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Abstract: Bluetongue virus (BTV) causes a disease that is endemic in Spain and its two major
biological vector species, C. imicola and the Obsoletus complex species, differ greatly in their ecology
and distribution. Understanding the seasonality of BTV transmission in risk areas is key to improving
surveillance and control programs, as well as to better understand the pathogen transmission
networks between wildlife and livestock. Here, monthly risk transmission maps were generated
using risk categories based on well-known BTV R0 equations and predicted abundances of the
two most relevant vectors in Spain. Previously, Culicoides spp. predicted abundances in mainland
Spain and the Balearic Islands were obtained using remote sensing data and random forest machine
learning algorithm. Risk transmission maps were externally assessed with the estimated date of
infection of BTV-1 and BTV-4 historical outbreaks. Our results highlight the differences in risk
transmission during April-October, June-August being the period with higher R0 values. Likewise,
a natural barrier has been identified between northern and central-southern areas at risk that may
hamper BTV spread between them. Our results can be relevant to implement risk-based interventions
for the prevention, control and surveillance of BTV and other diseases shared between livestock and
wildlife host populations.

Keywords: bluetongue virus; arbovirus; Culicoides; blood-feeding vector; epidemiology; modeling;
risk analysis; livestock; basic reproduction number; machine learning

1. Introduction

Bluetongue (BT) is an infectious and arboviral disease with a worldwide distribution, that affects
primarily ruminants [1]. Bluetongue is caused by bluetongue virus (BTV), the type species of the
Orbivirus genus [2]. Numerous serotypes of BTV have been identified, particularly in recent years
due to the intensification of BTV sequencing [3]. Clinical forms of BT vary greatly depending on
the affected species, sheep and white-tailed deer being the most susceptible ones to the disease [1];
however, the specific BTV strain is also important, as shown by the greater susceptibility of cattle
during the BTV-8 circulation in north and central Europe [4]. Due to its transboundary dissemination
and the economic losses that BT produces, it is a listed disease of the World Organization for Animal
Health (OIE) [5].

Five different BTV serotypes have historically affected Spain (BTV-1, 2, 4, 8 and 10), differing in
their spatial distribution. BTV-2 circulated in Minorca and eastern Majorca in 2000 and was deemed
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to have been eradicated in 2003 [6]. BTV-10 (1956–1960) was mainly recorded in southwestern and
central-western areas of mainland Spain [7]. BTV-4 had a similar distribution, although it expanded
more in southern areas of mainland Spain, and outbreaks were also notified in 2003 in west Minorca.
BTV-1 spread across a wider geographical area causing outbreaks in northern livestock holdings
during 2007–2009 [7,8], and having an overall similar distribution to BTV-4 in southwestern and
central-western areas [9]. On the contrary, there were sporadic BTV-8 notifications in livestock holdings
from 2008 to 2010 in both north and south areas of mainland Spain [7].

Culicoides spp. biting midges serve as biological vectors for the typical serotypes of
BTV (BTV-1-24) [1,10], although secondary transmission routes have been identified, namely,
transplacental [11,12], iatrogenic [13], oral transmission [12], and even a role for other vectors has been
suggested [14–17]. The Obsoletus complex species are considered major vectors of BTV in central and
northern European regions [17,18], while C. imicola is the major vector in the Mediterranean Basin [10,18].
Although, other Culicoides species have been identified as potentially competent vectors [18–20], in the
present work we will be focusing exclusively on C. imicola and the Obsoletus complex species, since they
are considered to be the most important vectors of BTV in Spain [21,22].

Since BTV is an arthropod-borne virus (arbovirus), the distribution of BTV is directly related to
the distribution of its vector [10]. Culicoides species distribution is related to different climatological,
topographic and anthropogenic factors [22–26]. BTV transmission is highly influenced by temperature.
It influences the vector lifespan and metabolism, as well as the period between the vector ingestion
of the virus in the blood meal and the virus infection of the salivary glands—enabling virus
transmission—known as the extrinsic infection period (EIP) [27]. The basic reproduction number (R0)
is defined as “the expected number of secondary cases following the introduction of one infectious
individual into a fully susceptible population” [28]. Derived from this definition, when R0 > 1 the
virus will spread among the susceptible host population, but when R0 < 1 the virus will eventually
disappear [28]. However, due to the assumptions and uncertainties that affect R0 studies, this threshold
(R0 > 1 or R0 < 1) is not always met [29]. In addition, R0 studies of vector-borne viruses are more
complex, since they have to take into consideration the biology of its vector; and they are even more so
when various hosts and vectors are involved [30,31]. Risk maps based on R0 can show areas at more risk
of virus transmission, and therefore, they could be useful for decision making [32]. This kind of map
has been previously used for different vector-borne diseases, such as West Nile [33], Lyme disease [34],
Zika [35]; and for BT in Europe [36], Switzerland [37], the Netherlands [32] and Austria [38].

Taking into account the seasonality of BTV is key to better understand the disease dynamics and the
modification of the risk of transmission during different times of the year [38,39]. In this study, we have
assessed BTV seasonality in Spain based on the R0, taking into account the major European vectors:
C. imicola and the Obsoletus complex species. 1-km2 monthly Culicoides spp. abundance maps for
mainland Spain and the Balearic Islands (from April to October) have been generated using random
forest algorithm and satellite-derived variables that are known to influence Culicoides spp. distribution.

2. Materials and Methods

2.1. Monthly Culicoides spp. Maps and Environmental Variables

Data of Culicoides spp. catches in Spain were provided by the Spanish Bluetongue National
Surveillance Program. The entomological surveillance of this program was initiated in 2004, and is
still ongoing to this date [40]. Briefly, CDC UV-light traps are placed near livestock farms weekly
from dusk until dawn [41]. C. imicola and the Obsoletus complex species (Culicoides obsoletus and
Culicoides scoticus) are the major vector species for BTV in Spain [21,22], therefore, we used data of these
biological vectors from 2005 until 2015 to generate monthly abundance maps from April to October.
This period coincides with the peak abundances of these species and with the greater transmission of
BTV in Spain [21,41], as for northern countries such as the Netherlands [32]. To ensure the homogeneity
and representativeness of the subsamples, we removed from the study data from traps that could
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have a bias. Hence, we exclusively selected traps with at least one catch per month during the seven
months included in the study, also ensuring a maximal geographical coverage. From those, when the
proximity was less than 10 km, one of the sampling sites was randomly removed to avoid spatial
autocorrelation [26]. We finally used 331 sampling sites per month and per species. We chose the
maximum abundance per site for C. imicola and the Obsoletus complex species, to mitigate the possible
abundance reduction due to climatological or technical problems, as an approximation of the real
monthly Culicoides spp. abundance [42].

A review of scientific literature was conducted to choose significant variables to generate predictive
models for the Spanish principal vectors [22–25,42–47]. The selected variables can be classified into six
different categories: climatic, vegetation indices, host, orography, land cover and soil composition.

Within climatic variables, Land Surface Temperature (LST) of day-time (LSTd) and night-time
(LSTn) were retrieved from National Aeronautics and Space Administration’s (NASA) Moderate
Resolution Imaging Spectroradiometer (MODIS) product MOD11A2 [48] as an accurate estimate of the
day-time and night-time temperature for each day in the study period [49] and this was downloaded
from the Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive
Center (DAAC) (https://ladsweb.nascom.nasa.gov/). Monthly precipitation and wind speed (m/s) at
10 m above ground level were retrieved from the approximately 1-km2 spatial resolution WorldClim
dataset [50].

Vegetation indices are widely used to model arthropod species, being the Normalized Difference
Vegetation Index (NDVI) the most common in predictive models due to its utility [51]. NDVI alongside
the Enhanced Vegetation Index (EVI) and the medium-infrared (MIR) reflectance band were retrieved
from MODIS product MOD13Q1 [52] and downloaded from the LAADS DAAC. Variables derived
for MODIS products were acquired from 2005-2015, and mean maps were generated for each month
included in the study.

Host availability has been proven to be useful for Culicoides spp. distribution modeling [53,54].
From the Gridded Livestock of the World v2.0 [55] of approximately 1-km grid cell size, cattle, sheep and
goat densities were retrieved and unified as a unique variable: livestock density [26]. The estimation
of presence/absence of red deer was obtained from the proportion of suitable red deer habitat at
approximately 1-km2 spatial resolution [56].

Altitude values were obtained from the Global 30 Arc-Second Elevation (GTOPO30) provided by
the U.S. Geological Survey [57]. Land cover and soil type can limit Culicoides spp. breeding sites [58].
Land cover was retrieved from the annual 300 meters’ resolution Climate Change Initiative (CCI) Land
Cover provided by the European Space Agency [59]. This dataset was reduced to seven variables
according to the midge habitat suitability [47,60]: rainfed cropland (LC1), irrigated cropland (LC2),
mix of cropland and natural vegetation (LC3), broadleaved tree cover (LC4), mix of tree/shrub cover and
grassland (LC5), grassland (LC6) and urban areas (LC7). Using ArcMapTM v10.4.1. (Esri®), we created
a 1-km2 grid of the extension of the study and obtained the percentage of each land cover type.
The percentage of clay, sand, silt and the topsoil organic carbon content were obtained from the
dataset ‘Topsoil physical properties for Europe’ [61] and “OCTOP: Topsoil Organic Carbon Content for
Europe” [62], respectively; available at the European Soil Data Centre (ESDAC; esdac.jrc.ec.europa.eu).

All the predictor rasters were transformed into a 1-km2 spatial and monthly resolution, and to the
same extension and projection in ArcMapTM.

For each model, we randomly generated a training (70%) and test (30%) dataset [23]. The latter
was used to assess model performance. We chose random forest (RF) to develop our models
since it performed better than other machine learning algorithms for Culicoides spp. distribution
models in several studies [26,45]. RF grows a specified number of decision trees from randomly
bootstrapped samples, and their results are finally aggregated to give a prediction [63,64]. At each
node in the splitting process, the variable that reduces the node impurities from a random subsample
of them is chosen [63]. When all the trees are built, the average of the decreases provides the variable
importance measure for each variable through the mean decrease Gini in classification and the increase
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in node purities for regression problems [64]. In this work, we used the above-mentioned measures
for variable importance measurement. We chose the number of variables randomly selected at each
node split which reduces the final mean square error (MSE) of the model. In addition, RF is useful for
datasets with highly correlated predictors, being the most relevant ones selected as the most important
variables [65].

We first generated monthly probability of presence maps, henceforth occurrence maps, for C. imicola
and the Obsoletus complex species, to include those as a variable for abundance maps [24,26].
For occurrence maps, Culicoides spp. catch data was transformed into presence/absence classes, and the
21 variables listed above were used for modeling. In the case of imbalanced datasets, we used the
Synthetic Minority Over-sampling Technique (SMOTE) algorithm, to oversample the minority class
and randomly under-sample the majority class [66]. Models’ performance were assessed in terms
of sensitivity (proportion of real positives classified as such), specificity or recall (proportion of real
negatives classified as such), precision (proportion of true positives among predicted positives), the area
under the receiver operating characteristic curve (AUC) and the F1 score. All these measures range
from 0–1. AUC measures the discriminative power of the model between presence/absence classes.
An AUC of 0.5 means that the model is not better than a random guess; values from 0.5–0.7 correspond
to poor discrimination, 0.7–0.8 acceptable, 0.8–0.9 excellent, and 0.9–1 exceptional discrimination
power [67]. The F1 score is calculated as the harmonic average of precision and recall, and it is a
summary of the precision-recall curve [68]. The precision-recall curve best measures the performance of
the model when the data set is imbalanced, with the majority class being negative [69]. The value of the
F1 score means that the model is not better than random guess varies, and a value of 1 is the maximal
model performance. For abundance models, we transformed the absolute catches of Culicoides spp. to
log10(C+1), C being the number of individuals caught at each site. We evaluated the performance of
abundance models using the mean absolute error (MAE) and root mean squared error (RMSE).

All the models were generated in R v.3.6.3 [70] using the following packages: “randomForest” [64],
“DMwR” [71], “caret” [72], “raster” [73], and “pROC” [74].

2.2. Transmission Risk Maps Based on the Basic Reproduction Number (R0)

From the different R0 equations proposed in the literature for BTV [31,32,37,75], we chose the
two-vector approach taken by Turner et al. [31] that was adapted from the one proposed by Gubbins et
al. [75], since the major BTV vectors in Spain are quite different in terms of distribution and ecology [21],
as well as vector capacity [76]. In Turner et al. [31], they only considered in their formulation cattle
and sheep as the two hosts; however, we have combined small ruminants (sheep and goat) as one
host since in Spain the number of goats is considerably high (more than 2.5 million in mainland Spain
and the Balearic Islands [77]). We have considered all susceptible hosts as susceptible, not infectious
or recovered, because our goal was to highlight areas at risk of BTV transmission. Moreover, more than
two vector species are considered here because the Obsoletus complex is formed by C. obsoletus
and C. scoticus.

We have maintained the same notation as Turner et al. [31] for the R0 equation (Equations (1)
and (2)), of which the parameters are gathered in Table 1.

R0 =

√
1
2
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√
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2
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where subscript 1 denotes C. imicola, 2 the Obsoletus complex species, C cattle, and S small ruminants;
and b being the probability of transmission from vector to host, βj the probability of transmission from
a host to vector type j, aj the biting rate for vector type j, µj the natural mortality rate of the vector,
vj the virogenesis rate in the vector, ϕ j the proportion of vectors type j attracted to cattle, mij the ratio
of vector type j to hosts type i, ri the recovery rate of host type i, and di the mortality rate of host type i.
Both vectors have only differed in terms of mij and aj.

Table 1. Parameters for R0 equations.

Non-Temperature Dependent Variables

Variable Variable Description Selected Value (Range) or Formula Reference

b Probability of transmission from vector to host 0.9 (0.8–1.0) [78]
βj Probability of transmission from host to vector type j 0.02 [31,75,79]
mij Ratio of vectors (Nj) to hosts (Hi)

N j
Hi

(0–5000) [31]
ϕCj Proportion of vectors type j attracted to cattle ϕC = ms

ms + σmc
[31]

ϕSj Proportion of vectors type j attracted to small ruminants ϕS= 1 − ϕC [31]
σ Vector preference for host 0.15 (0–1) [31,75,79]

rC Recovery rate of cattle (1/duration of viremia) 0.0485

Duration of
viremia (20.6)
estimated by

fitting a gamma
distribution to

data presented in
[80], by [75]

rS Recovery rate of sheep (1/duration of viremia) 0.0610

Duration of
viremia (16.4)
estimated by

fitting a gamma
distribution to

data presented in
[81] and [82], by

[75]
dC Mortality rate of cattle 0 [83]
dS Mortality rate of sheep 0.0078 (0.001–0.01) [79,83]

Temperature (θ) dependent variables

Variable Variable Description Formula Reference

a1 Biting rate for C. imicola a(θ) = 0. 00014 θ (θ− 3.6966) (41.8699 − θ)
1

2.7056 [79]

a2 Biting rate for the Obsoletus complex species a(θ)= 0.000171 θ (θ− 3.6966) (41.8699 − θ)
1

2.7056 [84]

µj Natural mortality rate of vector type j estimated by the Hermite cubic interpolation of
temperature values of [85,86] [87]

vj Virogenesis rate in the vector type j (1/EIP) v(θ)= 0.0003 θ (θ − 10.4057) [84]

ϕj depends on vector preference for cattle or small ruminants (Table 1). Both C. imicola and
Obsoletus complex species prefer feeding on cattle rather than small ruminants [88]. We applied an
antilog transformation to the predictive abundance of Culicoides spp. to calculate mij. Although several
studies have pointed out the lack of correlation between UV-light trap catches and biting events [89–93],
we have assumed that UV-light traps act in a similar way to a host and that the predicted abundance
estimated here is an approximation of mij [36]. We used host data (the Gridded Livestock of the
World v2.0 [55], merging sheep and goat to obtain small ruminants data), to estimate a minimum
threshold of 10 animals [32], below which they would not contribute significantly to BTV transmission.
Then, we transformed into integers rasters of vectors and hosts. In addition, mij could only range
between 0–5000 [75].

Some parameters are well known to be temperature-dependent (aj, vj and µj) [84,94]. At higher
temperatures biting, virogenesis rates and lifespan are shortened [85,94]. Replication of BTV in
Culicoides spp. has not been found with temperatures <15 ◦C [94], and at approximately that
temperature the midge lifespan is higher but decreases non-linearly alongside temperature [87].
Therefore, to make monthly R0 prediction maps we required monthly ground-level temperature for
mainland Spain and the Balearic Islands that we obtained from the WorldClim dataset [50]. For the
estimation of µj we used the formulation proposed by Fernández-Carrión et al. [87], in which µj is
calculated by estimating intermediate values from [85,86] using the Hermite cubic interpolation in
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Matlab [95]. In addition, we have established that BTV transmission is very unlikely to occur below
13 ◦C [38,94]. We used the monthly mean maximal temperature from the WorldClim dataset [50] to
apply this threshold. vj was set to zero when the temperature is less than 10.4071 ◦C.

We have implemented the R0 equations in R [70], and managed maps using the “raster”
package [73]. To determine the degree of contribution of each vector species, we obtained the
R0 for each vector using the one vector formulation (

√
R11 and

√
R22) [75]. We defined three risk

categories for each monthly map according to the natural break classification criteria [96] in ArcMapTM.
To externally assess the performance and usefulness of the monthly transmission risk maps we

used historical data from 2007–2018 of BTV-1 (11,482) and BTV-4 (506) outbreaks from the European
Animal Disease Notification System (ADNS) database [97], excluding BTV outbreaks in wildlife.
We used an estimation of 14 day-lapse between the day of infection and the date of suspicion [98].
The suspicion date was calculated when missing from the mean lapse time between the suspicion and
confirmation dates from observations with data (approximately 20 days). We calculated the percentage
of outbreaks that fall into the three different risk categories. We compared the observed BTV outbreaks
in each risk category with the number of outbreaks expected based on the expected probability, which is
derived from the proportion of cells of each category in every monthly risk map. We used the X2-square
goodness of fit test in R [70] only when the number of observed outbreaks was higher than 100.

3. Results

3.1. Monthly Culicoides spp. Maps

The peak of maximal positive catches and average abundance for C. imicola was September, while for
the Obsoletus complex species it was July and June (Figure 1). We have generated monthly occurrence
and abundance models for C. imicola and the Obsoletus complex species (Figures 2 and 3) from April
to October. The seasonality and distribution of these vectors are reflected in the prediction maps.
C. imicola is restricted to south and southwestern areas of mainland Spain and the Balearic Islands,
while the Obsoletus complex species are widespread in all the territory.
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Figure 1. Mean abundance of Culicoides spp. in positive sampling sites and the number of positive
catches for the 331 sampling site observations for each month of the study period. The abundance of
Culicoides spp. was transformed to log10(C+1), C being the number of Culicoides spp. Vertical lines show
the standard deviation of the mean for each month.

For occurrence models the majority of the datasets were imbalanced in favor of the negative
class in the case for C. imicola datasets, and in favor of the positive class for Obsoletus complex
species datasets; thus, the SMOTE algorithm was applied (Table S1). The C. imicola occurrence models
have an average AUC of 0.83 in contrast with the Obsoletus complex species average of 0.68 (Figure 4,
Table S2). The C. imicola models outperformed the Obsoletus species in terms of sensitivity (average
0.81 vs. 0.70) and specificity (average 0.86 vs. 0.65). Taking into account that the test dataset reflects the
class distribution of the original dataset, in the case of imbalanced datasets that favors the negative class
(C. imicola datasets), specificity is expected to be better. On the other hand, when the majority class is
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the positive one (as in the Obsoletus complex species datasets), precision is expected to outperform the
recall/sensitivity measure, as happened in most of the performances of the Obsoletus complex species
occurrence models. Obsoletus complex species models yielded better precision than C. imicola models
(average 0.78 vs. 0.72). In terms of the F1 score, the difference between the average of both vectors
is low: 0.76 for C. imicola models and 0.74 for Obsoletus species models. The average performance of
the abundance models is quite similar between C. imicola and the Obsoletus complex species. The major
discrepancy is in the MAE measure, with the C. imicola models performing better (0.53 vs. 0.63);
followed by RMSE (0.74 vs. 0.78). As expected for the months of maximal abundance for each vector,
the error of the correspondent models is higher.Viruses 2020, 12, x FOR PEER REVIEW 7 of 21 
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Figure 4. Performance of Culicoides spp. occurrence and abundance models. For occurrence models,
the F1 score and area under the receiver operating characteristic curve (AUC) are shown, while for
abundance models mean absolute error (MAE) and root mean square error (RMSE) are shown.

Table S3 gathers the five most important variables for all the Culicoides spp. models. Climatic predictors
are very relevant for all models, vegetation indices contribute in the majority of monthly models,
and livestock density, altitude and soil type for some of them. Land cover predictors and probability of
presence of red deer never appeared among the most significant predictors for any of the models.

3.2. Transmission Risk Maps

Monthly risk maps of BTV transmission were generated from April-October as can be seen
in Figure 5. A clear seasonality closely associated with vector abundance leads to increased BTV
transmission risk during the summer months (Figures 1–3). This association was expected since
vector abundance highly influences the third component of the R0 equation, but also the first and
second components are driven by temperature-dependent variables (Equation (2)). Looking at the
monthly results, in April, mean R0 was low (0.15), but it increased in May (0.53) and June (1.45), until it
reached a peak in July (1.95). In August, the mean R0 slightly decreased (1.64); and it decreased more
significantly in September (1.14) and October (0.43). R0 values only considering C. imicola as a vector,
were higher in July-September, peaking in August; while in the case of the Obsoletus complex species
R0 values were higher during June-August, reaching a peak in July (Figure 6).

Hence, according to our results, June-August are the months of greater transmission in terms of
the R0 since during these months the abundance of the Obsoletus complex species is still high and
the abundance of C. imicola is rising (Figure 1). The Obsoletus complex species influence the overall
R0 more significantly since it is more widespread, and therefore, contribute more to the increase of
the R0 in the hole territory; while C. imicola is restricted to south and central areas (Figures 2 and 3).
Proof of this is the gradual increase of infection for BTV-1 since June, when the abundance of the
Obsoletus complex species peaks (Figure 1), in contrast with BTV-4 that has only circulated in south
and central-western areas of mainland Spain.

As can be seen in Figure 5, in mainland Spain there is a clear low-risk area of separation between
medium and high transmission risk areas between north and central-southern at-risk areas. In June
this barrier it is not as clear, although medium risk areas are not continuous in that area.
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and (c) one-vector formulation for the Obsoletus complex species.

The external assessment of the monthly BTV transmission risk maps shows a good fit of the models
for BTV, being better for BTV-4 than BTV-1 (Table 2). The majority of outbreaks fell in areas of high and
medium risk: for BTV-1, 97.19% in June, 96.67% in July, 95.26% in August, 87.58% in September and
89.77% in October; whilst for BTV-4, 94.94% in September and 94.12% in October. Only in September
and October did more than 10% of BTV-1 outbreaks occur in predicted low transmission risk areas.
However, in some of these months BTV transmission, inferred by the estimated date of infection,
did not exceeded 10 reports during the 2007–2018 period. Therefore, this data does not allow to draw
statistically significant conclusions but was included here due to its informative nature. Supporting the
results of the external assessment, we found for each monthly risk map with more than 100 outbreaks
for each serotype statistical significant differences between all observed BTV outbreaks and the number



Viruses 2020, 12, 1158 11 of 20

of expected BTV outbreaks calculated from the expected probability with the X2-square goodness of fit
test (Table 3). Thus, this result suggests that the observed BTV outbreaks in a risk category reflect the
importance of the risk areas rather than the surface size of them.

Table 2. External assessment of the bluetongue virus (BTV) transmission risk maps using BTV-1
(2007–2017) and BTV-4 (2010–2018) historical data from the European Animal Disease Notification
System (ADNS) database according to the estimated date of infection. The number and decimal fraction
of the outbreaks that fall into the different risk categories is shown.

BTV-1

Risk Category April May June July August September October

1 1 (0.5) 0 (0) 5 (0.03) 33 (0.03) 78 (0.05) 458 (0.12) 448 (0.10)
2 1 (0.5) 3 (0.33) 129 (0.72) 125 (0.13) 552 (0.34) 2084 (0.56) 2455 (0.56)
3 0 (0) 6 (0.67) 44 (0.25) 833 (0.84) 1017 (0.62) 1147 (0.31) 1477 (0.34)

Total number of outbreaks 2 9 178 991 1647 3689 4380

BTV-4

Risk category April May June July August September October

1 0 (0) 0 (0) - - 0 (0) 8 (0.05) 15 (0.06)
2 0 (0) 0 (0) - - 2 (0.50) 70 (0.44) 157 (0.62)
3 1 (1) 1 (1) - - 2 (0.50) 80 (0.51) 83 (0.33)

Total number of outbreaks 1 1 0 0 4 158 255

Table 3. Statistical analysis of the difference between the observed BTV outbreaks and the number of
expected BTV outbreaks calculated from the expected probability, which is based on the number of
cells per each risk category.

BTV-1

Month Risk
Category

Expected
Probability

Observed
Outbreaks

Expected
Outbreaks Residuals X2 *

June
1 0.4 5 71.2 −7.85

112.022 0.49 129 87.22 4.47
3 0.11 44 19.58 5.52

July
1 0.45 33 445.95 −19.55

2740.52 0.36 125 356.76 −12.27
3 0.19 833 188.29 46.98

August
1 0.52 78 856.44 −26.6

3107.32 0.33 552 543.51 0.36
3 0.15 1017 247.05 48.99

September
1 0.57 458 2102.73 −35.87

3331.92 0.32 2084 1180.48 26.3
3 0.11 1147 405.79 36.8

October
1 0.65 448 2847 −44.96

7012.72 0.27 2455 1182.6 37
3 0.08 1477 350.4 60.18

BTV-4

Month Risk
category

Expected
probability

Observed
outbreaks

Expected
outbreaks Residuals X2 *

September
1 0.57 8 90.06 −8.65

307.862 0.32 70 50.56 2.73
3 0.11 80 17.38 15.02

October
1 0.65 15 165.75 −11.71

442.062 0.27 157 68.85 10.62
3 0.08 83 20.4 13.86

* df 2; p < 0.001.
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We have encountered a discrepancy between the highest monthly R0 values and the peak of
outbreak notifications; this leap will be discussed later on.

4. Discussion

We have generated monthly BTV transmission risk maps based on the two-host, two-vector R0

formulation [31]. Few BTV R0 studies have been conducted in Spain [79,98], and none have estimated the
R0 for all mainland Spain and the Balearic Islands nor have they considered both BTV vectors separately.
Being able to estimate the R0 in the hole territory is necessary to better understand the transmission
risk in a country, in comparison to the estimation of R0 only on Culicoides spp. sampled areas [32].
Hence, modeling the distribution of the main vector species of Culicoides is essential. Machine learning
algorithms are powerful tools for this task, especially RF [26,45,99]. However, knowing the intrinsic
characteristics of the datasets we are working with is essential to correctly apply and interpret the
performance of the resulting models. The use of the AUC in this kind of imbalanced dataset is misleading
and can lead to wrong conclusions, proving that AUC is not always the most convenient parameter
to assess the performance of classification models [69]. Thus, although the C. imicola occurrence
models outperformed the Obsoletus complex species models (Figure 4, Table S2), the extent of such
outperformance cannot be easily quantified since in both cases the original datasets were imbalanced,
but with different classes. Our monthly Culicoides spp. models (Figures 1–3) are in agreement with
the vector seasonality historically recorded for Spain [21], proving the suitability of the subsampled
sampling sites chosen for modeling. Despite entomological surveillance programs not being designed
specifically for the generation of species distribution modeling, predictive abundance models derived
from them have proven to be effective and useful for the generation of disease models [26]. In addition,
the external assessment of the monthly models shows their great performance (Table 2), i.e., for the
month of the highest number of outbreaks according to the estimated date of infection, 89.77% for BTV-1
and 94.12% for BTV-4 fell in areas of high and medium risk of transmission. In the external assessment,
in some months the medium risk category areas had a higher proportion of outbreaks than the high
risk category (Table 3). This is explained by the classification method used here (natural breaks [96])
that does not always divide the data into balanced categories. The medium and high risk categories
for April, September and October maps account for less than 50% of the total extension of the map,
and in every monthly map the high risk area is smaller than the medium risk area.

The two-host, two-vector approach is essential for a country such as Spain in which major
vectors are so different in terms of ecology and distribution [21]. These differences could hardly be
reflected in the model due to the existing gaps in knowledge in some parameters that are especially
relevant for R0 studies, namely, βj, aj, vj and µj. All of these are derived from studies performed in
Culicoides sonorensis, the principal BTV American vector [1,10], although some have been adapted
to C. imicola [79,87]. When future studies provide new data for the estimation of these parameters
for C. imicola and the Obsoletus complex species, they could easily be implemented in our model.
We deemed that our approach of estimating µj [87] is more precise than the usual formulation of
µ(θ) = 0.0090.16θ [75,100], which does not take into account Culicoides spp. thermal limits, and therefore
is not precise for low and high temperatures. The same issue can be attributed to the estimation of aj
and vj [84]. This implies a limitation in our study since we have used mean predicted temperatures [50];
and while these could be under the temperature transmission threshold [94], temperature above the
mean could have allowed BTV transmission. Sheep and goats have been considered equal in terms of
duration of viremia and mortality. This might not be accurate, in particular for the mortality parameter,
since goats are usually asymptomatic [1]. In addition, according to several studies that compared
Culicoides spp. catches with UV-light traps and animal-baited traps, Culicoides spp. biting events
are not faithfully represented by UV-light trap catches [89–93]. The majority of the literature in this
respect agrees that C. imicola [90,91] and the Obsoletus complex species [89,93] are overestimated in
UV-light traps, although the Obsoletus complex species can be also underestimated [90]. Although a
weak linear correlation has been found between UV-light and animal-baited abundances in horses
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of some Culicoides species [93], the interpretation of the relation between the abundances using both
methods is not yet clearly established. Hence, our estimates of mij might be overestimated, however,
the models showed that more than 87% and 94% of outbreaks (BTV-1 and BTV-4, respectively) in Spain
fell in areas with risk of transmission.

Due to the above-mentioned uncertainties, giving the threshold derived from the R0 definition
of one, above which the disease would persist, would be arbitrary; and that is why using three
categories to show the risk of BTV transmission for each month is more appropriate. Likewise,
the external assessment of the monthly transmission risk maps proves this categorization convenient
since the majority of the historically reported outbreaks fell into high and medium at-risk areas
(Table 2). External assessment for the Balearic Islands was not possible since no accurate data of the
outbreaks’ location was available. The low disagreement found in the external assessment can be
partially explained because we are using predicted mean temperatures [50] and steady Culicoides spp.
predicted abundance, without addressing annual variations in terms of climatic conditions. In addition,
we did not include other Culicoides species that could be involved in BTV transmission in Spain, such as
the Pulicaris complex [101], Culicoides dewulfi [102], Culicoides chiopterus [19], Culicoides circumscriptus
and Culicoides paolae [20]. This could have also led to a slight overestimation of the transmission
risk of areas inhabited by C. imicola in months of lesser abundance of this species (April-June) in
comparison with Palearctic species, and therefore a slight underestimation of the risk of transmission
in northern areas.

Another source of potential limitation is that we have deemed the host population as static
and changeless through the months of study. Likewise, we have not included wildlife hosts in the
model when red deer is potentially a BTV reservoir due to its long viremia [103]. However, in France,
it was determined that red deer did not contribute to BTV maintenance [104], while in Spain the
BTV wildlife cycle is more or less independent from the domestic, even more so with higher red
deer abundance [105]. In addition, we have not fully addressed the Culicoides spp. feeding patterns,
which are included in the study in the vector preference for host (σ). Culicoides spp. can feed in a wide
variety of hosts depending on the species [106], including wild ruminant species for the Culicoides
species that belong to the Obsoletus complex [107].

In our study, July is the month of maximal R0 transmission in Spain, followed by August,
June and September. Our results are in agreement with Napp et al. [98] who studied the R0 during
the epidemic wave of BTV-1 in the southern region of Andalusia. In their study, R0 reached its peak
in July, and progressively decreased until almost reaching zero in November [98]. Our results are also
comparable to the ones obtained in Austria, where the Obsoletus complex species are the major vector,
in which higher R0 values were found between June-August [38]. In the case of strains that have
been previously circulating during the previous year in areas where the Obsoletus complex species
are more abundant, maximum vaccination coverage should be reached before June, since there is a
quantum leap in the R0 between May and June. Although there is not a strong increase of R0 values
between months when only considering C. imicola, vaccination campaigns should be ended before July.

For most years, October is the month of greater transmission except for BTV-1 during 2008–2010,
when the virus was circulating in northern regions [26]. According to the cumulative outbreak data
(Table 2), for both BTV strains there is a peak of notifications in October, although R0 is lower that month.
Between May and June there is a noticeable leap in the mean R0 values, and according to our results in
June-August the R0 is higher in Spain (Figure 6). Therefore, at the beginning of the period of greater
estimated BTV transmission, few farms were infected, but they increased progressively through the
months of greater risk of transmission. R0 shows the secondary cases derived from a primary case,
and in October the number of cases is higher, showing that midge abundance and climatic conditions
are still favorable for BTV transmission, in particular for areas where C. imicola is more abundant
(Figure 5). Our study considered all susceptible host populations as naïve and showed at-risk areas
without taking into account infected or recovered hosts, either naturally or artificially immunized.
Although the model was not designed for an epidemic wave nor an endemic scenario, in which the
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same strain has been circulating several years, as had happened in Spain several times [7], it could be
adapted into a susceptible-infected-recovered model. In addition, our model could be combined with
atmospheric dispersion models specifically designed for Culicoides spp. [87], to simulate the arrival of
infected midges from north Africa and simulate BTV spread thereafter, being able to take into account
the seasonality of vector populations. However, even as it is, it is useful to highlight areas of higher
transmission regardless of which strain/s might be circulating, and therefore can be useful to improve
surveillance and design control and eradication programs more accurately.

In this study, we have identified a natural barrier that hampers the spread of BTV between
northern and central-southern at-risk areas of BTV transmission in mainland Spain. This barrier occurs
as a consequence of different temperatures in between both at-risk areas (Figure S1). These low mean
temperatures prevent the distribution of C. imicola (Figure 2) and limit the distribution of the Obsoletus
complex species during the majority of months (Figure 3). The lower mij, along with the influence on
temperature-dependent variables, significantly restrain BTV transmission in the R0 models for this area.
Changes in climatic conditions —i.e., increase of the mean temperature— due to climate change
may alter, and even erase this natural barrier. Future studies could be conducted to simulate possible
modifications due to the increase in temperature. Only in June is this barrier less clear. According to
both R0 (Figure 6) and the estimated date of infection of notified outbreaks (Table 2), BTV transmission
is beginning to increase but is still lower during this month in comparison with the subsequent month.
Therefore, it is unlikely that transmission can occur between these two well-defined risk areas.

Historically, the majority of strains that have circulated in Spain were introduced through the
south [7], and that is why the northern at-risk area has been less affected than the southern one.
However, in November 2007, outbreaks of BTV-1 were reported in the northern province of the
Basque Country [108], separated by hundreds of kilometers from the nearest BTV-1 reported outbreaks
in central Spain [26]. After ruling out animal movement from BTV-1 affected areas, the possible
long-distance wind-borne transportation of infected midges was pointed out as the possible means
of introduction into the region [108]. The possibility of transmission due to short-range dispersal,
which can reach a maximum of 5 km [109], of infected Culicoides spp. is very unlikely since it was a
novel strain in Spain that produced clinical signs and it was not detected in between [108]. This event
showed the implication of the Obsoletus complex species as competent vectors in Spain [8], as it is for
northern Europe [17,18], and reinforces our results. However, it also raises the concern that strains of
BTV-4 and other serotypes could circulate in northern Spanish areas as observed in countries further
north [110]. More studies are needed to determine if the scarce abundance of C. imicola in northern
areas of Spain could play a role in the management of the control and eradication of the disease.

5. Conclusions

In this study we have identified areas of greater risk of BTV transmission during April-October
in Spain, with a formulation that enables the consideration of the dissimilarity in vector capacity
of C. imicola and the Obsoletus complex species [31], although, more field or laboratory studies
are required to better address those differences. We have also identified two large areas at risk of
BTV circulation; the northern area, where the predominant vectors are the Obsoletus complex species,
and the central-southern area, where C. imicola is more abundant. Both areas are separated by a natural
barrier determined by temperature in which transmission is predicted to be low. Climate change could
alter this barrier and/or its seasonality. The external validation performed shows that our models have
correctly identified areas at risk of BTV transmission and that our results can certainly be of significance
to better focus resources of BTV control and surveillance programs during the months of April-October
in Spain. Our methodology can be extrapolated to other regions of the Mediterranean Basin where
C. imicola and the Obsoletus complex species are major BTV vectors. To apply it to a larger scale,
the harmonization of midge catches should be achieved so the standardization of abundances obtained
with different trap types can be avoided [111]. In addition, the methodology described here could
be applied to ecological studies and studies of arbovirus whose biological vector are insects of the
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Culicoides genus, namely African horse sickness virus, Schmallenberg virus and epizootic hemorrhagic
disease virus, among others.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/10/1158/s1,
Table S1: Monthly numbers and percentages of Culicoides spp. positive catches (presence) in the entire dataset
and in the occurrence models training dataset after the application of the Synthetic Minority Over-sampling
Technique (SMOTE) algorithm, Table S2: Culicoides spp. occurrence and abundance models performance,
Table S3: Monthly variable importance of the Culicoides spp. occurrence models through the mean decrease
Gini (MDG), and abundance models through the increase in node purity (INP), Figure S1: WorldClim monthly
mean temperatures for mainland Spain and the Balearic Islands. The climatic data presented here is available online:
https://worldclim.org/. Administrative boundaries provided by Instituto Geográfico Nacional (ign.es); BDDAE
CC-BY 4.0.
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