25
and Urine-27) were constructed from pooled urine that were run on Illumina MiSeq, while two other
libraries (Feces-MiSeq and Feces-HiSeq) from pooled feces were sequenced using Illumina MiSeq
and HiSeq, respectively. For urine samples, a total of 5,126,632 reads from Urine-25 and 13,421,263
reads from Urine-27 were generated, and approximately 29.8% and 30.8% of respective reads could
be assigned to known sequences in the GenBank nr database by DIAMOND (Table 2). For the fecal
data set, a total of 68,584,413 reads from the Feces-HiSeq and 4,952,973 reads from the Feces-MiSeq
were generated, but the percentage of assigned reads from the data sets differed dramatically (5.8%
from Feces-HiSeq and 75.7% from Feces-MiSeq). The majority of assigned reads in the fecal and urine
samples were from Eukaryota. Reads assigned to bacteria amounted to between 11.2–14.6% of the
four NGS data sets. Fungal sequences were rare in the urine data sets, but common in the fecal data
sets, comprising 16.9% of assigned reads in Feces-HiSeq and 35.4% of assigned reads in Feces-MiSeq.
Viral reads were a relatively small component, totaling approximately 1% of all assigned reads from
the four data sets. All NGS data sets are available at the National Center for Biotechnology Information
Sequence Read Archive under bioProject PRJNA524946.

Our results detected 22 and 47 different virus families from urine and fecal samples of Eonycteris
spelaea, respectively (Table 3). We observed differences in viral presence and absence between urine
and fecal samples. There were 25 virus families were unique to the fecal data sets and seven of these
are known to infect vertebrates: Bunyaviridae, Caliciviridae, Papillomaviridae, Parvoviridae, Picobirniviridae,
Picornaviridae, and Rhabdoviridae. Moreover, the most common virus families found in the urine are
retroviruses (25.38% of total reads), dicistroviruses (20.59%), and coronaviruses (15.22%) (Table 3).
The fecal samples virus reads were primarily dicistroviruses (58.1%), which are arthropod-specific
viruses with phenotypes ranging from asymptomatic infection to high mortality in insects [42]. Viruses
in the families Siphoviridae (14.7%) and Podoviridae (15.4%), both bacteriophages, were commonly
identified. Other viruses detected in the bat fecal samples included parvoviruses (0.54%), retroviruses
(0.99%), reoviruses (0.15%), picornaviruses (0.14%), and polyomaviruses (0.14%) (Table 3). For the
pooled urine screening from 2014-03-27 to 2016-09-01, a total of 15 samples (25.4%) were positive for
paramyxoviruses, while 1 sample (1.7%) was positive for orthoreoviruses.
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Table 2. Next generation sequencing reads by data set and selected taxonomic ranks.

Data set-Name Total Reads in
Data set

Total Reads Assigned
by MEGAN Eukaryotes Mammalia Arthropoda Bacteria Archaea Fungi Virus

Urine-MiSeq-25 5,126,632 1,527,375 1,154,068 1,010,668 583 222,953 204 8217 1606

Urine-MiSeq-27 13,421,263 4,137,771 3,230,684 2,994,683 1201 548,911 497 20,496 3691

Feces HiSeq 68,584,413 3,993,465 2,178,408 69,136 53,546 546,757 68 675,967 21,856

Feces MiSeq 4,952,973 3,750,870 2,836,374 54,457 60,533 420,446 97 1,326,425 106,823

Table 3. Virus reads from next generation sequencing data set from Eonycteris spelaea urine and feces.

Virus Family Urine-MiSeq-25
Reads

Urine-MiSeq-27
Reads

Urine reads by
Family (% of Total)

Feces-Hiseq
Reads

Feces-MiSeq
Reads

Fecal Reads by
Family (% of Total) Total Reads Consensus

Reads/Unassembled Reads

Adenoviridae V 171 115 286 (7.14%) 31 43 74 (0.07%) 360 (0.31%) 28/17

Alphaflexiviridae P/F - - - - 143 143 (0.13%) 143 (0.12%) 28 / 13

Alphatetraviridae A - - - - 1 1 1 -

Astroviridae V 50 - 50 (1.25%) 6 8 14 (0.01%) 64 (0.05%) 6/3

Baculoviridae A - - - 1 2 3 3 0/3

Betaflexiviridae P/F 4 - 4 (0.10%) 9 14 23 (0.02%) 27 (0.02%) 7/9

Bunyaviridae V - - - - 1 1 1 -

Caliciviridae V - - - - 9 9 (0.01%) 9 (0.01%) 4/1

Carmotetraviridae A - - - - 34 34 (0.03%) 34 (0.03%) 5/0

Caulimoviridae A/P - - - 3 5 8 (0.01%) 8 (0.01%) 2/4

Chrysoviridae F 15 - 15 (0.37%) 3 3 6 (0.01%) 21 (0.02%) 5/2

Coronaviridae V 170 440 610 (15.22%) 46 87 133 (0.12%) 743 (0.64%) 52/21

Dicistroviridae A 120 705 825 (20.59%) 292 65,061 65,353 (58.09%) 66,178 (56.80%) 2326/1546

Endornaviridae P/F - - - - 4 4 4 2/0

Flaviviridae V 10 52 62 (1.55%) - 1 1 63 (0.05%) 2/1

Herpesviridae V 25 - 25 (0.62%) 3 12 15 (0.01%) 40 (0.03%) 7/5

Iflaviridae A 8 - 8 (0.20%) 46 578 624 (0.55%) 632 (0.54%) 79/21

Inoviridae B - - - 1 - 1 1 -
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Table 3. Cont.

Virus Family Urine-MiSeq-25
Reads

Urine-MiSeq-27
Reads

Urine reads by
Family (% of Total)

Feces-Hiseq
Reads

Feces-MiSeq
Reads

Fecal Reads by
Family (% of Total) Total Reads Consensus

Reads/Unassembled Reads

Leviviridae B - - - - 4 4 4 2/0

Luteoviridae P - - - - 1 1 1 -

Microviridae B 17 117 134 (3.34%) 3016 438 3454 (3.07%) 3588 (3.08%) 39/8

Mimiviridae PR - - - - 1 1 1 -

Myoviridae B 1 - 1 (0.02%) 4029 1688 5717 (5.08%) 5718 (4.91%) 525/346

Narnaviridae F - - - 16 345 361 (0.32%) 361 (0.31%) 42/6

Nodaviridae A - - - - 117 117 (0.10%) 117 (0.10%) 13/10

Nudiviridae A - - - 28 63 91 (0.08%) 91 (0.08%) 32/16

Papillomaviridae V - - - 3 9 12 (0.01%) 12 (0.01%) 3/3

Paramyxoviridae V 14 34 48 (1.20%) 3 6 9 (0.01%) 57 (0.05%) 6/1

Partitiviridae P/F 12 129 141 (3.52%) 12 22 34 (0.03%) 175 (0.15%) 12/11

Parvoviridae V - - - 203 421 624 (0.55%) 624 (0.54%) 55/21

Genus: Parvovirinae - - - 187 370 557 (0.50%) 557 (0.48%) -

Genus: Denovirinae - - - 8 51 59 (0.05%) 59 (0.05%) -

Permutotetraviridae A - - - 55 933 988 (0.88%) 988 (0.85%) 92/7

Phycodnaviridae P 3 1 4 (0.10%) - 2 2 6 (0.01%) 1/3

Picobirnaviridae V - - - - 3 3 3 0/3

Picornaviridae V - - - 45 114 159 (0.14%) 159 (0.14%) 33/17

Podoviridae B 26 - 26 (0.65%) 4002 13,349 17,351 (15.42%) 17,377 (14.91%) 787/225

Polydnaviridae A - - - 4 6 10 (0.01%) 10 (0.01%) 3/4

Polyomaviridae V 8 - 8 (0.20%) 63 93 156 (0.14%) 164 (0.14%) 33/13

Potyviridae P - - - 44 15 59 (0.05%) 59 (0.05%) 13/12

Poxviridae V 16 - 16 (0.40%) 2 1 3 19 (0.02%) 3/3

Reoviridae V 1 - 1 (0.02%) 95 76 171 (0.15%) 172 (0.15%) 42/22

Genus: Orthoreovirus 1 - 1 53 25 78 (0.07%) 103 (0.09%) -

Genus: Rotavirus - - - 24 39 63 (0.06%) 102 (0.09%) -
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Table 3. Cont.

Virus Family Urine-MiSeq-25
Reads

Urine-MiSeq-27
Reads

Urine reads by
Family (% of Total)

Feces-Hiseq
Reads

Feces-MiSeq
Reads

Fecal Reads by
Family (% of Total) Total Reads Consensus

Reads/Unassembled Reads

Retroviridae V 552 465 1017 (25.38%) 95 39 134 (0.12%) 1151 (0.99%) 170/61

Rhabdoviridae A - - - - 11 11 (0.01%) 11 (0.01%) 4/2

Secoviridae P - 87 87 (2.17%) - 33 33 (0.03%) 120 (0.10%) 6/2

Siphoviridae B 17 325 342 (8.54%) 8839 7662 16,501 (14.67%) 16,843 (14.46%) 518/144

Totiviridae V/A/P 16 281 297 (7.41%) - 47 47 (0.04%) 344 (0.30%) 23/12

Tymoviridae P - - - 1 8 9 (0.01%) 9 (0.01%) 3/1

Virgaviridae P - - - - 2 2 2 1/0

Total Reads 1256 2751 4007 20,996 116,518

V = Vertebrate; A = Arthropod; P = Plant; F = Fungi; B = Bacteria; PR = Protist.
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3.2. Adenoviridae

Of the 360 total adenovirus reads from the fecal and urine data sets, there were 39 contigs
assembled with 17 reads unassembled. The longest contig was 539 bp, while the shortest was 115 bp.
A 504 bp contig was similar to the mamadenovirus polymerase genes. The polymerase phylogeny
(Figure S1) of adenovirus clearly indicates Eonycteris adenovirus is well nested within a monophyletic
clade (72% bootstrap support, BS) of bat adenovirus from Rousettus and Minopterus species. The new
adenovirus sequence from Singapore (MK603133) is most closely related to two Rousettus leschenaultii
adenovirus sequences (KX961095 and KX961096) from China in 2013. They share a high level of
nucleotide (nt: 86.6%) and amino acid (aa: 99.4%) similarities.

3.3. Flaviviridae

Two contigs were assembled from 62 flavivirus reads from the fecal and urine data sets.
These were mapped to an envelope (E) protein and a NS5 protein, which encodes methyltransferase
and RNA-dependent RNA polymerase, respectively. The E phylogeny (Figure S2) of Flavivirus
indicates that the Eonycteris sequence (MK603134) closely resembles Phnom Penh virus from a
Cynopterus bat (NC_034007), with 88.4% nucleotide (nt) similarity and 92.7% amino acid (aa) similarity.
They formed a strongly supported monophyletic clade (100% BS) with Batu Cave virus from Malaysia
(KJ469370). Similar observations are found in the NS5 phylogeny (Figure S2), although the Eonycteris
sequence (MK603135) appears to be more closely related to Batu Cave virus (58% BS; nt: 92.5%, aa:
100% similarity).

3.4. Reoviridae

The 172 reovirus reads from the fecal data set were assembled into 41 contigs with 23 unassembled
reads. The longest contig was 487 bp, while the shortest was 76 bp. There were members of the genera
Orthoreovirus and Rotavirus in the data set. Four contigs were selected for phylogenetic reconstruction.
Two contigs (206 bp and 199bp) were similar to the orthoreovirus M2 gene, which encodes the viral
outer capsid proteins (σ1 and µ1c) involved in receptor binding and host cell membrane penetration.
The M2 (624bp) phylogeny (Figure 1) of orthoreovirus revealed the Eonycteris sequence (MK603137) is
most closely related to Melaka virus from Malaysia (JF342664) with 98.5% amino acid (aa) similarity
and 97.2% nucleotide (nt) similarity. We also detected a 318-bp contig of the L1 gene of reovirus
sequences. This gene encodes the RNA dependent RNA polymerase. The Eonycteris L1 sequence
(MK603136) (Figure 1) is most closely related to Cangyuan orthoreovirus (KM382260) and Melaka
orthoreovirus (JF342661), both with 100% aa similarity and 97.5% nt similarity. The Eoncyteris L1
segment also formed a strongly supported monophyletic clade (100% BS) with other bat ortheroviruses,
including; Melaka virus, Cangyuan virus (KM382260), Kampar virus (JF342655), Pulau virus (JF342667),
Nelson Bay reovirus (JF342673) and Pteropine reovirus (KM279381).

The other Orthoreovirus contigs belong to the genus Rotavirus, with a 321 bp contig similar to the
VP1 gene or RNA-dependent RNA polymerase (RdRp) and the second contig (291 bp) mapping to
the outer capsid protein sequence (VP7). The VP1 gene (Figure 2) of Eoncyteris rotavirus was most
similar to rotavirus detected in a Rousettus leschenaultii from China in 2005 (KX814935), with an 76.6%
aa similarity and 73.5% nt similarity. The Eonycteris and Rousettus sequences (MK603148) formed a
well-supported monophyletic clade (99% BS) (Figure 2). In contrast, the Rotavirus VP7 gene sequence
from Eonycteris (MK603149) forms a polytomy with other rotavirus sequences from a broad range of
hosts including humans, pigs, bovines and equines (Figure 2).
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Figure 1. Phylogenetic relationships of the L1 and M2 gene sequences of orthoreovirus, inferred
by using the maximum-likelihood method with the generalised time-reversible (GTR) + GAMMA
distribution model in RAxML. Colored branches represent viruses isolated from different hosts. Red
branches denote new sequences collected from Eonycteris spelaea bats in Singapore. Bootstrap support
values greater than 50% are displayed at major nodes. The scale bar indicates the number of nucleotide
substitutions per site.
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Figure 2. Phylogenetic relationships of the VP1 and VP7 gene sequences of rotavirus, inferred by
using the maximum-likelihood method with the GTR + GAMMA model in RAxML. Colored branches
represent viruses isolated from different hosts. Red branches denote new sequences collected from
Eonycteris spelaea bats in Singapore. Bootstrap support values greater than 50% are displayed at major
nodes. The scale bar indicates the number of nucleotide substitutions per site.
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3.5. Papillomaviridae

There were 12 papillomavirus reads from the fecal data set and 9 were assembled to produce 3
contigs (L1 protein and two E1 protein contigs), with a maximum length of 635 bp and a minimum
length of 77 bp. One contig (439 bp) was similar to the V3 gene which encodes the minor capsid
protein. The papillomavirus E1 phylogeny (Figure S3) indicates the Eonycteris sequence (MK603138) is
most similar to an Eidolon helvum papillomavirus from Cameroon (KX276956). These two sequences
have 68.4% aa similarity and 69% nt similarity. These two sequences were in a monophyletic group
with another Eidolon helvum papillomavirus from Cameroon (KX276957) (100% BS).

3.6. Paramyxoviridae

There were 57 reads from the fecal and urine data sets were classified as from Paramyxoviridae
of which 56 were assembled to produce 6 contigs. The longest contig was 338 bp and the shortest
was 127 bp and there were sequences from the polymerase gene (L) and nucleocapsid (NP). From the
family-specific PCR, there were two unique polymerase sequences generated (471 bp) with 61.8%
aa similarity and 64.3% nt similarity. The two L-gene contigs of Eonycteris (MK603139, MK603140)
(Figure 3) were closely related to those from Eidolon helvum paramyxoviruses found in Ghana and
Republic of the Congo. In comparison, two NP sequences (MK603141 and MK603142) (Figure 3) from
Eonycteris (98.4% aa similarity) are in a sister group to human henipaviruses and other bat borne
paramyxoviruses (74% BS).
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Figure 3. Phylogenetic relationships of the L and NP gene sequences of paramyxovirus, inferred by
using the maximum-likelihood method with the GTR + GAMMA model in RAxML. Colored branches
represent viruses isolated from different hosts. Red branches denote new sequences collected from
Eonycteris spelaea bats in Singapore. Bootstrap support values greater than 50% are displayed at major
nodes. The scale bar indicates the number of nucleotide substitutions per site.

3.7. Parvoviridae

There were 565 Parvovirinae reads from the fecal data sets. These produced 43 contigs with
a maximum length of 891 bp and a minimum length of 120 bp. Two contigs matched with the
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capsid gene (VP1 and VP2) of parvovirus. The VP1 contig (321 bp) from Eonycteris (MK603143) is
related to a Rousettus leschenaultii parvovirus from in China (100% BS) (MF682925), and they shared a
73.5% nt similarity and 76.6% aa similarity. These two sequences also formed a strongly supported
monophyletic clade with porcine bocaviruses (97% BS) (Figure 4). Similar to the VP1 gene, the VP2
sequence (MK603144) (319 bp) from Eonycteris is sister to several porcine bocaviruses, forming a
well-supported clade (87% BS) (Figure 4).

0.1

KY775067|Bat|Rhinolophus_ferrumequinum|China|DSM9

KJ641678|Bat|Rhinolophus_ferrumequinum|China|BtRfBoV8/LN2012|2012

KF206155|Porcine|Serbia|Porcine_bocavirus|21ZSRS|2010

JN420362|Sea_lion|Zalophus_californianus|USA|Bocavirus_1|1187|2010

HM053693|Porcine|China|Porcine_bocavirus_1|Pig/ZJD/China/2006|2006

KF206156|Porcine|Serbia|Porcine_bocavirus|3ZS-RS|2007

JN420364|Sea_lion|Zalophus_californianus|USA|Bocavirus_1|1218|2010

KX017193|Porcine|China|Porcine_bocavirus|CH/HNZM

KJ641667|Bat|Rhinolophus_ferrumequinum|China|Bat_parvovirus|BtRfBoV/HeB2013|2013

KF025393|Porcine|USA|Porcine_bocavirus_2|NC311|2011

KT192699|Canine|China|Canine_bocavirus|MDJ-21|2014

MF175080|Rodent|China|Murine_bocavirus|MBV/NYC/2014/Q055/1700

MF682923|Bat|Rhinolophus_pusillus|China|RpBtBoV2-83C-MJ-YN-2012|2012

JN420366|Sea_lion|Zalophus_californianus|USA|Bocavirus_2|9822|2010

MF682925|Bat|Rousettus_leschenaultii|China|RolBtBoV1-56C-ML-YN|2012

KX343069|Bat|Rhinolophus_ferrumequinum|China|JL|2013

KU321655|Bat|Rhinolophus_sinicus|Hong_Kong|Str15|2011

KF206165|Porcine|Domestic_pig|Croatia|Porcine_bocavirus|710-1DI-HR|2011

KY432921|Rodent|Parvovirinae_sp|China|RtNn-ParV/SAX2015

MK603143|Bat|Eonycteris_spelaea|Singapore|2013

99

66

57

70

99

89

100

99

99

57

97

100

100

100

89

83

97

52

Parvovirus (VP1) Parvovirus (VP2)

0.2

AB518883|Canine|Japan|Canine_minute_virus|97-047|2008

KU321651|Bat|Rhinolophus_sinicus|Hong_Kong|Str14|2011

KJ641668|Bat|Rhinolophus_ferrumequinum|China|BtRf-BoV/HuB2013|2013

KM017744|Feline|Felis_catus|USA|Bocavirus|FBD1|2013

KU321647|Bat|Rhinolophus_sinicus|China|Str3|2006

KC339251|Bat|Miniopterus_fuliginosus|Myanmar|Bat-bocavirus|WM40|2008

GU048662|Human|Thailand|Human_bocavirus_2|CU47TH|2007

KJ641679|Bat|Myotis_daubentonii|China|Bat_parvovirus|BtMdau-BoV-1/LN2012|2012

KT192703|Canine|China|HRB-F3|2014

KJ641678|Bat|Rhinolophus_ferrumequinum|China|BtRf-BoV-8/LN2012|2012

KC580640|Canine|USA|Canine_bocavirus_3|UCD|2011

HM053694|Porcine|China|PBoV2|pig/ZJD/China/2006|2006
KF206157|Porcine|Hungary|359AT-HU|2009

KJ641669|Bat|Miniopterus_fuliginosus|China|Bat-parvovirus|BtMf-BoV/HuB2013|2013

KY426738|Porcine|Sus_scrofa|Belgium|Porcine-bocavirus|BEL/15V010|2015

KF206156|Porcine|Serbia|3ZS-RS|2007

KC339250|Bat|Miniopterus_fuliginosus|Myanmar|Bat_bocavirus|XM30|2008

KJ684071|Human|China|Human_bocavirus|2012GZ1219|2012

KT241026|Canine|South_Korea|Canine_minute_virus|15D009|2015

KY640439|Camel|Camelus_dromedarius|United_Arab_Emirates|Bocaparvovirus-2|30C-F|2013

JQ692586|Feline|Felis_catus|Hong_Kong|Feline_bocavirus|HK797U|2009

KP281715|Canine|South_Korea|13D226-1|2014

JN420362|Sea_lion|Zalophus_californianus|USA|1187|2010

KT592508|Aselliscus_stoliczkanus|China|Bat_bocavirus|YNJH|2011

M14363|Bovine|Bovine_parvovirus

JN420363|Sea_lion|Zalophus_californianus|USA|1211|2010

MK603144|Bat|Eonycteris_spelaea|Singapore|2013

KU172421|Cattle|USA|Ungulate_bocaparvovirus-6|USII/03|2015

100

87

78

100

50

61

82

96

99

78
76

92
80

87

100

97

97

100

97

Bat

Sea lion

Porcine
BovineHost

Canine
Feline
Human

Rodent
Camel

Figure 4. Phylogenetic relationships of the VP1 and VP2 gene sequences of parvovirus, inferred by
using the maximum-likelihood method with the GTR + GAMMA model in RAxML. Colored branches
represent viruses isolated from different hosts. Red branches denote new sequences collected from
Eonycteris spelaea bats in Singapore. Bootstrap support values greater than 50% are displayed at major
nodes. The scale bar indicates the number of nucleotide substitutions per site.

3.8. Picornaviridae

There were 159 reads from the fecal data sets classified in Picornaviridae. These created 33 contigs,
the longest at 724 bp and the shortest 76 bp. One contig was from the polyprotein region and
picornavirus phylogeny (Figure S4) indicates the Eonycteris sequence (MK603145) was sister to a
monophyletic clade (100% BS) comprising three bat picornaviruses (KJ641693, HQ595345, NC_015934)
from Rhinolophus hipposideros, R. sinicus and Hipposideros armiger from China and Hong Kong.
These shared a 68.4% nt similarity and a 51.7% aa similarity. Another read matched the 3D gene
that encodes for RNA polymerase. The 3D gene from Eonycteris (MK603146) (Figure S4) was related
to bat picornavirus from Vespertilio superans and Myotis altarium from China (72.8% nt and 79.2% aa
similarity), although this node was not statistically supported.

3.9. Polyomaviridae

A total of 164 reads from the fecal and urine data sets were assigned to the virus family
Polyomaviridae and 33 contigs were assembled. The shortest contig was 89 bp and the longest was
525 bp. One read of 420 bp was from the VP2 major capsid gene. The VP2 of polyomavirus phylogeny
(Figure S5) indicates the Eonycteris sequence (MK603147) forms a strongly supported monophyletic
clade (100% BS) with a bat polyomavirus from Hipposideros pomona from China (nt: 91.7% similarity
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and aa: 97.1% similarity). In addition, it is apparent that polyomavirus is capable of infecting diverse
species of different bat families, including Miniopteridae (e.g., Miniopterus and Myotis), Molossidae (e.g.,
Otomops), Pteropodidae (e.g., Acerodon, Dohsonia, Eidolon, Rousettus), Phyllostomidae (e.g., Artibeus),
and Rhinolophidae (e.g., Rhinolopus).

3.10. Additional Viruses Detected

In addition to the above-mentioned viruses identified from fecal and urine samples of Eonycteris
bats in Singapore, there were other virus families with a low number of reads (<15). For instance,
one read (114 bp) was identified as a bunyavirus sequence that is most similar to the L protein of
phlebovirus found in blacklegged ticks. Three reads corresponded to Taterapox virus (Poxviridae),
originally isolated from an African gerbil and 15 reads for herpesviruses. Phylogenetic relationships of
these viral pathogens were not reconstructed due to a lack of reference sequences in GenBank.

Notably, insect viruses and plant/fungal viruses were frequently identified in our bat samples
from Singapore. The most common invertebrate viruses were dicistroviruses (65,353 reads), but
there were several other virus families present (Alphatetraviridae, Balculoviridae, Carmotetraviridae,
Caulimoviridae, Nodaviridae, Nudiviridae, Permutotetraviridae and Polydnaviridae). Moreover, detectable
plant/fungal viruses include Alphaflexiviridae, Betaflexiviridae, Edornaviridae, Luteoviridae, Narnaviridae,
Partitiviridae, Phycodnaviridae, Potyviridae, Secoviridae, Tymoviridae and Virgaviridae. Taken together, our
study identifies a broad diversity of viruses present in Eonycteris bats in Singapore.

4. Discussion

This comparative metagenomic study reports the fecal and urine virome of the cave nectar
bat, Eonycteris spelaea, in Singapore. Our NGS findings detected a broad diversity of viral
pathogens present in Eonycteris bat species, with 43 and 22 different virus families from the fecal
and urine samples, respectively. Among these, we identified a large number of virus families
that commonly infect vertebrates, including Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae,
Paramyxoviridae, Parvoviridae, Picornaviridae and Polyomaviridae. Previous virus surveillance on
Eonycteris spelaea detected genomic evidence of astroviruses, coronaviruses and filoviruses with
serologic evidence of filoviruses from Singapore and China [31,43,44]. In other Southeast Asian
sampling sites, there is genomic evidence of flaviviruses (Phnom Penh bat virus) and bunyaviruses
(Issyk-kul-Keterah virus), while there is serologic evidence of Nipah virus antibodies in E. spelaea
from Malaysia [45–47]. Previous metagenomic studies on bats have revealed several novel viruses
from a diverse group of viral families [13,16,18,48,49]. The virus families discovered in this study
have been detected in several species of bats by conventional PCR and next generation sequencing,
including adenoviruses [16,50,51], bunyaviruses [52–54], flaviviruses [55–57], herpesviruses
[16,49,58,59], paramyxoviruses [60–62], papillomaviruses [14,16,63,64], parvoviruses [12,59,65,66],
picornaviruses [15,59,67], polyomaviruses [14,68–70], poxviruses [16,71,72] and reoviruses [73–76].

We reconstructed individual gene phylogenies for each of the above-mentioned virus families.
In most phylogenies, our novel viral sequences of Eonycteris spelaea are clustered within a group of bat
viruses from other genera, often from the same family (Pteropodidae), indicating circulation of these
viruses among different bat species. Detection of novel viruses may not provide direct information on
zoonotic capacity, but the generated sequence data can allow us to better understand the evolutionary
history of these virus families and infer potential cross-species transmission [77]. For instance, our VP1
phylogeny of parvovirus indicates that bat parvoviruses are sister to murine and porcine parvoviruses,
whereas the VP2 phylogeny shows bat parvoviruses are closely related to canine, feline and porcine
parvoviruses. It is apparent that parvovirus is capable of infecting a broad host species, although
further research is needed to understand how the virus jumps to different hosts.

Viruses exhibit specific tissue tropisms based on available cellular receptors and compatibility
of the intracellular environment. Detection of these viruses depends on what tissue or sample
type is being screened. Previous studies have indicated which viruses are more likely to be shed
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in feces (adenoviruses, astroviruses, parvoviruses, picornaviruses), urine (paramyxovirues), or
tissues [60,78–81]. Receptors can be widely available, such as in paramyxovirus (CD46 in measles
and sialic acid in Sendai virus) and picornavirus infections (ICAM-1 in Coxsackie virus), or narrowly
restricted in adenovirus infections (integrin on monocytes) [82]. Due to limited commercial reagents
and the difficulty of maintaining experimental colonies, little work has been done to characterize
receptors and viral tissue preference in bats, though progress is being made in determining coronavirus
tropism [83–85].

Consensus family level primers are used globally for virus biosurveillance and amplify the most
conserved genomic region, usually the polymerase, but these primers may be of limited utility in
detecting divergent strains [86]. Unbiased NGS reads will capture reads scattered across the virus
genome, depending on the starting quantity of the sample and virus [10]. As sequencing reactions
generate reads from all nucleic acids, reads can end up binned as unknown because there are no
similar reads available in reference data sets (GenBank nucleotide and non-redundant RefSeq proteins).
To minimize having unassigned reads, our approach used the program DIAMOND and the nr data
set to only assign sequences that have homology to coding regions, eliminating false assignments of
ribosomal RNA [34]. Our NGS sequencing of bat fecal and urine samples resulted in a low proportion
of viral reads. This is common in metagenomic data sets where the majority of assigned reads were
from the host, bacteria and viruses that infect plants, bacteria and insects [14]. These large data sets
often provide low coverage across the genomes of viruses due to the host and bacterial background [87].
Interestingly, in our study, more viral reads were generated from the MiSeq Illumina than the HiSeq
Illumina. Interestingly, retrovirus reads were much more common in the urine data set compared to
the fecal data set. This may be caused by the comparatively low background in the urine.

In this study, we characterized the fecal and urine virome of Eonycteris spelaea, an ecologically
important species [30]. The NGS data sets provided sequencing reads for 10 families of viruses that are
known to infect mammals, providing segments to develop strain-specific assays to detect and quantify
these viruses for future longitudinal studies. Recent research has demonstrated that co-roosting and
colony size may be important in the generation of novel variants and in viral maintenance [88,89].
As this species roosts in large numbers, co-roosts with several other species of bats, and is widely
distributed, it may be a candidate species to understand if virus diversity is based on phylogenetic
relatedness, co-roosting partners or geographic separation. Additionally, with the sequencing of the
full genome and the presence of a captive colony of bats at Duke-NUS Medical School, this will expand
our capacity in understanding the genomics, infection and immunology of host-virus interactions
using E. spelaea as the studied species [90].

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/3/
250/s1, Figure S1: Phylogenetic relationships of the V4 gene sequences of adenovirus, inferred by using the
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of the E and NS5 gene sequences of flavivirus, inferred by using the maximum-likelihood method with
the GTR+GAMMA model in RAxML; Figure S3: Phylogenetic relationships of the E1 gene sequences of
papillomavirus, inferred by using the maximum-likelihood method with the GTR+GAMMA model in RAxML;
Figure S4: Phylogenetic relationships of the polyprotein and 3D gene sequences of picomavirus, inferred by
using the maximum-likelihood method with the GTR+GAMMA model in RAxML; Figure S5: Phylogenetic
relationships of the VP2 sequences of polyomavirus, inferred by using the maximum-likelihood method with the
GTR+GAMMA model in RAxML.
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