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Abstract: On average, there are 3–5 million severe cases of influenza virus infections globally each year.
Seasonal influenza vaccines provide limited protection against divergent influenza strains. Therefore,
the development of a universal influenza vaccine is a top priority for the NIH. Here, we report a
comprehensive summary of all universal influenza vaccines that were tested in clinical trials during
the 2010–2019 decade. Of the 1597 studies found, 69 eligible clinical trials, which investigated
27 vaccines, were included in this review. Information from each trial was compiled for vaccine target,
vaccine platform, adjuvant inclusion, clinical trial phase, and results. As we look forward, there are
currently three vaccines in phase III clinical trials which could provide significant improvement over
seasonal influenza vaccines. This systematic review of universal influenza vaccine clinical trials during
the 2010–2019 decade provides an update on the progress towards an improved influenza vaccine.

Keywords: influenza; universal influenza vaccine; influenza vaccine; clinical trials; vaccine target;
vaccine platform; adjuvant

1. Introduction

Globally, seasonal influenza virus epidemics are estimated to cause 3–5 million cases of
severe infection and result in 290,000–650,000 deaths annually [1,2]. Mortality is increased in the
elderly over 65 years, children under 5 years, and people in developing countries [3,4]. In the
United States alone, influenza virus infects between 9.2–35.6 million people each year, leading to
140,000–710,000 hospitalizations [5]. These annual influenza epidemics result in an estimated total
economic loss of $87.1 billion each year due to direct medical costs and indirect costs such as projected
lost earnings and loss of life [6]. While the disease burden for seasonal influenza epidemics is substantial,
this is significantly increased during influenza pandemics. For example, it is estimated that 24% of the
worldwide population was infected during the 2009 H1N1 swine influenza pandemic [7].

A substantial challenge in the development of an effective influenza vaccine is the significant viral
population diversity. The current influenza vaccine can be either trivalent or quadrivalent. The trivalent
vaccine contains a H1N1, H3N2, and an influenza B strain, with the quadrivalent vaccine including
both Yamagata and Victoria influenza B lineage strains [2,8]. The strains contained in the seasonal
influenza vaccine are updated yearly to include those predicted to circulate in the upcoming influenza
season. Although the current influenza vaccine is effective at reducing morbidity and mortality due
to seasonal influenza infections [9], vaccine effectiveness estimates only range from 10 to 60% [8,10].
The vaccine effectiveness is lowest when there is poor antigenic match to the circulating influenza
strains [8,11].
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Developing a universal influenza vaccine (UIV) that improves cross-protection is a high priority.
In 2018, the National Institute of Allergy and Infectious Disease (NIAID) released a strategic plan for the
development of a UIV. This plan suggested that the vaccine should (1) be at least 75% effective against
symptomatic influenza virus infection, (2) protect against group I and II influenza A viruses, (3) have
durable protection that lasts at least 1 year, and (4) be suitable for all age groups [1]. Many strategies
have been explored towards the creation of a UIV. This systematic review examines the universal
influenza vaccine candidates that have entered human clinical trials in the last decade. For each
clinical trial we examine the target protein of influenza, the vaccine platform used, and the inclusion of
adjuvants. A summary of these trials will inform researchers on the progress towards a UIV.

2. Materials and Methods

We performed a systematic review of UIVs that have been tested in clinical trials over the past
decade. We defined a UIV as a vaccine that aims to induce better cross-protection than traditional
seasonal influenza vaccines. Seasonal influenza vaccines were defined as a vaccine which annually
changes the wild-type viral strain component(s) depending on circulating influenza strains. We searched
the ClinicalTrials.gov database for trials on influenza with a primary completion date after 1 January
2010 and a study start date prior to 31 December 2019. Search terms included “influenza”, “influenza A
virus”, “influenza vaccines”, and “universal influenza vaccine”. Studies were excluded if the primary
outcome was to assess interactions between influenza and other diseases or comorbidities. Drugs and
interventions for improving influenza illness outcomes were excluded. Interventions for improving
seasonal influenza vaccination rates were also excluded.

Eligible trials were analyzed in detail for information on clinical trial phase, target of vaccine,
vaccine platform, adjuvant, if applicable, and results. If results were not posted on Clinicaltrials.gov,
the PubMed and PMC databases were searched with any combination of the following: NCT number,
name of vaccine, study ID number, investigators, or responsible party. Trials with unpublished data are
reported. For further information about the vaccine, the responsible party’s website was searched with
any combination of the following: NCT number, name of vaccine, study ID number, or investigators.
All publications relating to the vaccine and clinical trial were considered. Conflicts over inclusion were
resolved by all authors. Selected studies are reported in Figure 1.Viruses 2020, 12, x FOR PEER REVIEW 3 of 23 
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Figure 1. Study selection flow diagram. ClinicalTrials.gov database search resulted in 1597 clinical trials
identified. After initial screening, 185 clinical trials were reviewed in depth. A total of 69 eligible universal
influenza vaccine clinical trials were included in this review. See Materials and Methods for further information.

Relevant information was extracted from the ClinicalTrials.gov database including phase,
vaccine target, vaccine platform, and results. If information was not available, relevant publications
were analyzed. A summary of this data is reported in Table 1. All data were analyzed using GraphPad
Prism 8.2 software. Figures were designed in Adobe Illustrator 2020 (24.0.1).
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Table 1. Characteristics of universal influenza vaccine clinical trials.

ID Vaccine Name Identifier Phase Target Platform Adjuvant Adjuvant Type Prime Boost Results/Status References

1a MVA-NP+M1 NCT00942071 1 NP, M1 Viral Vector Prime Yes [12–15]

1b MVA-NP+M1 NCT00993083 2 NP, M1 Viral Vector Prime Yes [16–18]

1c MVA-NP+M1 NCT01465035 1 NP, M1 Viral Vector Prime-Boost No [19]

1d MVA-NP+M1 NCT01818362 1 NP, M1 Viral Vector Prime-Boost Yes [20,21]

1e MVA-NP+M1 NCT02014168 1 NP, M1 Viral Vector Prime-Boost Terminated [22]

1f MVA-NP+M1 NCT03277456 1 NP, M1 Viral Vector Prime Yes [23,24]

1g MVA-NP+M1 NCT03300362 2 NP, M1 Viral Vector Prime-Boost Terminated [25,26]

1h MVA-NP+M1 NCT03880474 2 NP, M1 Viral Vector Prime No [27,28]

1i MVA-NP+M1 NCT03883113 2 NP, M1 Viral Vector Prime No [28,29]

2a M-001 NCT01010737 1/2 HA, NP, M1 Recombinant Protein Montanide ISA-51 Oil in Water Prime-Boost Yes [30,31]

2b M-001 NCT01146119 2 HA, NP, M1 Recombinant Protein Montanide ISA-51 Oil in Water Prime-Boost No [32,33]

2c M-001 NCT01419925 2 HA, NP, M1 Recombinant Protein Montanide ISA-51 Oil in Water Prime-Boost Yes [31,34]

2d M-001 NCT02293317 2 HA, NP, M1 Recombinant Protein Montanide ISA-51 Oil in Water Prime-Boost-Boost No [33,35]

2e M-001 NCT02691130 2 HA, NP, M1 Recombinant Protein Montanide ISA-51 Oil in Water Prime-Boost-Boost No [33,36]

2f M-001 NCT03058692 2 HA, NP, M1 Recombinant Protein Montanide ISA-51 Oil in Water Prime-Boost No [33,37]

2g M-001 NCT03450915 3 HA, NP, M1 Recombinant Protein Montanide ISA-51 Oil in Water Prime-Boost Active [33,38]

3a VAX125 NCT00966238 2 HA Recombinant Protein TLR5 + Flagellin TLR Agonist Prime Yes [39,40]

3b VAX128 NCT01172054 1 HA Recombinant Protein TLR5 + Flagellin TLR Agonist Prime Yes [41,42]

3c VAX161 NCT01560793 1 HA Recombinant Protein TLR5 + Flagellin TLR Agonist Prime-Boost No [43,44]

3d VAX 161 NCT01658800 1 HA Recombinant Protein TLR5 + Flagellin TLR Agonist Prime-Boost No [45]

4a Ad4-H5-Vtn NCT01006798 1 HA Viral Vector Prime-Boost-Boost Yes [46,47]

4b Ad4-H5-Vtn NCT01443936 1 HA Viral Vector Prime No [48]

4c Ad4-H5-Vtn NCT01806909 1 HA Viral Vector Prime No [49]

5 GHB11L1 NCT01078701 2 ∆NS1 Attenuated Virus Prime No [50]

6a FLU-v NCT01181336 1 NP, M1, M2 Peptide Based Montanide ISA-51 Oil in Water Prime Yes [51,52]

6b FLU-v NCT01226758 1 NP, M1, M2 Peptide Based Montanide ISA-51 Oil in Water Prime Yes [53–55]

6c FLU-v NCT03180801 2 NP, M1, M2 Peptide Based Montanide ISA-51 Oil in Water Prime-Boost Yes [56]



Viruses 2020, 12, 1186 4 of 22

Table 1. Cont.

ID Vaccine Name Identifier Phase Target Platform Adjuvant Adjuvant Type Prime Boost Results/Status References
6d FLU-v NCT02962908 2 NP, M1, M2 Peptide Based Montanide ISA-51 Oil in Water Prime-Boost Yes [57,58]
7a VGX-3400X NCT01142362 1 HA, NA, NP DNA Prime-Boost No [59,60]
7b VGX-3400X NCT01184976 1 HA, NA, NP DNA Prime-Boost No [60,61]
7c VGX-3400X NCT01403155 1 HA, NA, NP DNA Prime-Boost No [60,62]
7d VGX-3400X NCT01405885 1 HA, NA, NP DNA Prime-Boost-Boost No [60,63]

8a FP-01.1 NCT01265914 1 NP, M1, P1,
P2 Peptide Based Prime Yes [64,65]

8b FP-01.1 NCT01677676 1 NP, M1, P1,
P2 Peptide Based Prime No [66]

8c FP-01.1 NCT01701752 1 NP, M1, P1,
P2 Peptide Based Prime-Boost No [67]

8d FP-01.1 NCT02071329 1/2 NP, M1, P1,
P2 Peptide Based Prime No [68]

9 Inflexal V NCT01229397 3 HA Virosome Virosome Virosome Prime-Boost Yes [69,70]
10 HAI-05 NCT01250795 1 HA Recombinant Protein Alhydrogel Alum Prime-Boost Yes [71,72]
11 GHB16L2 NCT01369862 1/2 ∆NS1 Attenuated Virus Prime Yes [73,74]

12a PanBlok NCT01612000 1/2 HA Recombinant Protein ASO3 Oil in Water Prime-Boost Yes [75,76]
12b PanBlok NCT02464163 1/2 HA Recombinant Protein ASO3 Oil in Water Prime-Boost Yes [77,78]
12c PanBlok-H7 NCT03038776 1 HA Recombinant Protein AdVax ∆insulin Prime-Boost No [79,80]
12d PanBlok-H7 NCT03283319 2 HA Recombinant Protein ASO3, MF59 Oil in Water Prime-Boost Yes [81]
13 ChAdOx1-NP+M1 NCT01623518 1 NP, M1 Viral Vector Prime-Boost-Boost Yes [82,83]

14a VXA-A1.1 NCT01688297 1 HA Viral Vector dsRNA TLR Agonist Prime-Boost Yes [84,85]
14b VXA-A1.1 NCT01761123 1 HA Viral Vector dsRNA TLR Agonist Prime No [86]
14c VXA-A1.1 NCT02918006 2 HA Viral Vector dsRNA TLR Agonist Prime Yes [87,88]
14d VXA-A1.1 NCT03121339 1 HA Viral Vector dsRNA TLR Agonist Prime No [89]
15 Avian Influenza VLP NCT02078674 1/2 HA, NA VLP Matrix M1 Saponin Based Prime-Boost No [90]
16 MER4101 NCT02500680 1 Whole Virus Attenuated Virus MAS-1 Oil in Water Prime Active [91]

17a VAL-506440 NCT03076385 1 HA Lipid Nanoparticle Prime Yes [92,93]
17b VAL-339851 NCT03345043 1 HA Lipid Nanoparticle Prime Yes [92,94]
18a M2SR NCT02822105 1 ∆M2 Attenuated Virus Prime Active [95]
18b M2SR NCT03553940 1 ∆M2 Attenuated Virus Prime-Boost Active [96]
18c M2SR NCT03999554 1 ∆M2 Attenuated Virus Prime-Boost Active [97,98]

19a Immunose Flu NCT02998996 1/2 HA, whole
virus Split Virion Endocine Oil in Water Prime Yes [99]

19b Immunose FLU NCT03437304 1/2 HA, whole
virus Split Virion Endocine Oil in Water Prime-Boost No [100]

20 NSV0001 NCT02955030 1 HA Recombinant Protein ND002 Other Prime-Boost No [101]
21 D-SUIV NCT03275389 1 Whole Virus Attenuated Virus ASO3 Oil in Water Prime-Boost-Boost Active [102]
22 NasoVax NCT03232567 2 HA Viral Vector Prime Yes [103–105]

23a NanoFlu NCT03293498 1/2 HA Nanoparticle Matrix M1 Saponin Based Prime-Boost No [106,107]
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Table 1. Cont.

ID Vaccine Name Identifier Phase Target Platform Adjuvant Adjuvant Type Prime Boost Results/Status References
23b NanoFlu NCT04120194 3 HA Nanoparticle Matrix M1 Saponin Based Prime Active [108]
24 cH8/1N1, H5/1N1 NCT03300050 1 HA Stalk Attenuated Virus ASO3A Oil in Water Prime-Boost Yes [109,110]

25a VRCFLUDNA081-00-VP NCT03186781 1 HA Ferritin Nanoparticle Prime-Boost Active [111–114]
25b VRCFLUNPF099-00-VP NCT03814720 1 HA Stalk Ferritin Nanoparticle Prime-Boost Active [112,115,116]
26a OVX836 NCT03594890 1 NP Recombinant Protein Prime-Boost No [117,118]
26b OVX836 NCT04192500 2 NP Recombinant Protein Prime Active [118,119]
27a GamFluVac NCT03651544 1 Unknown Viral Vector Prime No [120]
27b GamFluVac NCT04034290 2 Unknown Viral Vector Prime Active [121]
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3. Results

Seasonal influenza vaccines provide limited protection and are updated annually to incorporate
circulating strains. A vaccine which induces broad cross-protection against influenza remains a top
priority for the National Institute of Health (NIH). Here we report a comprehensive review of universal
influenza vaccine (UIV) clinical trials that were active between January 2010 and December 2019. In the
last decade, 69 clinical trials investigating 27 vaccines were performed (Figure 1). These trials include a
variety of viral targets, vaccine platforms, and adjuvants to boost the immune response to vaccination.
Table 1 reports a chronological summary for each UIV clinical trial. The unique ID for each trial is used
for identification in subsequent figures. Importantly, several UIVs were tested in up to 9 clinical trials.
Since the trends may be skewed by these vaccines, we differentiate between vaccines and total clinical
trials throughout this paper.

3.1. Vaccine Targets

Influenza vaccines typically target specific viral antigens to maximize the immune response to
vaccination. Vaccination aims to induce a strong adaptive immune response which results in both T
and B cell activation. These immune cells produce cytotoxic T cells and antibodies which can protect
against future infection. Vaccines targeting internal viral proteins, such as nucleoprotein (NP) and
matrix 1 (M1), can induce strong T cell responses [122]. Viral surface (external) antigens, hemagglutinin
(HA) and neuraminidase (NA), are targeted by neutralizing antibodies [123]. Traditionally, a robust
antibody response has been the goal of influenza vaccination and has been the basis upon which
vaccines have been tested and licensed [124,125]. However, these antibodies provide limited protection
against divergent influenza strains. Since there are strengths for both internal and external strategies,
many vaccines include multiple antigens to induce a strong humoral and cellular immune response.
Over the past decade, both internal and external influenza proteins were utilized in UIV clinical trials
(Figure 2). Other strategies which target whole virus or attenuated virus through gene deletion have
also been investigated. However, recent vaccines have focused on external proteins, specifically HA.

3.1.1. Internal Proteins

Internal influenza proteins are attractive vaccine candidates since they are more conserved than
the external glycoproteins [124]. This may result in broader cross-protection induced by the vaccine.
One example is FP-01.1, a peptide-based vaccine which includes several CD4+ and CD8+ T-cell
epitopes conjugated to a fluorocarbon chain. These epitopes are derived from internal influenza
proteins including NP, M1, polymerase basic 1 (PB1), and polymerase basic 2 (PB2). Four trials
were performed in the past decade utilizing 328 participants 18–74 years old. One phase I trial
demonstrated that vaccination with FP-01.1 induced strong cellular responses in 75% of participants
with a median response of 243 spot forming cells (SFC)/million peripheral blood mononuclear cells
(PBMC) as measured using IFNγ ELISpot assay [65]. This cellular response was activated against
several heterologous H1N1 and H3N2 strains indicating broad cross-reactivity [65]. Another UIV
targeting internal proteins is OVX836, which is a recombinant NP vaccine. In preclinical trials,
vaccinated mice were protected against three lethal influenza A virus (IAV) challenges and induced
stronger immunogenicity than wild-type NP alone [118]. Protection was further improved if mice
were immunized with a combination of the seasonal inactivated vaccine and OVX836.

3.1.2. External Proteins

In the past decade, 14 of the 27 vaccines in UIV clinical trials targeted external glycoproteins.
Although the HA protein has a high amount of diversity in the globular head, the HA stalk region
is more conserved [125]. Vaccines targeting the stalk region of HA have shown promise during
development and are being investigated in several UIV clinical trials [109,110,112,115,116]. One such
vaccine is cH8/1N1, H5/1N1, which utilizes a prime-boost immunization strategy to promote an



Viruses 2020, 12, 1186 7 of 22

immune response towards the HA stalk domain. The phase 1 trial included 65 individuals between 18
and 39 years of age. Two viruses were modified with chimeric HA containing a homologous HA stalk
and heterologous HA heads. These were administered as live attenuated or inactivated vaccines and
boosted with a heterologous HA head vaccine 85 days later [109]. An oil-in-water adjuvant, AS03,
was included with the inactivated vaccine. After the prime vaccination, only the adjuvanted groups
induced strong IgG antibody responses. However, all groups demonstrated 2.2 to 5.6-fold increases
in HA stalk specific IgG antibodies after a heterologous boost. These H1 HA antibodies were cross
reactive to H2, H9, and H18 HA, indicating broad cross-protection against group 1 HA [109].
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Figure 2. Targets for universal influenza vaccine strategies. A timeline of all universal influenza vaccine
clinical trials is shown for vaccines which target internal proteins (dark purple), external proteins
(purple), or other (light purple) antigens (A). Trends for vaccine targets are shown by the percent of
active clinical trials each year (B). Average clinical trials for each target (C), the total number of clinical
trials (D), and the number of vaccines directed against each target are reported (E).

Another vaccine utilized the full-length H5 HA protein in an oral recombinant adenovirus type
4 (Ad4) vectored vaccine, Ad4-H5-Vtn. Three clinical trials have enrolled 313 participants between
18 and 49 years of age to investigate this avian H5 influenza vaccine. Three immunizations with
Ad4-H5-Vtn resulted in low seroconversion, 11% for vaccinees and 7% for placebo [46]. Participants
were boosted with an inactivated H5N1 vaccine, which resulted in 100% seroconversion for vaccinees
compared to 36% in the placebo group. Vaccination with Ad4-H5-Vtn induced a significant T cell
response after a single vaccination with a median 232 SFC/million PBMC. No serious adverse events
were reported although vaccinees experienced higher rates of self-limited abdominal pain (16.8% vs.
2.4%), diarrhea (19.2% vs. 4.9%), and nasal congestion (32.8% vs. 14.6%) compared to the placebo.

NA was included in a DNA vaccine, VGX-3400X [60]. The DNA vaccine included plasmids
containing NA, HA, and M2e-NP from H5N1 avian influenza. The vaccine was administered
intramuscularly to over 200 participants 18–55 years of age during 4 clinical trials [59,61–63]. No results
have been posted to date. Interestingly, NA was only investigated in combination with other influenza
proteins. Furthermore, besides the VGX-3400X vaccine, NA was only included in whole inactivated
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and VLP vaccine strategies. The NA protein should be further investigated for its cross-protective
potential against influenza [126].

3.2. Vaccine Platforms

Antigens are presented to the immune system in different ways depending on the vaccine platform.
Most seasonal influenza vaccines utilize attenuated or inactivated wild-type viruses. These viruses
display the external influenza proteins and stimulate strong antibody responses [127]. Although this
strategy has been utilized since 1945, it has consistently shown low efficacy for protection against
mismatched influenza strains [10,128]. Therefore, a variety of vaccine platforms were investigated
during the last decade to further improve influenza vaccination. Although many vaccine platforms
have been investigated, no single platform has thus far been demonstrated to show superior protection
against influenza.

3.2.1. Viral Vectors

A common platform for UIV clinical trials is viral vectors (29.4%), which utilize viral machinery
to package, deliver, or display the vaccine antigen (Figure 3). Viral vectors have been commonly
used as molecular biology tools and are approved for several gene therapies [129]. One of these
vaccines is MVA-NP+M1, which is a modified vaccinia virus Ankara (MVA) viral vector expressing
the nucleoprotein (NP) and matrix protein 1 (M1) genes from an H3N2 influenza strain [15]. In the
past decade, nine clinical trials investigated MVA-NP+M1 enrolling over 7200 participants 18 years or
older. Results from these trials report an increase in T cell response to vaccination, which remained
significant above baseline for 52 weeks in 50–59-year-old participants. However, the response was
only significant for 12 weeks in subjects 60–69 years old and 3 weeks for participants over 70 years [15].
A subsequent trial using 6 healthy subjects reported no significant difference in T cell response
21 days post-vaccination [24]. The antibody response to vaccination was not reported. To further
boost the immune response to MVA-NP+M1, a heterologous boost with a simian adenovirus viral
vector ChAdOx1-NP+M1 was investigated [21]. In this study involving 72 participants, both the
MVA-NP+M1 and ChAdOx1-NP+M1 vaccines were shown to boost T cell responses when administered
individually or together. A heterologous boost, regardless of the order, increased T cell responses
~5-fold. Another study investigating this heterologous strategy reported a significant increase in T
cell responses at day 14 after ChAdOx1-NP+M1 vaccination, but a decreased response by day 21 [83].
Vaccinees were boosted with MVA-NP+M1, which again increased the T cell response; however,
this response was not significant 21 days following the boost vaccination.

A recent viral vectored vaccine is Nasovax, an intranasal adenoviral vectored vaccine. Though no
results have been posted for this clinical trial, data presented at the 2019 World Vaccine Congress
reported strong immunogenicity and protection [105]. Indeed, vaccination with Nasovax induced
100% seroconversion, which was maintained for over 1 year.

3.2.2. Nanoparticles

The newest vaccine platform utilizes nanoparticles to deliver viral antigens [130]. One vaccine
utilizing this method is VAL-506440 and VAL-339851, which are mRNA HA from H10N8 and H7N9
influenza strains delivered in a lipid nanoparticle (LNP) [92]. Two trials were performed utilizing
357 participants aged 18–64 years. For the H10N8 mRNA vaccine, vaccination resulted in mild
to moderate systemic adverse events including injection site pain (76.7–93.1% vs. 5.7–11.1%) and
myalgia (47.8–70.9% vs. 2.9–3.7%) compared to the placebo. Antibody responses were increased
in a dose-dependent manner for the H10N8 LNP vaccine reaching 100% seroconversion at 100 µg
compared to 5.7% for the placebo group. These levels remained seropositive (HAI ≥ 10) for 6 months
after immunization. The H7N9 LNP vaccine induced strong antibody titers for all vaccine doses with
96.3% seroconversion for the 25 µg dose group. Participants vaccinated with the H7 vaccine displayed
mild injection site pain compared to the placebo (43.3–80% vs. 5.6–13.9%).
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Other nanoparticle vaccines include VRC-FLUNPF081-00-VP, which is a recombinant HA vaccine
delivered in a ferritin nanoparticle, and VRC-FLUNPF099-00-VP, which is a HA stalk protein delivered
in a ferritin nanoparticle. Although neither trial has posted results, influenza ferritin nanoparticle
vaccines have shown strong immunogenicity in mice and ferrets during preclinical trials [112].

3.2.3. Recombinant Protein

Another common vaccine platform utilizes recombinant protein of a viral antigen (26.5%). Due to
low immunogenicity, recombinant protein vaccines typically require the use of an adjuvant to enhance
the immune response to vaccination [131,132]. Panblok is a recombinant HA protein administered with
a novel stable emulsion adjuvant. Four clinical trials were performed which enrolled 1264 participants
18–49 years old. In one adjuvant dose-dependent trial targeting H5 influenza, results demonstrated
that all adjuvanted vaccines (3.8 µg, 7.5 µg, or 15 µg) increased seroconversion from 9% in the
unadjuvanted group to 70% for participants who received an adjuvanted vaccine [76]. However,
another trial targeting H7 influenza reported low seroconversion regardless of the adjuvant dose [78].
Despite low antibody detection using HAI assay, antibodies against H7 influenza were detected using
ELISA. Passive transfer of these antibodies resulted in protection against lethal H7 challenge in mice.
Additionally, these antibodies were cross-reactive to H1, H4, H14, H3, H10, and H15, indicating broad
immunity against both group 1 and group 2 influenza [78].

3.2.4. Peptide Based Vaccines

Some vaccines deliver conserved immunogenic peptides of viral antigens. One such vaccine
is Flu-v, a peptide-based vaccine containing conserved epitopes from influenza A and B viruses
and adjuvanted with Montanide ISA-51. Over the past decade, 4 clinical trials were performed
involving 408 participants between 18 and 60 years of age. Vaccination with Flu-v increased IFN-γ
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cellular responses 2-fold but did not induce antibody responses as expected [52]. In another study,
seronegative males were vaccinated with Flu-v and then challenged with H3N2 influenza virus [55].
Participants vaccinated with Flu-v showed reductions in viral load and symptoms as well as an 8-fold
increase in IFN-γ cellular responses.

3.2.5. Attenuated Virus

Nonstructural protein 1 (NS1) is an influenza protein that antagonizes the immune system by
downregulating antiviral host proteins [133]. Several attenuated virus vaccines in clinical trials have
deleted this viral gene to improve the immune response to vaccination. Both GHB11L1 and GHB16L2
are intranasal live attenuated viruses with the NS1 gene deleted, but neither clinical trial has published
results from these studies. Matrix protein 2 (M2) is an essential structural viral protein for influenza
replication. The M2SR vaccine includes a virus that lacks the M2 protein resulting in non-infectious
viral progeny, essentially a single-cycle virus [98]. All three M2SR vaccine trials are currently active.

3.3. Adjuvants

An ideal UIV will provide highly effective and long-lasting protection. This can be difficult to
achieve when targeting internal proteins or using poorly immunogenic vaccine platforms. Adjuvants are
compounds that stimulate the immune system and improve vaccine efficacy [132]. This is commonly
achieved by oil-in-water emulsions, which recruit immune cells to the site of vaccination [134].
Another common group of adjuvants are toll-like receptor (TLR) agonists. These adjuvants bind and
activate cellular host pathways, which leads to increased immune activation [135]. New adjuvants
continue to be discovered and explored, but few are licensed for use in the United States [136].

3.3.1. Oil-in-Water Emulsions

Over the past decade, most adjuvants in UIVs have been oil-in-water emulsions (39%) (Figure 4).
M-001 is a recombinant protein vaccine that contains common B and T cell epitopes from the HA,
NP, and M1 influenza proteins. Seven trials were performed over the past decade, which enrolled
10,391 individuals over 18 years old. This vaccine was combined with an adjuvant, Montanide ISA
51VG, which increased IgG titers 50-fold against the M-001 protein [137]. Strong T cell responses
to M-001 were shown for all groups regardless of adjuvant inclusion. A subsequent trial reported
M-001 could be used as a stand-alone or priming vaccine for the seasonal influenza vaccine [31]. When
compared to seasonal vaccination alone, participants primed with M-001 before seasonal vaccination
showed elevated antibody responses for matched H1N1 (4-fold vs. 2.24-fold) and H3N2 (3.17-fold
vs. 2.3-fold), but not influenza B (1.7-fold vs. 1.32-fold). Additionally, M-001 vaccination increased
both CD4+ and CD8+ T cell responses to H1N1, H3N2, and influenza B strains compared to baseline.
Another unpublished clinical trial reported that 70% of M-001-vaccinated participants had a 4-fold
increase in HAI titers compared to 41% for the control group [31]. This vaccine has moved into phase
III clinical trials and was scheduled for primary completion in May 2020.

Immunose Flu is an inactivated split vaccine with a novel lipid adjuvant, Endocine.
The immunogenicity of Immunose Flu was not reported, but vaccination resulted in serious adverse
events in 2 of 36 participants including erysipelas and gastroenteritis [99]. Mild to moderate adverse
events were recorded in 88.9% and 85.7% of vaccinated participants compared to 55.6% in the saline
placebo control group.

3.3.2. TLR Agonists

Another common group of adjuvants are toll-like receptor (TLR) agonists. These adjuvants bind
and activate cellular host pathways, which leads to increased immune activation [135]. An example
is VAX125, which is a recombinant HA protein fused to the TLR5 ligand, flagellin. Four clinical
trials were performed using 911 participants over the age of 18. Vaccine doses over 5 µg resulted in
~8-fold elevated HAI titers, 75% seroconversion, and 98% seroprotection rates for H1N1 influenza [40].
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However, dose escalation over 8 µg and 12 µg was stopped due to serious adverse events [42].
Vaccine doses ≥1.25 µg resulted in an average 19-fold increase in HAI titer, 92% seroprotection, and 79%
seroconversion against a matched H1N1 influenza strain [42].Viruses 2020, 12, x FOR PEER REVIEW 12 of 23 
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Another TLR adjuvant is double-stranded RNA (dsRNA), which binds TLR3 and activates
inflammatory pathways [138]. VXA-A1.1 utilizes this adjuvant by encoding dsRNA and an H1N1
HA transgene in a recombinant adenovirus type 5 (Ad5) vector. This oral vaccine has been studied
in 4 clinical trials with 285 participants between 18 and 49 years of age. One trial reported increased
antibody responses to matched H1N1 strains with an average of 7.7-fold increases in HAI titers and
29-fold increases in microneutralization titers after vaccination [84]. Vaccination resulted in mild
side effects at similar rates to the placebo group. Phase 2 clinical trial participants were immunized
with VXA-A1.1 or the seasonal QIV vaccine and then challenged with an H1N1 influenza strain [87].
Vaccination with VXA-A1.1 resulted in 48% protection compared to 38% with the seasonal vaccine.

3.3.3. Alum

Interestingly, although alum is one of the most commonly used FDA-approved adjuvants, only one
clinical trial in 2010 utilized this adjuvant [136]. HAI-05 is a recombinant H5 HA protein vaccine that
is produced in a plant-expression system, Nicotiana benthamiana [72]. This trial enrolled 100 individuals
between 18 and 49 years of age and investigated the dose response of HAI-05 with alum. Interestingly,
any combination of HAI-05 (15, 45, and 90 µg) with alum resulted in minimal antibody titers while
HAI-05 alone (90 µg) induced the greatest antibody response (6.4-fold increase). This suggests the
HAI-05 induced low immunogenicity that was not improved by the addition of an adjuvant.
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3.4. Clinical Trial Phases

In the US, new drugs and vaccines must complete four phases of clinical trials to be licensed and
marketed for public use. Phase I trials investigate the safety and dosage of the vaccine. Typically,
phase I trials have limited numbers of participants and do not assess efficacy due to low statistical
power [139]. Phase II trials assess the dose response, efficacy, and side effects of the new vaccine.
These trials include more study participants and can last longer than phase I trials. Occasionally,
phases I and II can be combined into one clinical trial, phase I/II. Phase III trials include a large sample
size and assess participants for vaccine efficacy and adverse reactions. At this point, the new vaccine
or drug may be approved for the market [139]. Lastly, phase IV clinical trials involve post-marketing
surveillance of the efficacy and safety of the new vaccine. Importantly, not all clinical trial results are
reported or published. It is common for results to be posted several years after the completion of a
trial (Figure 5). Over the past decade, only half of completed trials reported their findings (Figure 5E).
This delay is consistent regardless of clinical trial phase (Figure 5D).
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Figure 5. Clinical trial phases and results for universal influenza vaccines. A timeline for universal
influenza vaccine clinical trials is shown for phase I (light pink), I/II (pink), II (red), and III (dark red)
(A). Trends for vaccines in various clinical trial phases are shown by the percent of active clinical trials
each year (B). The number of clinical trials in each phase is shown (C). Result status for trials in each
clinical phase is shown (D). The total number of trials completed with results (dark blue), completed
with no results (blue), active (grey blue), or terminated (light blue) is indicated (E).

As expected, most UIV clinical trials performed over the past decade were phase I trials (57.4%)
(Figure 5). Of the 27 vaccines, 11 have progressed past phase I (40.7%); however, only 3 vaccines (11%)
have been tested in phase III clinical trials. The first phase III trial investigated Inflexal V, a trivalent
adjuvanted virus-like particle (VLP) vaccine [70]. This study included 205 children between 6 and
36 months and was completed in November 2010 [69]. All participants were immunized with a
single full dose (0.5 mL) or with two doses (0.25 mL) of the Inflexal V vaccine. Results suggest that
both vaccine groups demonstrated improved seroprotection and seroconversion rates. Participants
who received two 0.25 mL doses 4 weeks apart showed higher seroprotection rates for H1N1 (99.0),
H3N2 (99.0), and influenza B (92.2). For H1N1 and H3N2, the two-dose regimen resulted in higher
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seroconversion and geometric mean titer (GMT) fold increases than the single-shot regimen. Half of
participants from each group experienced non-serious adverse events including pyrexia, malaise,
rhinitis, cough, otitis media acute, as well as adverse events at the injection site including erythema,
induration, pain, or hemorrhage.

The second UIV tested in a phase III clinical trial was M-001. This vaccine is a synthetic recombinant
protein containing common linear influenza epitopes [31]. As discussed above, the adjuvanted M-001
vaccine has shown promising immunogenicity and the phase III trial was scheduled for primary
completion in May 2020 [31,137].

The third vaccine tested in a phase III clinical trial is NanoFlu. This vaccine is a recombinant HA
protein delivered in a nanoparticle with a saponin-based Matrix-M adjuvant [107]. Although results
for the phase II trial have not been posted, a press release from Novavax stated that NanoFlu induced
superior HAI antibody responses against homologous and drifted strains compared to the seasonal
influenza vaccine. A phase III clinical trial involving 2650 participants over 65 years of age was
scheduled for primary completion in December 2019.

4. Discussion

This systematic review documents UIVs that were tested in clinical trials from January 2010 to
December 2019. Although many papers have discussed strategies for UIVs, few review papers address
the translation of UIV strategies to clinical trials [140,141]. This is the first systematic review of UIVs in
clinical trials.

The definition of a “universal” influenza vaccine is highly debated [125,141]. In 2018, the NIAID
announced that a UIV should (1) be at least 75% effective, (2) protect against group I and II IAV,
(3) have durable protection that lasts at least 1 year, and (4) be suitable for all age groups [1]. Since this
standard was put forward towards the end of the decade, our definition of a UIV remains broader
than the NIAID requirements. Here, we have defined a UIV as a vaccine that aims to induce better
cross-protection than seasonal influenza vaccines. Therefore, “supra-seasonal vaccines” which cover a
large subset of influenza strains and vaccines against specific subtypes of influenza have been included
in this analysis.

The influenza diversity targeted by each vaccine varied. Only 37% of universal vaccines were
designed to protect against both influenza A and B viruses. Other strategies focused on IAV (22%)
or a single subtype of IAV (41%). Importantly, no vaccines focused on influenza B virus (IBV)
alone. Furthermore, the current NIAID requirements for a universal influenza vaccine do not require
cross-protection against IBV. Notably, the CDC reports that IBV is responsible for 72% of influenza
cases reported for children and young adults each year [142]. Overall, approximately 26% of annual
influenza cases can be attributed to IBV [143]. The significant burden of IBV should be addressed in
the design of universal influenza vaccines.

Some limitations to this review should be noted. First, information about clinical trials can be
limited until the results are published. Specifically, not all clinical trial summaries include information
on vaccine design and mechanism. In these cases, previous publications and press releases for the
vaccines were consulted. Additionally, most results reported safety information and homologous
vaccine efficacy, providing limited information on the cross-reactivity of each vaccine. Second,
we searched clinical trials registered through ClinicalTrials.gov, which could potentially exclude
some studies. There are other clinical trial databases such as EU Clinical Trials Register, however,
the ClinicalTrials.gov database reports more accurate and updated information for clinical trials [144].

Despite limited information, this review provides a comprehensive summary of the UIVs tested
in clinical trials. Indeed, this is the first comprehensive review to also discuss efficacy and trends in
vaccine development for influenza. The field of influenza vaccine development is ever progressing.
This is reflected in new vaccine targets and platforms such as HA stalk and nanoparticles. Researchers
over the past decade have produced many promising influenza vaccines, each with strengths and
limitations. The efficacy of a vaccine may induce strong protection against matched strains, but an
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effective UIV must induce strong cross-protection as well. This review identifies vaccines that report
efficacy against matched strains alone. Importantly, these vaccines may provide cross-protection if
delivered in combination with vaccines targeting other influenza subtypes. However, this would
require further research and investigation.

5. Conclusions

Influenza virus remains a major global pathogen despite the general widespread use of seasonal
vaccines due to varying efficacy to drifted strains. A UIV remains a top priority for the NIH and
World Health Organization. This review provides an update on the progress towards a better influenza
vaccine. With this information, researchers and clinicians can remain informed about the status and
limitations of universal influenza vaccines.
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