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Abstract: Plant virus management is mostly achieved through control of insect vectors using 
insecticides. However, insecticides are only marginally effective for preventing virus transmission. 
Furthermore, it is well established that symptoms of virus infections often encourage vector 
visitation to infected hosts, which exacerbates secondary spread. Plant defense elicitors, 
phytohormone analogs that prime the plant immune system against attack, may be a viable 
approach for virus control that complements insecticide use by disrupting pathologies that attract 
vectors. To explore this, we tested the effect of a commercial plant elicitor, acibenzolar-S-methyl 
(ASM), on infection rates, virus titers, and symptom development in melon plants inoculated with 
one of two virus species, Cucumber mosaic virus (CMV) and Cucurbit yellow stunting disorder virus 
(CYSDV). We also conducted behavioral assays to assess the effect of ASM treatment and virus 
inoculation on vector behavior. For both pathogens, ASM treatment reduced symptom severity and 
delayed disease progression. For CYSDV, this resulted in the attenuation of symptoms that 
encourage vector visitation and virion uptake. We did observe slight trade-offs in growth vs. 
defense following ASM treatment, but these effects did not translate into reduced yields or plant 
performance in the field. Our results suggest that immunity priming may be a valuable tool for 
improving management of insect-transmitted plant viruses. 

Keywords: plant defense elicitor; plant virus; vector behavior; cucurbit yellow stunting disorder 
virus (CYSDV); cucumber mosaic virus (CMV); Bemisia tabaci; Aphis gossypii; virus pathology; 
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1. Introduction 

Emerging diseases are defined as infections that have recently increased in recorded incidence 
or severity within a geographic region [1]. Among emerging infectious diseases of plants, viruses are 
the number one causal agents [2]. Although it is difficult to measure the exact impact plant viruses 
have on agricultural production, it is estimated that they are responsible for upwards of USD 30 
billion in crop losses each year [3]. Furthermore, the vast majority of characterized plant pathogenic 
viruses are insect transmitted [4], and climate change and global trade are predicted to alter the 
distribution of insect vectors in ways that will only increase the number of emerging insect-borne 
viruses threatening crops in the future [5]. Thus, we urgently need new solutions for plant virus 
management that are both sustainable and adaptable to multiple virus threats.  

Current plant virus management strategies are focused on preventing infection [3,6–9]. This 
approach is logical because plant viruses are obligate intracellular parasites and are thus very difficult 
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to eliminate from hosts once established. Several tools have been developed to prevent infections, 
including clean plant programs that ensure propagation of virus-free tissue across trade zones, 
cultural management of inoculum sources, and breeding or bioengineering cultivars that are not 
susceptible to infection. However, developing and implementing these approaches for each new 
virus threat is not always practical, because they rely on knowledge of virus ecology, drivers of 
pathology, and host resistance traits, each of which takes years of research to understand. Since most 
economically damaging plant viruses depend on insect vectors for transmission, growers are often 
left with no choice but to apply excessive amounts of pesticides to their crops in the hopes of 
inhibiting virus transmission [9–11]. Unfortunately, this practice is expensive, has off-target effects 
on non-vector species, selects for resistance in pests, and, worst of all, is rarely effective in fully 
blocking virus transmission [9,11–13]. 

Under scenarios where virus inoculum is abundant due to the presence of reservoir hosts, 
exposure to viruses is a near certainty even when insecticides are keeping vector populations in a 
crop below economic injury levels for direct damage. In these situations, boosting plant tolerance to 
viruses may be a more feasible, adaptable, and sustainable solution relative to time- and labor-
intensive solutions, such as breeding new cultivars with resistance traits. Tolerance is defined as the 
ability to become infected without developing disease. Enhancing tolerance can be an effective 
control strategy, because most of the negative effects of plant viruses on crop yield and quality can 
be attributed to the development of symptoms associated with virus-induced pathologies, rather than 
virus infection itself [14]. In fact, many plant viruses have no known negative impacts on their hosts 
[15], and many are prevalent but asymptomatic in crop hosts that co-occur geographically alongside 
crops showing symptoms [16]. In addition to direct impacts on yield, it is also well established that 
virus symptoms play a role in driving secondary spread from focal infection points [17,18]. 
Numerous studies across diverse pathosystems demonstrate that virus-induced symptoms often 
enhance vector attraction to infected hosts and modify feeding behaviors in ways that are conducive 
to virion uptake, retention, and transmission [18]. Thus, in addition to protecting crop yield and 
quality, focusing on attenuating viral symptoms may bring the added benefit of decreasing vector 
attraction to infected plants and significantly reducing secondary transmission rates.  

Tolerance of virus infection is a process that involves the plant immune system. Mechanistic 
studies have identified signaling molecules (phytohormones) mediating plant perception of, and 
responses to, beneficial and pathogenic microbes [19]. Based on the structures of these signaling 
molecules, researchers and industry have developed several synthetic phytohormone analogs that 
can be used to elicit plant defense responses prior to pathogen attack [20]. One of these so-called plant 
defense elicitors, acibenzolar-S-methyl (ASM, marketed as Actigard by Syngenta), has been labeled 
for use on crops for the management of several fungal and bacterial plant diseases. More recent 
studies have demonstrated that ASM also has the potential to protect plants from viral disease. For 
example, Takeshita et al. [21] found that ASM attenuates symptom development and negative effects 
of cucurbit chlorotic yellows virus (genus Crinivirus, family Closteroviridae) on cultivated melon 
(Cucumis melo). Further, Tripathi and Pappu [22] found similar positive effects of ASM on plant 
tolerance to iris yellow spot virus (genus Orthotospovirus, family Tospoviridae). While these studies are 
promising, use of ASM for attenuating virus infection has not been widely tested for efficacy against 
diverse pathogens affecting the same crop, or for off-target effects on plant growth and productivity. 
Furthermore, no studies have determined if ASM treatment is effective in disrupting symptoms 
responsible for increased vector attraction to and feeding on infected hosts. 

To address these knowledge gaps, we tested the hypothesis that ASM treatment can enhance 
Cucumis melo resistance or tolerance against two common, but distantly related, virus species 
(Cucumber mosaic virus [CMV, genus Cucumovirus, family Bromoviridae] and Cucurbit yellow stunting 
disorder virus [CYSDV, genus Crinivirus, family Closteroviridae]). CMV is a multi-host pathogen that is 
transmitted at various efficiencies by over 80 different aphid species in a non-persistent manner (i.e., 
through brief probes of epidermal cells) [23]. Consistent with this transmission mechanism, multiple 
studies have documented induction of a “pull–push” phenotype in melons and squash infected by 
CMV; infected plants are initially attractive to aphid vectors via volatile cues, but ultimately prove to 
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be unpalatable once vectors establish contact and perform test probes on epidermal cells [24–27]. 
CYSDV is transmitted in a semi-persistent manner by multiple biotypes of Bemisia tabaci, which 
acquire and inoculate the virus during prolonged feeding in phloem sieve-tube elements [28]. In 
melons, CYSDV induces interveinal chlorosis, resulting in bright yellow leaves at the height of 
symptom expression, a condition which is hypothesized to be highly attractive to whitefly vectors 
based on prior studies [29,30]. CYSDV infection also reduces yield size and fruit quality [31,32]. Both 
CMV and CYSDV are significant threats to melons in regions responsible for the majority of melon 
production in the U.S. (California and Arizona), the Middle East, and Europe [33–35]. For example, 
in the Southwestern U.S., many growers have ceased planting fall melon crops in desert agriculture 
due to the presence of CYSDV, resulting in millions of dollars in lost revenue annually [36,37]. 

In the current study, we explored the effects of ASM pre-treatment on CMV and CYSDV 
infection rates, symptom progressions, and titers. We also evaluated potential trade-offs in growth 
vs. defense that may be elicited by ASM application using greenhouse and field studies. Since both 
pathogens have the potential to influence vector behavior via induced changes in host plant 
phenotype (symptoms) we further predicted that attenuation of symptoms following ASM pre-
treatment would disrupt transmission-conducive vector host-seeking and feeding behaviors (e.g., 
preference for visiting infected over non-infected hosts). This was tested through a series of 
behavioral assays with the respective vectors of each virus. Our results suggest that ASM can function 
as a useful component of integrated disease management programs for CMV and CYSDV, but that 
careful attention to dose and timing is required to balance trade-offs in growth vs. defense. 

2. Materials and Methods 

2.1. Plants, Virus Isolates, and Vectors 

All experiments were carried out with melon, Cucumis melo var. Gold Express (Syngenta Seeds 
Inc., Greensboro, NC, USA) , germinated in seed flats in a climate-controlled growth chamber (25 ± 1 
°C, 65% relative humidity) under a 16 h light/8 h dark photoperiod. One and a half weeks after 
sowing, seedlings were transplanted to 6 inch diameter × 5.75 inch tall round pots (Kord Regal 
Standard Pots, Greenhouse Megastore, West Sacramento, CA, USA) and moved to the greenhouse, 
where natural light and supplemental fluorescent shop lights provided a 16 h light/8 h dark 
photoperiod. Plants were kept in BugDorm insect rearing tents for the duration of experiments. 

The isolate of CYSDV used for all experiments was collected in 2006 from a commercial melon 
field in Imperial County, CA, and, thus, is known as the Imperial Isolate [16]. It is maintained in live 
melon in the UC Riverside Insectary and Quarantine facility greenhouse and transmitted to new 
melon seedlings monthly, using the whitefly vector B. tabaci. All experiments involving CMV were 
performed with isolate KV-PG2, originally collected in 2009 from a field of cultivated squash in 
Kampsville, IL, USA [25]. Frozen infected melon tissue generated from one cohort of melon plants 
grown in January 2019 was used for all CMV inoculations in this study. 

The Bemisia tabaci MEAM1 (formerly biotype B) colony used for this study originated from 
whiteflies collected in 2006 from cotton at the Maricopa Agricultural Center, Maricopa, AZ, USA [38]. 
All whiteflies used in this study were sourced from colonies maintained on cowpea (Vigna 
unguiculata) under climate-controlled conditions of 25 ± 1 °C and a 16 h light/8 h dark photoperiod. 
In addition to the primary bacterial endosymbiont Portiera aleyrodidarum, the secondary 
endosymbiont Rickettsia sp. nr. bellii is fixed in this laboratory colony. 

The Aphis gossypii colony used for this study originated from aphids collected from squash near 
Reedley, CA about a decade ago and reared on melon since then [39]. All aphids used here were 
reared on melon in the laboratory under climate-controlled conditions of 24 ± 2 °C and supplemental 
LED lighting providing a 16 h light/8 h dark photoperiod. 
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2.2. ASM Treatment 

For all experiments, plants were treated with a foliar spray of 20 mL of 25 ppm (25 mg/L) 
Actigard (Syngenta, Greensboro, NC, USA) at the one true leaf stage, approximately 1.5 weeks after 
sowing and one to three days after transplanting and moving to the greenhouse. This dose was 
selected based on Takeshita et al. [21] and preliminary experiments testing various concentrations for 
phytotoxic effects. Control plants were treated with a foliar spray of 20 mL of distilled water. After 
observing a slight reduction in aboveground biomass in plants treated with 20 mL 25 ppm ASM in 
the greenhouse, we decided to test an additional dosage, 20 mL of 12.5 ppm ASM solution, for our 
field experiment measuring effects of ASM on melon plant fruit production. 

2.3. Virus Inoculation 

2.3.1. CMV 

Three days after foliar treatments were applied (Figure 1A), we mechanically inoculated melon 
seedlings with CMV. Frozen tissue from CMV-infected melon plants was macerated in chilled 0.1M 
potassium phosphate buffer, mixed with carborundum (−400 mesh particle size, ≥97.5%), and 
brushed across leaves of non-infected melon seedlings at the 1–2 true leaf stage using a cotton-tipped 
applicator. The same procedure was used for mock inoculations of control plants with 0.1 M 
potassium phosphate buffer. 

 

Figure 1. (A) Diagram showing the four treatment groups used for vector behavioral assays. At 1.5 
weeks old, plants were treated with a foliar spray of either 20 mL of 25 ppm acibenzolar-S-methyl 
(ASM) or 20 mL of water. Three–four days after treatment, they were either inoculated with virus 
(cucumber mosaic virus [CMV] or cucurbit yellow stunting disorder virus [CYSDV]) or mock-
inoculated (with non-viruliferous whiteflies or buffer, respectively). This resulted in four treatment 
groups: plants that were not treated with ASM or inoculated with virus (1. Control), virus-inoculated 
plants that were not treated with ASM (2. Virus), plants that were both treated with ASM and 
inoculated with virus (3. ASM+Virus), and plants that had been treated with ASM but were not 
inoculated with virus (4. ASM). (B) Behavioral assay setup (as seen from above) used to test aphid or 
whitefly preference between leaves of four treatment groups from A. The double black line represents 
white poster board, the blue box represents a clear, sealed plastic arena with slits for single leaves to 
pass through the sides. The small black circle represents a hole in the middle of the bottom of the 
arena where insects were allowed to enter from a small holding area below at the beginning of each 
test. For CYSDV experiments, approximately 25 whiteflies were released. For CMV experiments, 
approximately 20 alate aphids were released. Insect positions were recorded at 1, 2, and 24 h after 
release. Final preferences were quantified based on the total number of insects recovered in each test. 
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2.3.2. CYSDV 

Four days after foliar treatments were applied, we used viruliferous B. tabaci to inoculate melon 
seedlings with CYSDV (Figure 1A). Cohorts of 50–75 B. tabaci had previously been placed in clip cages 
on symptomatic leaves of CYSDV-infected melon plants for a 48 h virus acquisition period. The 
whiteflies were then released in BugDorms containing melon seedlings at the 1–2 true leaf stage and 
allowed to feed for 48 h before being removed. For mock inoculations, the same number of non-
viruliferous whiteflies were allowed to feed on control plants at the same stage of development and 
removed after 48 h. 

2.4. Detection of Viruses and Estimation of Titer 

We detected infection and performed a semi-quantitative analysis of virus titer using ELISA 
(CMV: Alkaline Phosphatase Triple Antibody Sandwich ELISA kit, Agdia, Elkhart, IN, USA; CYSDV: 
Double Antibody Sandwich ELISA kit, BIOREBA, Kanton Reinach, CH). For CYSDV, we repeated 
this experiment three times—once with 8 plants per treatment and twice with 6 plants per treatment. 
However, we did not begin collecting tissue at 3 wpi until the second repetition of the experiment. 
Thus, we tested a total of 24 CYSDV-inoculated plants (12 ASM treated, 12 non-ASM treated) at 3 
wpi and 40 CYSDV-inoculated plants (20 ASM treated, 20 non-ASM treated) at 4 wpi. For CMV, we 
repeated this experiment three times with 6 plants per treatment each time. However, we did not 
begin collecting tissue at 1 wpi until the third repetition of the experiment. Therefore, we tested a 
total of 36 inoculated plants (18 ASM treated, 18 non-ASM treated) at 2 and 3 wpi, but only 12 (6 ASM 
treated, 6 non-ASM treated) at 1 wpi. Two ⅜ inch diameter leaf disks were taken from each plant, 
macerated, and mixed with 1 mL of General Extraction Buffer, allowing for standardization of optical 
density (OD) values as one of two estimates of virus titer (the other being quantitative PCR, described 
below). 

For one repetition of the experiment with CMV (6 plants per treatment) and one repetition of 
the experiment with CYSDV (6 plants per treatment) we quantified virus titer using quantitative PCR. 
For CMV, two ⅜ inch diameter leaf disks were taken from one leaf of each plant at 1 wpi, 2 wpi, and 
3 wpi and stored at −80 °C until extracting total RNA. For CYSDV, two ⅜ inch diameter leaf disks 
were taken from one leaf of each plant at 3 wpi and 4 wpi and stored at −80 °C until extracting total 
RNA. Total RNA was isolated from all samples using RiboZol RNA Extraction Reagent® (AMRESCO, 
Solon, OH, USA) following the manufacturer’s protocol. Quality and quantity of total RNA was 
measured using a NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA). 1000 ng of RNA from each sample was then reverse transcribed using SuperScript® IV 
Reverse Transcriptase and random hexamer primers following the manufacturer’s protocol, with one 
modification to the reaction incubation program: the recommended 10 min incubation at 55 °C was 
extended to 1 h. 

Quantitative PCR (qPCR) was performed using the CFX96 Real-Time PCR Detection System 
(BioRad, Hercules, CA, USA) and the following thermocycler program: 95 °C for 3 min followed by 
40 cycles of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s. For each qPCR reaction, 10 μL of Luna® 
Universal qPCR Mastermix (New England BioLabs, Ipswich, MA, USA), 4 μL of UltraPure™ Distilled 
Water (Invitrogen, Grand Island, NY, USA), and 0.5 μL each of forward and reverse primers were 
combined with 5 μL of template cDNA. Primers used to amplify cDNA from CYSDV, CMV, and the 
reference gene Cucumis melo β-actin are listed in Table S1. Primer amplification efficiency was 
calculated by the CFX manager software, with efficiencies ranging between 90% and 110% (Figures 
S1–S3). Three technical replicates of each sample were performed for each sample with primers 
targeting the respective virus. Another three technical replicates of each sample with primers 
targeting the melon reference gene were also performed for subsequent normalization of Ct values 
and calculation of relative fold virus titer using the delta–delta Ct method [40]. Reactions with virus-
free melon negative controls and non-reverse-transcribed controls of each sample were also 
performed. In order to compare CMV titer both between treatments and across all three timepoints, 
we calculated the relative fold change in virus titer for each treatment group at each time point 
relative to the average 1 wpi titer of the plants treated with water before CMV inoculation. To 
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compare CYSDV titer between treatments and across all three timepoints, we calculated the relative 
fold change in virus titer for each treatment group at each time point relative to the average 3 wpi 
titer of the plants treated with water before CYSDV inoculation.  

2.5. Evaluation of Symptom Severity 

We scored symptom severity for each individual leaf larger than 30 mm on a 0–4 scale adapted 
from Takeshita et al., 2013. We then calculated overall symptom severity for each plant using the 
formula D = [(di)/n/4] × 100, where D is symptom severity of a plant, di is symptom rating of ith leaf, 
n is the total number of leaves (wider than 3cm) on the plant, and 4 is the rating scale from 1 to 4. For 
CYSDV, characterized by yellowing symptoms, we used the following: 0 = no symptoms, 1 = slight 
mottling (tiny light spots visible), 2 ≤ 20% leaf area yellow (but bigger, distinctly yellow spots, rather 
than tiny light spots), 3 = 21%–50% leaf area yellow, 4 ≥ 50% leaf area yellow. CYSDV symptom 
severity was evaluated at weeks 3 and 4 post-inoculation, corresponding with typical symptom onset 
and strong apparency time periods, respectively. This experiment was repeated three times. In the 
first iteration, we used 8 plants per treatment group. However, due to logistical constraints, we opted 
to use only 6 plants per treatment for each of the two additional repetitions. This resulted in visual 
symptom severity scores for a total of 20 plants per treatment group at both the 3 wpi and 4 wpi time 
points. For CMV, which is characterized by leaf crumpling and mottling, we used the following 
scoring criteria: 0 = no symptoms (smooth, green leaf), 1= leaf has one “warped” or crumpled spot, 
but is mostly smooth, 2 = leaf has notable crumpling/wrinkling across whole surface, 3 = whole leaf 
highly crumpled, but no yellow mottling, 4 = highly crumpled + distinct yellow/light green mottling. 
CMV symptom severity was evaluated at weeks 1, 2, and 3 post-inoculation, which correspond with 
typical symptom onset, proliferation (increasing severity), and strong apparency time periods, 
respectively. This experiment was repeated three times, with 6 plants per treatment group each time. 
CMV symptom severity was initially evaluated only at 2 and 3 weeks post-inoculation. However, 
after the first repetition of the experiment, it became clear that an earlier time point would be 
necessary to capture differences in the initial development of symptoms. Thus, for the following two 
repetitions of the experiment, symptom severity was also scored at 1 week post-inoculation. This 
resulted in a total of three repetitions of 6 plants per treatment group (18 total) for visual symptom 
severity scores at 2 and 3 wpi, and two repetitions of 6 plants per treatment group (12 total) for visual 
symptom severity at 1 wpi. 

2.6. Behavioral Assays 

We released insect vectors in the middle of the bottom of a clear, rectangular cuboid arena 
surrounded by white poster board and centered under LED lights (Figure 1B). One plant from each 
of the four treatment groups was placed randomly outside each corner of the arena, and one leaf of 
the same age from each plant was pushed through a slit into the arena. The slit was sealed with a 
strip of white felt to prevent insects from escaping. The number of insects on each of the four leaves 
was then counted one, two, and twenty-four hours after release. For CYSDV, the assay was repeated 
with different plants 14 times with approximately 25 whiteflies used for each iteration. Whiteflies 
had to be chilled for 30s in −20 °C to prevent them from escaping as they were being transferred to 
the holding area under the arena. This occasionally resulted in one or two fatalities. For CMV, this 
assay was repeated with different plants 15 times, using approximately 20 alate aphids per iteration. 
Although winged, they usually did not make any attempt to fly away during transfer to the 
behavioral assay arena, and, therefore, did not require chilling. 

2.7. Evaluation of Phytotoxic Effects 

To evaluate the side effects of ASM on plant growth, we measured the dry weights of 
aboveground tissue from plants treated with either 20 mL distilled water or 25 ppm ASM solution at 
1.5 weeks of age in the greenhouse, and performed a field experiment to evaluate ASM effects on 
melon production and quality. In greenhouse experiments, plant shoots were cut off at the soil line, 
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placed in individual paper bags, and dried at 60 °C for one week before weighing. Plants were 
harvested either at 5 weeks of age (3.5 weeks after ASM application) or at 6 weeks of age (4.5 weeks 
after ASM application), to evaluate changes in the severity of side effects at different time points in 
plant phenology post-application. The experiment was repeated twice for plants harvested at 5 weeks 
of age: the first iteration used 8 plants per treatment group, after which we opted to reduce the 
number of plants to six per treatment group for the second iteration due to logistical constraints. This 
resulted in a total of 14 plants per treatment group. The assay was also repeated twice for plants 
harvested at 6 weeks of age using 6 plants per treatment group each time and, thus, resulting in a 
total of 12 plants per treatment group.  

For the field experiment, six 1.5 m wide flat-top beds were prepared with furrows in between at 
the UC Riverside Agricultural Operations facility. Beds were pre-treated with a pre-emergent 
herbicide (Pre-far) which is typically used prior to melon planting in California. Furrows were treated 
throughout the season with spot treatments of Roundup (Monsanto, St. Louis, MO, USA) and Reward 
(Syngenta, Greensboro, NC, USA) to prevent weeds from over-shadowing developing vines. All beds 
were outfitted with drip tape down the center, which was connected to an automated irrigation 
system. Melon seedlings (cv. Gold Express) to be used in the field experiment were started in the 
greenhouse in 36 pot flats. On May 7 2019, we transplanted seedlings to the field when the first true 
leaves had fully expanded (3.5 weeks post-planting). Beds were well watered prior to planting, and 
subsequently, all beds were watered for 45 min each day until week 5, at which time the watering 
was increased to 60 min each day to keep up with transpiration from larger plants. After planting, 
the beds were divided into plots of four plants each using marking flags, and each plot was assigned 
randomly to one of three spray treatments: 25ppm ASM, 12.5ppm ASM (half dose), or water (control) 
(21 plots per treatment). ASM and control treatments were applied seven days after transplanting to 
allow plants to acclimate. Fertilizer was applied twice during the season through chemigation (Peter’s 
soluble fertilizer, 20-20-20 NPK, 20bs/acre rate); once shortly after planting, and once during the 
flowering period (week 6 post-treatment application). Plant size and health assessments were taken 
at 27 and 39 days post-transplanting. Plant size was rated on a 1–10 scale corresponding to the percent 
of the bed covered by each plant (1 = 0%–10% covered, 10 = 90%–100% covered) and plant health was 
rated on a 0–9 scale based on the percent of the plant that was deep green rather than yellow or brown 
(0 = dead, 1 = 0%–10% green, 9 = 90%–100% green). Melon yields were quantified at the conclusion of 
the season (three picks over three weeks, selecting melons at full slip during each pick).  

2.8. Statistical Analyses 

The effect of ASM treatment on virus infection rate was determined using Chi-square tests. 
Differences in symptom severity, relative titer, and dry weight data between ASM-treated and 
untreated virus-inoculated plants were determined using independent t-tests or Wilcoxon rank sum 
tests, depending on whether data were normally distributed or not. All behavioral assay data were 
analyzed together (for each virus separately) using a generalized linear model with virus treatment, 
ASM treatment, and their interaction as fixed effects and time point as a random effect (R package 
‘lme4′). For fixed effects terms that were significant in the mixed effects models (i.e., virus treatment, 
ASM treatment, or the interaction), we determined differences within each time point using two-way 
ANOVAs with interaction effect followed by Tukey’s tests. Melon size, condition, and yield data from 
our field experiment were analyzed using a one-way ANOVA with ASM treatment as a fixed factor 
having two levels (25 ppm and 12.5 ppm doses). Statistical differences were considered significant at 
p < 0.05. All statistical analyses were carried out using the statistical program “R” (version 3.5.1) (R 
Studio Core Team, Boston, MA, USA). 

3. Results 

3.1. ASM Effects on Susceptibility to Viruses and Symptom Development 

For CMV experiments, the first visual symptoms appeared within one week after inoculation. 
This time frame is consistent with that previously reported for CMV infections in cultivated melons 
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[41]. The infection rate of melon plants treated with 20 mL of 25 ppm ASM solution three days before 
mechanical CMV inoculation was not different from the infection rate of control plants treated with 
distilled water (chi-square value = 0, df = 1, p = 1; Figure 2A). At 1 wpi, ASM-treated plants exhibited 
significantly reduced symptom severity relative to controls (n = 12 per treatment, W = 26.5, p = 0.003) 
(Figure 2B), which also corresponded with reduced virus titers (n = 6 per treatment, t = −5.7245, df = 
10, p = 0.0002) (Figure 2C). Reductions in symptom severity (n = 18 per treatment, W = 87.5, p = 0.019) 
following ASM treatment persisted at 2 wpi (Figure 2B). Virus titer in 2 wpi ASM-treated plants was 
equal to that in non-treated plants as determined by qPCR (n = 6 per treatment, W = 20, p = 0.8102) 
(Figure 2C) and was slightly lower than non-treated plants according to semi-quantitative ELISA (n 
= 18 per treatment, W = 96, p = 0.038) (Figure 2D). By 3 wpi, there was no apparent difference in 
symptom severity between ASM-treated and control plants (n = 18 per treatment, W = 147, p = 0.646) 
(Figure 2B), but virus titer was significantly higher in the ASM-treated group according to qPCR (n = 
6 per treatment, W = 36, p = 0.005075) (Figure 2C). This contrasts with the results of the semi-
quantitative ELISA, which showed equivalent titers (n = 18 per treatment, W = 161.5, p = 1.00) (Figure 
2D), suggesting that the ELISA protocol for CMV has an upper limit for measuring differences in 
titer.  

 
Figure 2. (A) Rate of CMV infection as determined by ELISA in plants treated with either 25 ppm 
ASM (17/18 plants) or water (18/18 plants) and then inoculated with CMV. Differences are not 
significant by chi-square test. (B) Symptom severity of CMV-inoculated melon plants (treated with 
ASM or water) at three timepoints during each repetition of the same experiment: 1, 2, and 3 wpi. For 
1 wpi, n = 12 plants per treatment. For 2 and 3 wpi, n = 18 plants per treatment. (C) Fold change in 
CMV titer (as determined by qPCR) of tissue from CMV-inoculated melon plants (treated with ASM 
or water) at three timepoints (1, 2, and 3 wpi) relative to the average 1 wpi titer of the water-treated 
group. For all three time points n = 6 plants per treatment. (D) Standardized optical density (OD) 
values of tissue samples from CMV-inoculated melon plants (treated with ASM or water) tested for 
CMV infection by ELISA at 1 wpi, 2 wpi, and 3 wpi. For 1 wpi, n = 6 plants per treatment (one 
biological replicate of n = 6). For 2 and 3 wpi, n = 18 plants per treatment (three biological replicates 
of n = 6). Bars with asterisks denote groups between which there is a significant difference at p < 0.05. 
Dots represent individual data points. The lower and upper edges of boxes represent the first and 
third quartiles, with the horizontal line inside representing the median value. Whiskers extend to the 
highest and lowest data points within 1.5× the interquartile range. Outliers beyond this range are 
represented by additional semi-transparent dots. 

For CYSDV experiments, the first symptoms rarely appeared before three weeks after 
inoculation. This is consistent with the standard time frame for CYSDV symptom development in 
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cultivated melons [31]. The infection rate of plants treated with 20 mL of 25 ppm ASM solution four 
days before CYSDV inoculation (via whiteflies) was slightly lower, but not significantly different 
from the infection rate of control plants treated with distilled water four days before CYSDV 
inoculation (chi-square value = 2.5, df = 1, p = 0.114; Figure 3A). However, ASM-treated plants exhibited 
decreased symptom severity relative to controls at both 3 wpi (n = 20 per treatment, t = −4.39, df = 38, 
p < 0.000) and 4 wpi (n = 20 per treatment, t = −3.80, df = 38, p = 0.001) (Figure 3B) and reduced virus 
titers at 3 wpi according to qPCR (n = 6 per treatment, t = −4.9904, df = 10, p = 0.0005) (Figure 3C) and 
semi-quantitative ELISA (n = 12 per treatment, W = 32, p = 0.023) (Figure 3D). During the fourth week 
after inoculation, symptom severity increased in both treatments and virus titer in ASM-treated 
plants was equal to that in non-treated plants according to qPCR (n = 6 per treatment, W = 6, p = 
0.06508) (Figure 3C) and semi-quantitative ELISA (n =20 per treatment, t = −0.406, df = 38, p = 0.687) 
(Figure 3D). 

 
Figure 3. (A) Rate of successful CYSDV infection as determined by ELISA in plants treated with either 
25 ppm ASM (17/20plants) or water (20/20 plants) and then inoculated with CYSDV via feeding by 
viruliferous B. tabaci. (B) Symptom severity of CYSDV-inoculated melon plants (treated with ASM or 
water) at two timepoints during each repetition of the same experiment: 3 wpi and 4 wpi (n = 20 plants 
per treatment). (C) Fold change in CYSDV titer (as determined by qPCR) of tissue from CYSDV-
inoculated melon plants (treated with ASM or water) as determined by qPCR at two timepoints (3 
and 4 wpi) relative to the average 3 wpi titer of the water-treated group. For both time points n = 6 
plants per treatment. (D) Standardized OD values of tissue samples from CYSDV-inoculated melon 
plants (treated with ASM or water) tested for CYSDV infection by ELISA at 3 wpi and 4 wpi. For 3 
wpi n = 12 plants per treatment (two biological replicates of n = 6). For 4 wpi n = 20 plants per treatment 
(two biological replicates of n = 6 plus one biological replicate of n = 8). Bars with asterisks denote 
groups between which there is a significant difference. Dots represent individual data points. The 
lower and upper edges of boxes represent the first and third quartiles, with the horizontal line inside 
representing the median value. Whiskers extend to the highest and lowest data points within 1.5× the 
interquartile range. Outliers beyond this range are represented by additional semi-transparent dots. 
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3.2. ASM Effects on Vector Attraction to, and Settling on, Virus-Infected Plants 

In four-way choice tests presenting CMV-infected and non-infected plants, each with or without 
prior ASM treatment, there was a significant effect of both virus infection (z = 10.783, df = 1176, p < 
0.000) and ASM treatment (z = 9.291, df = 1176, p < 0.000), but the interaction term was not significant 
(z = 1.58, df = 1176, p = 0.835) (n = 15 iterations of the assay) (Figure 4). Across all time points, alate 
aphids preferred leaves from untreated, non-infected plants over ASM-treated, CMV-infected plants 
(Tukey Test at 1 h: p = 0.006, 2 h: p < 0.000, and 24 h: p = 0.002) (Figure 4). Aphid preferences between 
non-ASM-treated plants did not differ depending on infection status (Tukey test at all time points: p 
> 0.05) (Figure 4). However, ASM treatment reduced aphid attraction and settling at each time point 
regardless of infection status (two-way ANOVA at 1 h: F = 8.454, df = 1,56, p = 0.005, 2 h: F = 7.253, df 
= 1,56, p = 0.04, and 24 h: F = 7.181, df = 1,56, p = 0.007) (Figure 4). 

 
Figure 4. Results of alate aphid four-way choice tests between leaves from ASM+CMV, ASM only, 
CMV only, or non-infected control plants (n = 15 iterations of the assay). (A) Percentage of responding 
aphids on each of the four leaves 1 h after release. (B) Percentage of responding aphids on each of the 
four leaves 2 h after release. (C) Percentage of responding aphids on each of the four leaves 24 h after 
release. Approximately 20 alate aphids were released per test. Percentage of responding aphids was 
used because some insects were slower than others to enter the arena, resulting in different total 
numbers of insects participating at different timepoints. Lowercase letters above boxes denote 
treatment groups that did not have significantly different results. Dots represent individual data 
points. The lower and upper edges of boxes represent the first and third quartiles, with the horizontal 
line inside representing the median value. Whiskers extend to the highest and lowest data points 
within 1.5× the interquartile range. Outliers beyond this range are represented by additional semi-
transparent dots. 

In four-way choice tests presenting CYSDV-infected and non-infected plants, each with or 
without prior ASM treatment, there was a significant effect of virus infection (z = −11.06, df = 1164, p 
< 0.000), ASM treatment (z = 23.08, df = 1164, p < 0.000), and their interaction (z = −4.19, df = 1164, p < 
0.000) (n = 14 iterations of the assay) (Figure 5). Across all time points, significantly more whiteflies 
selected untreated CYSDV-infected plants relative to untreated non-infected plants and plants 
treated with ASM regardless of infection status (Tukey test: p < 0.000 for all comparisons between 
untreated, CYSDV-infected plants and other treatment groups) (Figure 5). ASM treatment prior to 
inoculation significantly reduced whiteflies’ preference for CYSDV-infected plants (Tukey test for all 
time points: ASM-treated CYSDV-infected vs. ASM-treated non-infected plants) (Figure 5). Our data 
also suggest that whiteflies appear to select preferred hosts during the first hour and remain there for 
at least 24 h, as we did not observe defections between hours 1 and 2. We observed that whiteflies 
preferred non-infected plants treated with ASM the least regardless of infection status (two-way 
ANOVA at 1 h: F = 20.01, df = 1,53, p = 0.000; 2 h: F = 25.21, df = 1,53, p = 0.000; 24 h: F = 27.58, df = 1,53, 
p = 0.000) (Figure 5). 
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Figure 5. Results of whitefly four-way choice tests between leaves from ASM+CYSDV, ASM only, 
CYSDV only, or non-infected control plants (n = 14 iterations of the assay). (A) Percentage of 
responding whiteflies on each of the four leaves one hour after release. (B) Percentage of responding 
whiteflies on each of the four leaves two hours after release. (C) Percentage of responding whiteflies 
on each of the four leaves 24 h after release. Approximately 25 whiteflies were released per test. 
Percentage of responding whiteflies was used because some insects were slower than others to enter 
the arena, resulting in different total numbers of insects participating at different timepoints. 
Lowercase letters above boxes denote treatment groups that did not have significantly different 
results. Dots represent individual data points. The lower and upper edges of boxes represent the first 
and third quartiles, with the horizontal line inside representing the median value. Whiskers extend 
to the highest and lowest data points within 1.5× the interquartile range. Outliers beyond this range 
are represented by additional semi-transparent dots. 

3.3. Effects of ASM Treatment on Plant Size and Productivity 

Non-infected melon plants treated with 25 ppm ASM in the greenhouse had slightly reduced 
aboveground biomass relative to non-infected plants treated with water sprays alone (3.5 weeks post-
application, plants are 5 weeks old): n = 14 per treatment, W = 55, p = 0.051; 4.5 weeks post-application 
(plants are 6 weeks old): n = 12 per treatment, t = −2.26, df = 22, p = 0.034) (Figure 6). Under standard 
field conditions, neither one application of 12.5 ppm ASM solution nor one application of 25 ppm 
ASM solution affected the number of fruit produced per plot (one-way ANOVA: df = 2, F = 0.475, p = 
0.624; Figure 7A). Additionally, there were no apparent adverse effects of ASM on melon plant 
condition (ANOVA: df = 2, F = 0.063, p = 0.939) (Figure 7B) or size (ANOVA: df = 2, F = 2.131, p = 0.128) 
(Figure 7C,D) under field conditions.  

 
Figure 6. Dry weights of aboveground biomass of greenhouse-grown melon plants allowed to grow 
for a total of 5 or 6 weeks, respectively, following ASM applications. At 1.5 weeks old, all plants had 
been treated with either a foliar application of 20 mL distilled water (H2O) or 25 ppm ASM solution 
(ASM). Bars with asterisks denote groups between which there is a significant difference at p < 0.05. 
Dots represent individual data points. The lower and upper edges of boxes represent the first and 
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third quartiles, with the horizontal line inside representing the median value. Whiskers extend to the 
highest and lowest data points within 1.5× the interquartile range. Outliers beyond this range are 
represented by additional semi-transparent dots. 

 
Figure 7. (A) Melon yield per plot for each of three treatment groups included in our field experiment: 
12.5 ppm ASM 25 ppm ASM, and water control. (B) Plant condition rating (0–9 scale) per plot three 
weeks post-treatment for each of three treatment groups included in our field experiment: 12.5 ppm 
ASM 25 ppm ASM, and water control. (C) Plant size (1–10 scale) per plot three weeks post-treatment 
for each of three treatment groups included in our field experiment: 12.5 ppm ASM 25 ppm ASM, and 
water control. (D) Plant size (1–10 scale) per plot four weeks post-treatment for each of three treatment 
groups included in our field experiment: 12.5 ppm ASM 25 ppm ASM, and water control. For all 
graphs, n = 21 plots per treatment. There were no significant differences between treatments for any 
metric. Dots represent individual data points. The lower and upper edges of boxes represent the first 
and third quartiles, with the horizontal line inside representing the median value. Whiskers extend 
to the highest and lowest data points within 1.5× the interquartile range. Outliers beyond this range 
are represented by additional semi-transparent dots. 

4. Discussion 

Viruses disrupt plant hormone signaling, induce deformities in cells, and alter the production 
and movement of carbohydrates, leading to detrimental changes in foliar physiology and fruit flavor 
[32,41–46]. For example, infection by CYSDV and the related species, Cucurbit chlorotic yellows virus, 
causes interveinal leaf chlorosis typical of viruses in the genus Crinivirus, and also reduces the Brix 
values (sweetness) of melons harvested from infected plants, rendering them unmarketable [32,42]. 
Further, mosaic viruses, such as CMV, induce mottling symptoms on leaves, change leaf chemistry, 
and cause cucurbit fruits to become misshapen, discolored, and unmarketable [24,25,43,45,47,48]. 
Recent studies demonstrate that the same pathologies responsible for reductions in fruit yield and 
quality can also exacerbate virus spread by vectors [18,46,49]. Virus-induced changes in host plant 
traits, such as appearance, smell, or palatability, will alter vector foraging and feeding behavior and, 
thereby, the probability of virus transmission [46]. Models demonstrate that virus effects on vector 
preferences can lead to more rapid and extensive virus spread in monocultures when they enhance 
vector contacts and transmission-conducive feeding behaviors [50–52]. However, despite the clear 
importance of virus symptom severity as a driver of both yield losses and virus spread, strategies for 
mitigating symptoms and enhancing plant tolerance to virus infection are rarely considered as 
components of integrated disease management. 
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Our results demonstrate that reductions in symptom severity and disruption of vector attraction 
can be achieved simultaneously through immunity modification using low doses of ASM: a 
commercially available mimic of the phytohormone salicylic acid. A single application of ASM 
successfully attenuated symptoms and delayed disease progression when administered prior to virus 
exposure. Furthermore, priming of the immune system induced by ASM was effective against two 
very distantly related viruses from different families (Bromoviridae and Closteroviridae). This suggests 
that ASM may be useful in scenarios where multiple, unrelated viral pathogens are endemic to a 
production region, or where the dominant viral pathogen varies from year to year. This is the case 
for our model host in this study (melons), which are infected by complexes of phylogenetically 
distinct viruses. Under this type of virus pressure, resistance traits generated through traditional 
breeding may have limited use and low economic return relative to costs associated with the breeding 
process and resistant material. Delaying or attenuating infection may be enough to mitigate negative 
effects on yield if priming is effective against a diverse suite of virus threats.  

The nature of the attenuation we observed (delay in symptoms and initial reductions in virus 
titer) suggests that ASM priming may act to limit both virus replication and systemic spread. A 
similar study exploring ASM effects on infections by tomato spotted wilt virus (genus 
Orthotospovirus, family Tospoviridae) in flue-cured tobacco also found evidence that ASM reduces the 
speed and extent of systemic virus movement [53]. A combination of limited replication and reduced 
systemic spread was also reported for ASM-primed tomato plants challenged with a yellowing strain 
of CMV [54]. For our experiments with both CYSDV and CMV, symptoms began to reappear at the 
same level of severity following an initial delay of approximately two weeks. For CMV, we also 
observed a reversal in virus titer during the final time point (3 wpi), with ASM-treated plants having 
higher titers than untreated plants. Thus, a dose regime that includes more than one application may 
be needed to prolong virus symptom attenuation and/or titer reductions. Despite limitations, the 
attenuation observed in our study may still be sufficient to limit virus impacts if it ultimately reduces 
negative effects on fruit quality or yield. Testing this will require field experiments in areas with more 
consistent virus pressure than the location of our field study.  

Although attenuation effects were temporary, we observed that they were sufficient to disrupt 
preferential vector visitation to infected hosts for one of the target pathogens (CYSDV). In the absence 
of ASM treatment, whitefly vectors were strongly attracted to symptomatic leaves between the 3rd 
and 4th week post-inoculation when symptoms rapidly appear. ASM treatment significantly reduced 
this preference, specifically by delaying symptom expression by two weeks. Disruption of vector 
attraction during this time period could have significant effects on reducing secondary spread from 
focal infection points. Plants typically have age-related resistance to viruses. Even susceptible 
genotypes of many crops are less likely to become infected beyond certain developmental stages [55]. 
Reducing vector attraction to infected hosts, and subsequent feeding on these hosts, provides 
protection for other plants in the field by reducing the probability of exposure to viruliferous vectors. 
Since age-related resistance varies on a weekly basis, these protective effects may significantly reduce 
the number of infections in the field by delaying exposure by up to two weeks. Our results also 
suggest that ASM may diminish exposure of non-infected plants directly by changing host quality, 
as our behavioral tests indicate that ASM treatment alone also slightly reduces plant palatability and 
attractiveness to whitefly vectors. 

In contrast to results with CYSDV, for CMV, ASM pre-treatment did not significantly reduce 
aphid vector preferences for virus-infected plants relative to non-infected plants. In untreated melons 
of this variety, CMV does not enhance vector attraction, instead having slightly negative, but non-
significant effects on the initial vector choice (one hour) and subsequent vector settling (2–24 h). This 
is somewhat contrary to previous work, which found that infection by this same isolate of CMV in 
cultivated squash (Cucurbita pepo) enhances odor cues that are attractive to multiple aphid vectors, 
but reduces palatability, causing vectors to visit infected plants but disperse over subsequent time 
periods (2–24 h) [25]. A similar attract-and-repel phenotype was reported for CMV infecting Cucumis 
sativus [26]. Based on these studies, we expected to see induction of this phenotype by CMV in C. 
melo. Our observation that a virulent genotype of CMV has no effect on aphid attraction or settling in 
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melon therefore contributes to a growing body of evidence suggesting that virus effects on host 
phenotypes and vector behavior are very host-specific [18,56]. 

While we did not observe differences in vector attraction based on virus infection status, or virus 
x ASM treatment status, our results do indicate that ASM treatment alone (regardless of infection 
status) can reduce overall aphid vector visitation (1 h) and settling/feeding (2–24 h). As part of a 
separate series of experiments using electrical penetration graphing analysis (which used slightly 
different methods than those employed here), we confirmed that aphids do have difficulty feeding 
on melon plants treated with ASM; aphids spend more time searching for phloem elements and less 
time feeding on ASM-treated plants (Tables S2–S3).This is consistent with other, more in-depth 
studies of aphid resistance mechanisms in model plant systems, some of which document more rapid 
induction of salicylic acid-regulated defense genes in aphid-resistant genotypes following aphid 
attack (e.g., [57]) and reduced lifetime reproduction of aphids feeding on plants primed with ASM 
[58]. However, the feeding deterrence detected in our complementary EPG experiments was 
measured at four days post-ASM-application (vs. 3–4 weeks post-application in our free-choice 
settling bioassays) and was only evident with a slightly higher dose (75ppm) (Table S3). Thus, we 
can’t assume that the deterrence we observed in free-choice assays at 3–4 weeks post-ASM 
application is due to the same mechanisms, as we did not perform EPG experiments at this time. 
Nonetheless, we expect that both early and late aphid deterrent effects of ASM will help to reduce 
infection rates and virus spread, especially when considered alongside other benefits of ASM, such 
as reductions in virus titer. 

Despite multiple benefits of ASM priming for symptom attenuation and disruption of 
transmission-conducive vector behaviors, we also detected slight negative effects of ASM priming on 
plant growth. In the greenhouse, 25 ppm ASM treatment reduced plant size, and this effect continued 
for one to two weeks beyond the period in which we observed symptom attenuation. These effects 
are consistent with prior studies documenting growth reductions for mutants overproducing salicylic 
acid [59]. Salicylic acid causes repression of auxin-related genes and, ultimately, inhibition of auxin 
responses [60]. As auxin is the main hormone regulating plant development, it is logical to presume 
that excessive tissue levels of salicylic acid, or mimics such as ASM, could cause phenotypes similar 
to auxin-deficient or auxin-insensitive mutants. However, our complementary field study suggests 
that under standard growing conditions, ASM-induced reductions in growth do not translate into 
reduced yields. This is not unusual for transplanted melons, which have also been reported to recover 
from phytotoxic effects of herbicide exposure at the seedling stage (including stunting) under 
standard agronomic conditions [61]. It is important to note that we only tested ASM on one melon 
variety (Gold Express), a Western Shipper-type melon that is popular in most major U.S. melon 
growing regions. This variety is relatively robust, with good survival and tolerance of variation in 
field conditions. Other varieties are more sensitive, particularly those recently bred for extended shelf 
life. Therefore, implementing low doses of ASM as a tool in integrated disease management of virus 
complexes will require additional testing under field conditions that include variation in virus 
pressure, cultivar choice, and agronomic practices. Despite these limitations, our results strongly 
suggest that plant priming is a viable option for attenuating negative effects of virus infection on 
plant physiology and reducing symptoms that enhance vector attraction and virus acquisition.  
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