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Abstract: Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and
hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally,
accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus–host
range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo
and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral
strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct
geographical distributions and prevalence, which have different natural histories of infection, clinical
manifestation, and response to current antiviral agents. Here, we review various in vitro systems used
to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral
agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal
for pan-genotypic HBV research or drug development and therefore further improvement is required.
It is necessary to establish a centralized repository of HBV-related generated materials, which are
readily accessible to HBV researchers, with international collaboration toward advancement and
development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic
and/or customized activity.
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1. Introduction

Hepatitis B is an inflammatory disease of the liver caused by a partially double-stranded enveloped
hepatitis B virus (HBV). The virus persistently infects the liver resulting in end stage liver disease,
cirrhosis, and hepatocellular carcinoma. Since its discovery in the 1960s [1–5], HBV continues to
pose a serious health problem worldwide, accounting for 257 million chronically infected cases in
2015 [6], despite the existence of an effective vaccine. Approved HBV treatment regimens are restricted
to interferon and nucleos(t)ide analogues (NAs), but these drugs can only efficiently suppress viral
replication, without eliminating the virus [7–9]. Interferons, which act as immunomodulators and
interfere indirectly with HBV replication, are administered by injection and require long-term use,
which can be associated with significant side effects [10]. On the other hand, NAs suppress HBV
replication primarily by hindering the process of reverse transcription, a characteristic and crucial
step in the HBV replication cycle. A number of the earlier NAs, such as lamivudine, give rise to drug
resistance HBV strains, which can result in adverse long-term clinical effects. Therefore, to achieve
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better treatment outcomes and the ultimate elimination of the virus, there is a need for more potent
inhibitors and in vitro systems in which to test them and biomarkers to measure their effect [11].

The discovery of the sodium–taurocholate co-transporting polypeptide (NTCP) as the receptor for
HBV entry into hepatocytes has stimulated new efforts for the development of novel antiviral strategies
and newer systems to test them [12]. HBV is classified into at least nine genotypes and 35 sub-genotypes,
with distinct geographical distributions and prevalence [13–15]. These (sub)genotypes can have
different natural histories of infection, clinical manifestation, and response to antiviral agents [16].
Therefore it is important that the systems used to monitor antiviral efficacy of various agents are able
to test the response of the various (sub)genotypes in order to ensure that the antiviral modalities are
pan-genotypic (or customized if a pan-genotypic effect is not possible) and can be used in all regions of
the world, especially where HBV is endemic, such as in Africa and Asia. Here we review the various
in vitro systems that have been used to study the molecular biology of the different (sub)genotypes of
HBV and their response to antiviral agents, and we discuss their strengths and limitations.

2. Molecular Biology of Hepatitis B Virus

HBV, the prototype member of the genus Orthohepadnavirus, family Hepadnaviridae, is the smallest
DNA virus infecting humans. It has a partially double stranded 3200 base pair (bp) genome, with four
open reading frames encoding seven proteins. The four open reading frames, which are completely or
partly overlapping include: The precore/core (preC/C) for HBeAg and HBcAg (capsid protein); P for
polymerase (including reverse transcriptase); PreS1/PreS2/S for three envelope proteins (large Hepatitis
B surface: LHBs, middle Hepatitis B surface: MHBs, and small Hepatitis B surface: SHBs (HBsAg));
and X for a transcriptional trans-activator protein, x [17].

HBV binds to the NTCP, which is the viral receptor on the hepatocytes [12]. Once in the cytoplasm,
the genome is uncoated and imported into the nucleus, where the partially double stranded genome
is repaired to give rise to covalently closed circular DNA (cccDNA), which is the template for HBV
transcription by the cellular RNA polymerase II [18]. In the cytoplasm, the HBV transcripts are
translated into the structural and non-structural proteins. The pre-genomic RNA (pgRNA) together
with the viral polymerase are encapsidated into the capsid, where the RNA intermediate is reverse
transcribed into the negative strand DNA from which the plus strand is synthesized. The final stage
in the viral assembly is the envelopment of the nucleocapsid, with the viral envelope proteins, by
budding into the endoplasmic reticulum to form the mature virions, which are then released from the
cells. Alternatively, the nucleocapsid can be recycled back into the nucleus, where the relaxed circular
DNA is repaired, to maintain the reservoir of cccDNA [18]. In addition to the complete virions, HBV
expresses non-infectious filamentous and spherical sub-viral particles composed mainly of HBsAg, the
extraparticulate HBeAg, and x protein (Figure 1).
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Figure 1. A schematic representation of the replication cycle of hepatitis B virus (HBV). 
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reverse transriptase, lacks proof-reading ability. HBV has been classified phylogenetically into nine 
genotypes, A to I [13,14,19,20], based on an intergroup divergence of greater than 7.5% across the 
complete genome, with a putative 10th genotype, “J”, isolated from a single individual [21], which 
is a recombinant of genotype C and gibbon HBV [22] and clustering with sub-genotype C4 [23] in 
the S region. Genotypes A–D, F, H, and I are classified further into at least 35 sub-genotypes, having 
between a ~4% and 8% intergroup nucleotide difference across the complete genome and good 
bootstrap support [13]. The genotypes differ in genome length, the size of ORFs and the proteins 
translated [14], as well as the development of various mutations [24]. HBV has been classified into 
nine serological subtypes, ayw1, ayw2, ayw3, ayw4, ayr, adw2, adw4, adwq, adr, and adrq based on 
HBsAg heterogeneity [14]. A broad, highly statistically significant relationship exists between 
serological subtypes and genotypes: adw is associated with genotypes A, B, F, G, and H; adr with C; 
and ayw with D and E [25], but there are exceptions. The (sub)genotype of HBV can influence the 
outcome of HBV infection because it can affect the frequency of HBeAg-positivity, the age at which 
HBeAg loss occurs and the mode of transmission [26]. Therefore, the natural history of HBV 
infection can differ in different geographical regions [12,13,24,27,28] and references cited therein. 
Furthermore, the (sub)genotype can affect the response to antiviral therapy [24,27] and possibly 
vaccination [29,30]. 
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3. Genotypes/Sub-Genotypes of HBV

Sequence heterogeneity is characteristic of HBV because the viral-encoded polymerase, a reverse
transriptase, lacks proof-reading ability. HBV has been classified phylogenetically into nine genotypes,
A to I [13,14,19,20], based on an intergroup divergence of greater than 7.5% across the complete genome,
with a putative 10th genotype, “J”, isolated from a single individual [21], which is a recombinant of
genotype C and gibbon HBV [22] and clustering with sub-genotype C4 [23] in the S region. Genotypes
A–D, F, H, and I are classified further into at least 35 sub-genotypes, having between a ~4% and
8% intergroup nucleotide difference across the complete genome and good bootstrap support [13].
The genotypes differ in genome length, the size of ORFs and the proteins translated [14], as well as the
development of various mutations [24]. HBV has been classified into nine serological subtypes, ayw1,
ayw2, ayw3, ayw4, ayr, adw2, adw4, adwq, adr, and adrq based on HBsAg heterogeneity [14]. A broad,
highly statistically significant relationship exists between serological subtypes and genotypes: adw
is associated with genotypes A, B, F, G, and H; adr with C; and ayw with D and E [25], but there
are exceptions. The (sub)genotype of HBV can influence the outcome of HBV infection because it
can affect the frequency of HBeAg-positivity, the age at which HBeAg loss occurs and the mode of
transmission [26]. Therefore, the natural history of HBV infection can differ in different geographical
regions [12,13,24,27,28] and references cited therein. Furthermore, the (sub)genotype can affect the
response to antiviral therapy [24,27] and possibly vaccination [29,30].
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4. In Vitro Systems for the Study of HBV

Significant features of HBV including its narrow virus–host range and its strong tropism for
hepatocytes [31], have led to major challenges in the development of suitable in vivo and in vitro model
systems to recapitulate the in vivo human hepatocyte HBV replication cycle [32,33]. The chimpanzee
(Pan troglodytes) and the macaque (Macaca fascicularis) are the only non-human primate models for HBV
infection, whereas the tree shrew (Tupaia belangeri) is susceptible to HBV infection [33,34]. However,
these in vivo animal models have several limitations, including ethical restrictions, high costs and
large size in the case of chimpanzees [35], lack of reproducibility in the case of macaques [34,36], and
poor infection efficiency and mild and transient infection in the case of the tree shrew [37]. Although
a Mauritian macaque colony has been found to be naturally infected with HBV closely related to
genotype D [34], this infection could not be recapitulated in vitro or in vivo by others, unless the
macaque hepatocytes were transduced by NTCP [36]. A lack of a robust and reproducible in vitro
cell culture system that is capable of supporting all the steps of the HBV replication cycle, including
infection and formation of cccDNA, has also led to the hindrance of the study of the virus in terms
of the mechanisms of the early stages of virus–cell interactions, and the development of anti-HBV
drugs [38–41]. Therefore, to date, most of our understanding on how the HBV functions has come
from in vitro and in vivo studies using the duck HBV (DHBV) [42], woodchuck HBV (WHBV) [43],
and ground squirrel HBV (GSHBV) [44] models. Over the years, various in vitro cell culture systems
have been developed that have enabled the study of the molecular and genetic characteristics of HBV,
and the history of their development is depicted in Figure 2.
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The various in vitro model systems for the study of HBV have been extensively reviewed
elsewhere [32,33,40,41,45,46] and Table 1 provides a brief summary of their strengths and limitations.
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Table 1. Summary of the in vitro model systems suitable for studying hepatitis B virus (HBV).

Model System Advantages Disadvantages Studies Reference

Primary Tupaia
hepatocytes (PTH) Can be infected with HBV

Low HBV infection efficiency;
Lack of genetically uniform Tupaia

belangeri strains
High cost

Identification of the sodium
taurocholate co-transporting

polypeptide (NTCP) as the receptor
for HBV infection;

Studying cccDNA formation

[12,46–48]

A
ni

m
al

M
od

el
Sy

st
em

s

Primary hepatocytes
derived from small

animal models such as
rats and mice

Can support HBV replication;
Intact innate immune response

Cannot be infected with HBV and
requires bypassing the initial

receptor-mediated infection of the cell
by direct transfection or transduction

of the HBV DNA genome;
cccDNA is not formed in mouse cells.

Studying HBV replication from the
post-entry stages;

Studying the effects of HBV
replication and HBV proteins on

cellular physiology

[33,49–52]

Primary hepatocytes
derived from macaques
transduced with NTCP

Can support HBV infection Need to be transduced with NTCP

Macaque primary hepatocytes
transduced with NTCP were
susceptible to HBV, whereas
untransduced cells could not

be infected

[36]

Primary human
hepatocytes (PHH)

Ideal and gold standard in vitro
model system that can be

infected with HBV

Limited availability and lifespan;
Loss of hepatocyte function and

susceptibility to HBV infection within
days of isolation and culture;

Unpredictable variability between
hepatocyte donors

Studying HBV infection;
Studying innate immune response

to HBV infection;
Studying metabolism and

drug toxicity

[32,45,46,49,52–54]

H
um

an
M

od
el

Sy
st

em
s

Human fetal hepatocytes Can be infected with HBV

Limited availability;
Limited infection efficiency and

apparent absence of viral spreading;
Unpredictable variability between

hepatocyte donors;
Ethical considerations

Studying HBV infection [55,56]
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Table 1. Cont.

Model System Advantages Disadvantages Studies Reference

Transiently transfected or
transduced immortalized

tumor-derived or
transformed liver cell

lines (e.g., Huh7, HepG2)

Can support HBV replication
and transcription;

Convenient system;
Minimal variability;

Relatively cheap

Cannot be infected with HBV and
requires bypassing the initial

receptor-mediated infection of the cell
by direct transfection or transduction

of the HBV DNA genome;
Cellular signaling pathways are

significantly altered and therefore do
not recapitulate the physiology of

normal hepatocytes;
Low to minimal cell-to-cell spread;

Gene expression in tumor-derived or
transformed cell lines differs from that

in normal hepatocytes [57]

Molecular characterization of HBV;
Studying HBV replication and

regulation and comparing
replication of (sub)genotypes;

Testing efficiency of novel
anti-HBV drugs;

Drug resistance studies

[33,40,58–68]

Stably transfected
immortalized

tumor-derived or
transformed liver cell
lines, (e.g., HepaRG,
HepAD38, HepDE19,

HepG2.2.15)

Can support HBV replication
and transcription;

Good source of virions for
infection;

HepaRG cell line has
morphological and functional

features similar to that of PHHs

Cannot be infected with HBV and
requires bypassing the initial

receptor-mediated infection of the cell
by direct transfection or transduction

of the HBV DNA genome;
HBV expressed from integrated HBV
DNA genome and not cccDNA in the

case of HepG2.2.15 and AD38 cells;
Requires the addition of dimethyl

sulfoxide (DMSO) to promote
differentiation (HepaRG) and

supplementation of PEG to promote
viral entry in the case of HepaRG

Molecular characterization of HBV;
Studying virus–host interactions

Studying HBV replication
and regulation;

Testing efficiency of novel
anti-HBV drugs;

Studies addressing the role of the
innate immune response in

counteracting HBV infection;
Testing efficiency of novel

anti-HBV drugs

[40,69–82]

H
um

an
M

od
el

Sy
st

em
s

NTCP-expressing
hepatoma cell lines

Can be infected with HBV
allowing initial stages of
infection to be studied;

50% of cells can express HBV
versus only 7% in HepaRG;

Easy to handle

Requires high multiplicity of infection
and addition of PEG for

successful infection;
Infection is short-lived;

Reduced viral spread and
cccDNA levels;

Majority of studies using cell culture
derived HBV have been restricted to

genotype D.

Studying the initial stages of
HBV infection;

Testing antiviral drug efficacy,
especially entry inhibitors

[40,52,83,84]
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Table 1. Cont.

Model System Advantages Disadvantages Studies Reference

Hepatocyte-like cells
(HLCs/iHeps) derived
from pluripotent stem

cells (iPSCs)

Reliable source that can be
differentiated into mature

hepatocytes;
Supply unlimited and

renewable;
Less variable than PHHs;
Can be established from

different donors with and
without HBV infection or

liver disease

Expensive system to set up and
high degree of expertise is required;

Low hepatic function;
Unpredictable variability

between donors;
Certain signaling pathways may

be impaired;
Inhibition of the innate immune

response is required for HBV
infection

Studying the host factors essential
for HBV infection and replication;
Comparison of infection to other

in vitro models;
Testing of antiviral agents

[12,40,85–89]

Micropatterned
co-cultured cells

Maintains hepatocytic function
over weeks after plating;
Supports HBV infection;

Active innate immune response;
Renewable;

Minitiarized

Unpredictable variability between
hepatocyte donors;

Low infection efficiency and
apparent absence of viral spreading;

Inhibition of the innate immune
response is required for infection to

occur;
HBV viral particles collected from
the model system is not infectious;

Logistically and technically
challenging

Comparison of infection to other
in vitro models;

Studying drug toxicity and drug
interactions;

Testing of antiviral agents

[40,89]

H
um

an
M

od
el

Sy
st

em
s

Liver organoids from
human induced

pluripotent stem cells
(iPSCs)

Cells differentiate with strong
hepatic function;

More susceptible to HBV
infection when compared to

HLCs derived iPSCs;
Prolonged propagation of HBV

for up to 20 days;
Generation of infectious virions;

Recapitulates virus-induced
liver dysfunction

Highly sophisticated and
labor-intensive system to establish;
Some hepatic characteristics may

differ from adult hepatocytes

Studying virus–host interactions;
Has the potential to be used to

study personalized
hepatitis treatment

[90]



Viruses 2020, 12, 353 8 of 23

4.1. In Vitro Model Systems Based on Hepatoma Cells (HepG2, Huh7, HepG2.2.15, and HepAD38)

Using recombinant HBV DNA constructs carrying over-length HBV genomes, well-differentiated
human hepatic cell lines (such as HepG2, Huh6, and Huh7 derived from HCCs) have been transfected
to study mechanisms of HBV replication and morphogenesis [59,80,91]. These neoplastic immortal cells
are easier to culture and have stable enzyme concentrations when compared to primary hepatocytes.
However, they have absent or low expression levels of drug metabolizing enzymes, thus restricting
their application [92,93]. Although HBV cannot infect these cell lines most likely as a result of the
loss of cell surface receptors during de-differentiation of the hepatocyte [94], they have been widely
used and have been invaluable in the study of the various aspects of the life cycle following either:
(i) transient transfection or transduction of recombinant HBV DNA using baculoviral, adenoviral, and
lentiviral vectors for delivery; or (ii) transfection with recombinant cccDNA (rcccDNA), generated
by a minicircle-based technique. This transfection can recapitulate the expression of HBV RNAs and
proteins in Huh-7 cells [95] and (iii) the generation of stably transfected cell lines containing integrated
HBV DNA genomes [59,91,96]; or (iv) the development of stable rcccDNA-producing cell lines termed
HepG2-HBV/loxP [97]. However, these cell culture systems are unsuitable for studying HBV-host cell
infection mechanisms such as viral attachment, penetration, and uncoating of the virus and to follow
the development of hepatitis and hepatocellular carcinoma (HCC) [98,99]. The rcccDNA systems are
excellent for studying the molecular biology of cccDNA and for screening of antiviral agents, which
can silence or eliminate HBV cccDNA. Surrogate in vivo mouse models of chronic hepatitis have been
established by delivering rcccDNA to mouse hepatocytes using adenoviral vectors [100].

In 1987, the widely used HepG2.2.15 cell line generated by Sell et al. [91], which contains multiple
copies of the HBV genotype D genome, was shown to stably express HBV viral gene products. These
HepG2.2.15 cells were later used to study the occurrence of spontaneous HBV integrations in the
host genome, showing that DNA damage increases the frequency of integration. However, because
HBV viral particles produced are generated from chromosomally integrated DNA, the HepAD38
cell line, established by Ladner and colleagues expressing HBV with Tet-OFF and Tet-ON regulatory
systems was generated [74]. This was possible following co-transfection of HepG2 cells with plasmids
ptetHBV and pUHD15-1neo under the influence of a tetracycline responsive promoter. The successful
establishment of this system has permitted for an improved and more strongly controlled platform
to study HBV, as well as resulting in a more robust production of viral particles with increased
accumulation of cccDNA in the cells.

Another cell line the HepDE19, was generated containing a 1.1 mer HBV transgene mutated in its
5′ pre-core ATG leaving the 3′ pre-core ATG unchanged. Using this strategy, the expression of HBV
e-antigen (HBeAg) was now from the episomal DNA and not from the integrated DNA, thus providing
a platform for screening cccDNA-targeting drugs on a large-scale [72,101]. A “second-generation”
cccDNA reporter cell line, termed HepBHAe82 was developed where an in-frame haemagglutinin (HA)
epitope tag was introduced into the precore domain of HBeAg open reading frame in the transgene
of HepBHAe82 cells without disrupting any cis-element critical for HBV replication and HBeAg
secretion [102]. These developments have allowed for HBV production in vitro, however, their use
is limited when it comes to studying the regulation of HBV replication. This is because some carry
greater-than genome length HBV and a neomycin resistance gene. So, the quest continues to establish
stable HBV-expressing cell lines that will enable the study of the relationship between HBV and
host genes.

4.2. In Vitro Model Systems Based on Primary Human Hepatocytes (PHH)

The discovery of PHHs in 1996 as the only cells to be infected by the authentic HBV in vitro in
their fully differentiated form has long enabled in vitro studies of HBV infection in a system with
an intact host defense system [53,103]. However, in addition to their limited availability, infection
of PHHs with HBV is inefficient because these cells are only viable for a few days after culturing
even upon supplementation with dimethyl sulphoxide (DMSO) [54,103]. Also, indefinite maintenance
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in culture results in loss of liver-specific functions and de-differentiation into fibroblasts, resulting
in the impairment of HBV replication, which relies on hepatocyte nuclear factors for transcription
within these cells [41,92,94,104]. Further, heterogeneity in the quality of PHHs and the variation in
susceptibility to HBV infection results in maintenance difficulty and generation of experiments of poor
reproducibility, with great inter-experimental variation that is difficult to control [53,105].

4.3. In Vitro Model Systems Based on Differentiated Hepatoma Cell Lines (HepaRG)

In 2002, HepaRG cells, a human hepatoma cell line derived from HCC from a female with chronic
hepatitis C infection [106], was shown to be permissive to HBV infection under certain conditions and
extended culture time. This cell line contains hepatic progenitor cells that make them susceptible to
HBV/HDV infection after differentiation by the addition of DMSO and hydrocortisone [72,73,77,106].
Although HepRG can support HBV infection, cccDNA formation, and secretion of infectious viral
particles into the culture medium [72,73], it is an unsuitable system to study the complete HBV life cycle
and to evaluate antiviral compounds because of several disadvantages, which include: (i) a complex
and time consuming induction of the differentiation process prior to infection with HBV, which requires
the addition of DMSO [72]; (ii) cells exhibit heterogeneity in albumin expression and chromosomal
abnormalities [41,46]; and (iii) the activity of the number of enzymes involved in drug metabolism
varies when compared to PHHs [107,108]. These cells also allow for low to minimal cell-to-cell spread
of HBV.

4.4. In Vitro Model Systems Based on NTCP Expressing Cell Lines

The middle HBsAg of HBV initially attaches to heparan sulfate proteoglycans (HSP) on the
hepatocyte [109]. This is followed by binding of the large HbsAg to the NTCP, which is the essential
receptor for HBV infection [12]. NTCP is a sodium-bile acid pump, coded by the SLC10A1 gene, largely
expressed in liver cells and is restricted to the sinusoidal plasma membrane. The only established
susceptible cell line expressing NTCP is HepaRG. However, its heterogeneity in albumin expression
and chromosomal abnormalities do not allow the study the complete HBV life cycle and the evaluation
of antiviral compounds. Thus, DMSO-induced differentiation is required [71].

The exogenous expression of NTCP in hepatoma cell lines can render these cell lines susceptible
to HBV infection. The establishment of HepG2 and Huh7-based cell lines in which NTCP is over
expressed provides a much-needed and easily accessible platform for studying HBV. HepG2-NTCP
cells could also be used to identify chemicals targeting key steps of the virus life cycle including HBV
cccDNA, and enable the development of novel antivirals against the infection. However, although
improved techniques, such as spinoculation, during HBV inoculation and the addition of DMSO in
culture media has greatly enhanced infection efficiency of NTCP expressing cells, the system still fails
to recap the full HBV life cycle [85]. The reasons being that in contrast to in vivo, the system requires
very high multiplicity of infection (MOI), the infection is short-lived, does not result in substantial viral
spreading, and only a modest amount of cccDNA is detected. As previously reported [103,110–112],
HBV infection in cell culture systems including adult primary human hepatocytes, HepaRG hepatoma
cells, and more recently HepG2-NTCP cells, is enhanced after the addition of polyethylene glycol
8000 (PEG), which promotes the binding of HBV to HSP. Furthermore, a study by Michailidis and
coworkers, showed that maintaining PEG in cell culture medium increases infection by at least one
order of magnitude, as a result of improved viral spread [113].

4.5. In Vitro Model Systems Based on Inducible Pluripotent Stem Cell (iPSCs)

iPSCs are pluripotent reprogrammed cells derived from either adult skin or blood cells and
were first discovered by Japanese researchers following the introduction of genes necessary for the
expression of a set of transcription factors in specialized adult cells [114]. The iPSCs are capable of
self-renewal and differentiation into different body cell types, except for extra-embryonic tissue cells,
like the placenta, making them a promising cell source for regenerative therapy in several disease
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states. To limit donor variability biases and in an attempt to increase hepatocyte availability, in 2006,
hepatocyte-like cells (iHeps/HLCs) were differentiated from iPSCs [89,115], and in 2014 Shlomai and
colleagues, first established that HBV could infect iPSC-derived HLCs [89]. They showed that HBsAg
was efficiently produced in the supernatant after infection; however, the HBsAg levels gradually
dropped to background levels. In their study, Sakurai and coworkers observed an increase in HBsAg
secretion in culture supernatant up to 17 days following HBV infection in iPS-HLCs [87]. This indicated
that iPS-HLCs could support long-term HBV infection. Xia and coworkers supported this finding when
they utilized human iPS-derived HLCs as a robust and convenient in vitro model to study HBV [86].
Thus iPS-HLCs provide a promising in vitro HBV infection model and pave the way to dissect the
underlying mechanisms of HBV infection and the development of novel anti-HBV drugs.

4.6. In Vitro Model Systems Based on Micropatterned Co-Cultured Cells (MPPCs)

Using a combination of microtechnology and tissue engineering techniques, Khetani and
Bhatia [116] established a miniature-like multi-well culture system for human liver cells termed
micropatterned co-cultured (MPCC) system. The MPCC system was shown to preserve hepatocyte
functions for a prolonged period following their plating, thereby serving as a platform for drug toxicity
and drug interaction studies. In their study, Shlomai et al. [89] showed that MPCCs support productive
HBV infection and, by blocking elements of the hepatocyte innate immune response related to the
initiation of IFN-stimulated genes, HBV infectivity can be enhanced. The ability to sustain lengthy
and productive HBV infection, makes MPCCs a facile platform for studying virus–host interactions
and developing antiviral medications. Despite its advantage in HBV research in providing useful
information with respect to the activation of the innate immune response following HBV infection, the
MPCC system does not fully support the spread of infection with only minimal infection efficiency
of less than 50%. In addition, the system does not provide sustained cccDNA, pre-genomic RNA,
HBeAg as well HBsAg production, and re-infection of naïve cells with medium collected from infected
cells is not possible, suggesting that the MPCC system is not robust enough to yield highly infectious
viral particles [116]. Furthermore, it should be noted that this culture system is time consuming and
technically challenging to establish [116,117].

4.7. In Vitro Model Systems Based on Liver Organoids

Over the years, the use of human hepatoma cell lines and humanized mouse models in HBV
research has increased, but these systems remain poor in recapitulating the complex biology of
hepatocytes. Their high cost, difficulty to obtain, and impracticality in drug screening on a large scale
has led to the continued search for better cell culture models [118]. Organoid cultures have arisen
as a substitute in vitro system to mimic tissues and join the gap between 2D cultures and in vivo
mouse/human models. These liver organoids have been established for multiple species derived from
induced pluripotent stem cells, embryonic stem cells, hepatoblasts, and adult tissue-derived cells.
To some degree, liver organoid cultures recapitulate the complexity and design of the liver and may
offer new insights into host-to-organism interactions. Differentiated liver organoids maintain innate
immune responses and retain cell polarity of hepatocytes, mimicking the natural entry of HBV, thus
permitting their cell-to-cell transmission [119]. Following the establishment of a functional human
induced pluripotent stem cell liver organoid (hiPPSC-LO), recent studies show that these are a suitable
in vitro culture system to study and model HBV infections [90]. This system is an advancement in the
models for generating fundamental knowledge of HBV biology and providing a promising platform
toward screening potential new therapies and the development of customized hepatitis treatment.

Although we have come a long way, the development of the ideal in vitro system continues as
none of the systems currently available are without limitations. The ultimate in vitro model for the
study of HBV infection and its response to various antiviral agents should ideally:

• Express NTCP
• Maintain hepatocyte function and susceptibility to HBV infection indefinitely
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• Not require the addition of DMSO to maintain hepatocyte function or PEG to promote infection
• Be capable of being infected with high efficiency with multiple HBV genotypes/sub-genotypes

and variants.
• Express the host factors necessary to support HBV infection
• Have high longevity to support the complete viral life cycle
• Have an intact innate immune response
• Have functional pathways
• Be genetically homogeneous
• Recapitulate HBV infection seen in patients or in vivo systems
• Be renewable
• Be of unlimited supply
• Allow for the testing of a wide range of antiviral and immunomodulatory agents
• Be low cost
• Allow for miniaturization
• Be ethically acceptable

5. The Use of In Vitro Systems to Study Genotypes/Sub-Genotypes of HBV

Although a number of in vitro model systems have been used to study HBV, very few
have compared the different (sub)genotypes. Moreover, a panel of strains representative of each
(sub)genotype has not been established, making comparisons across studies difficult because of the
range of constructs, methods of transfection/infection/transduction, and cell lines used. It is important
to note that many earlier studies did not classify the genotype of the virus used [47,53,54,56,57]. Table 2
provides a summary of studies using either viral particles for infection and replication competent HBV
DNA, in various delivery vectors, to follow the replication of different serotypes and/or (sub)genotypes
in the different in vitro model systems.
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Table 2. Studies conducted for the various genotypes/sub-genotypes of hepatitis B virus (HBV) in different in vitro model systems.

(Sub)Genotype/Serotype of HBV Model System Based on
Different Cell Lines Source of Viral Particles Studies Reference/Year

Serotype ayw
Huh6
Huh7

HepG2
2.1 mer HBV in psV08 Comparison of HBV transfection into different

cell lines [59]/1987

Serotype adr

Huh7
Huh2.2

Primary human lens epithelial
cells (HLEC1)

2.0 mer HBV in pBR322
1.3 mer HBV in pBR322

Comparison of HBV transfection into different
cell lines [68]/1987

Seroype ayw Huh7

1.0 mer HBV without a vector
1.0 mer HBV in pro-melanin concentrating

hormone (pMCH) vector
2.0 mer HBV in pSM2 vector

Functional characterization of HBV [120]/1995

Sub-genotype D3 HepG2 1.3 mer HBV in a baculovirus vector (Bac-HBV)
pBlueBac4.5 Molecular characterization of HBV [96]/1998

Serotype ayw

Primary tupaia hepatocytes
(PTH)
Huh7

HepG2

1.3 mer in an adenovirus vector (Ad-HBV)
pTG9530

Comparison of HBV transduction/infection into
different in vitro model systems [121]/2001

Serotype ayw

PTH
Rat

Chicken
Duck

Primary human hepatocytes
(PHH)
HepG2
HEK293

1.3 mer HBV in an adenovirus vector (Ad-HBV)
pAdTrack

Comparison of infection efficiency of HBV
between different in vitro models [122]/2001

Genotype A (Serotype adw)
Genotype D (Serotype awy)

HepG2 1.0 mer HBV in pUC19 Regulation of HBV minichromosome [65]/2006
Huh7

Sub-genotype A1, A2, B1, B2
Genotypes C and D Huh7 1.24 mer HBV in pGEM-T Easy Functional characterization of HBV genotypes [123]/2006

Genotype D (Serotype ayw) HepG2 1.1 mer Bac-HBV pTriEx
1.3 mer Bac-HBV pTriEx Functional characterization of HBV [124]/2008

Genotype D (Serotype ayw) HepaRG Supernatant of 1.1 mer Bac-HBV
Supernatant of HepG2.2.15 Functional characterization of HBV [124]/2008

Genotype D (Serotype ayw3) Rat 1.2 mer HBV + 0.1 mer HBx under the control of
simian virus 40 early promoter Studying the effects of HBx on cellular physiology [125]/2009

Sub-genotype B2 HepG2 1.3 mer HBV in pUC118 vector
(Endogenous promoter) Molecular characterization of HBV mutations [126]/2009
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Table 2. Cont.

(Sub)Genotype/Serotype of HBV Model System Based on
Different Cell Lines Source of Viral Particles Studies Reference/Year

Genotypes B and D

PTH
PHH

HEK293
HEK293T

Hela
HepG2
Huh7

SMCC-7721
BEL-7404

Plasma from a chronic HBV carrier
Supernatant of 1.05 mer Ad-HBV and under the
control of the cytomegalovirus (CMV) promoter
transfected in Huh7 cells (Exogenous promoter)

Identification of NTCP as the receptor for
HBV infection [12]/2012

Sub-genotype A2,

Sub-genotype B1

Sub-genotype C2

Sub-genotype D2

Sub-genotype I1

HepG2

Testing of drug efficacy for various genotypes
of HBV

[127]/2013Huh7

1.1 mer Hybrid HBV DNA (1.0 mer sub-genotype
A2 HBV isolate + 0.1 mer Serotype adw2 HBV) in

pUC19 vector
1.1 mer Hybrid HBV DNA (1.0 mer sub-genotype
B1 + 0.1 mer serotype adw2 HBV) in pUC19 vector
1.1 mer Hybrid HBV DNA (1.0 mer sub-genotype
C2 + 0.1 mer serotype adw2 HBV) in pUC19 vector
1.1 mer Hybrid HBV DNA (1.0 mer sub-genotype
D2 + 0.1 mer serotype adw2 HBV) in pUC19 vector
1.1 mer Hybrid HBV DNA (1.0 mer sub-genotype
I1 + 0.1 mer serotype adw2 HBV) in pUC19 vector

Sub-genotype A1, A2, D3 Huh7
1.28 mer HBV DNA in pCDNA vector with
cytomegalovirus (CMV) promoter removed

(endogenous promoter)
Molecular characterization of HBV (sub)genotypes [128]/2014

Genotype A
Genotype D

Micropatterned coculture
(MPCC)

iPSCs-iHeps
Plasma from patients Comparison of infection efficiencies with different

in vitro model systems [89]/2014

Genotype B Huh7 1.3 mer HBV DNA in pBluescript KS (+) vector
(pHBV1.3B) Molecular characterization of genotype B [129]/2015

Sub-genotype A2, B2, C2, D3
Genotype J

Huh7 1.3 mer HBV DNA in pUC57 vector
(Endogenous promoter)

Molecular characterization of HBV (sub)genotypes [130]/2016
HepG2

Genotypes A, B, C, D, E, F, G, H
HepG2 1.1 mer in pCDNA-3.1 vector (Exogenous

promoter)
1.3 mer in pCDNA-3.1 vector (-CMV)

(Endogenous promoter)

Testing of drug efficacy for various genotypes
of HBV

[131]/2017HepG2-TA2-7

HepG2.117

Genotypes B and C Huh7 1.1 mer HBV DNA in pCDNA3.1 zeo (−) vector
(Exogenous promoter) Functional characterization of HBV proteins [132]/2017
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Table 2. Cont.

(Sub)Genotype/Serotype of HBV Model System Based on
Different Cell Lines Source of Viral Particles Studies Reference/Year

Genotypes B, C and D

Huh7 transfected with
replication-competent plasmids

or cccDNA
HepG.2.15 (genotype D)
HepAD38 (genotype D)

1.2 mer HBV DNA in pUC19 (pHBV-1.3B,
pHBV-1.3C) [128], genotype D and pAAV/HBV1.2

rcccDNA system, including prcccDNA and
pCMV-Cre

Examination of Staphylococcus aureus clustered
regularly interspaced short palindromic repeats
(CRISPR)-associated (Cas) system (SaCas9) on

HBV replication in transfected and stably
transfected cell lines

[133]/2018 *

Sub-genotype A1 (Serotype adw2)
Sub-genotype D2 (Serotype ayw3)
Sub-genotype D6 (Serotype ayw2)

Genotype E (Serotype ayw4)

HepG2

Molecular characterization of HBV (sub)genotypes [134]/2019Huh7 1.3 mer HBV DNA in pUC57
(Endogenous promoter)

Genotype D
HepG2

HepG2-1.5merHBV
HeptG2-1.1merHBV

1.1 mer HBV DNA
rcccDNA (+/−methylation)

Comparison of anti-HBV activity of 4 orthologous
CRISPR/Cas9 systems [135]/2019 *

Genotypes A and D iPSC derived HLCs and MPCCs
Infection with three stocks of plasma derived from
three different donors. Two stocks were genotype

D, the other genotype A

Modelling of HBV-host interactions and anti-HBV
drug testing of entecavir and interferon-β (IFN-β) [89]/2014

Genotypes C and D iPPSC derived HLCs Fiber-modified adenovirus (Ad) vector containing
genotype C (Ad-HBV: AdK7-gLuc-HBV)

Transduction of iPS-HLCs with HBV and
comparison to expression in PHHs and

HepG2-NTCP-C4 cells. Testing of antiviral agents
entecavir and myrcludex

[87]/2017

Genotypes C and D iPPSC derived HLCs Genotype D derived from the culture supernatant
of HepG2.2.15.7 cells

Infection of iPS-HLCs with HBV and comparison
to expression in PHHs and HepG2-NTCP-C4 cells.
Testing of antiviral agents entecavir and myrcludex

[87]/2017

Genotype D Liver organoids Infection with genotype D derived from
HepG2.2.15

Comparison with infection of iPSC-HLCs,
HepG2-TET-NTCP organoids, PHH [90]/2018

Shaded rows: infection studies with either patient or cell-culture derived inoculum and unshaded rows: transfection or transduction studies. * These are more recent representative studies,
used to illustrate the use of various in vitro models to test the CRISPR/Cas9 systems against various genotypes of HBV. The review by Kennedy and colleagues [136] and references cited
therein provide a comprehensive overview of the field, which is beyond the scope of the current review.
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As is evident from the above table, the majority of studies to functionally characterize the different
(sub)genotypes of HBV in vitro have been carried out on genotype D, with a single study for each of
genotypes I [19] and J [130]. The only stably transfected cell line expressing HBV and currently widely
available is Hep2.2.15 expressing genotype D and this is the most frequent source of cell-line derived
inoculum. It will be important to have cell lines expressing other (sub)genotypes generated and a
number of these are currently under development. Although genotype D is a cosmopolitan and diverse
genotype with serological subtype ayw, it differs from other genotypes by having a 33-nucleotide
deletion at the amino terminus of the pre-S1. Therefore, it is important that systems are developed that
express HBV without this deletion and with serological subtype adw (genotypes A, B, F and H) and adr
(genotype C) [13].

The genotypes and in some cases sub-genotypes of HBV have distinct geographical
distributions [13,14]. In the two regions of the world where HBV is endemic different genotypes prevail:
in Asia, genotype B and C; whereas in sub-Saharan Africa, genotypes A, D, and E. Moreover, for the
sub-genotype of A, A1 circulating in Africa is different from A2, which is prevailing outside Africa, and
they differ in molecular characteristics and natural history [137–140]. The studies carried out in one
region cannot necessarily be extrapolated to other regions. The natural history and response to various
antiviral agents can be influenced by the genetic heterogeneity of the (sub)genotypes and therefore this
should be taken into account when designing and testing various antiviral modalities. It is important to
be aware that even though in some cases the efficacy of antiviral agents may not be affected by sequence
heterogeneity, in other cases it is of utmost importance. As all the (sub)genotypes use NTCP to enter to
the hepatocyte, the efficacy of entry-inhibitors will not differ between the different (sub)genotypes.
On the other hand, sequence heterogeneity of HBV may be challenging when designing guide RNA
(gRNA) for the different CRISPR/Cas9 systems and avoiding off-target effects [135]. Thus, in some
cases antiviral agents may be pangenotypic, whereas in others the agent will have to be customized for
the (sub)genotype prevailing in a particular geographic region and/or population.

6. Knowledge Gaps and Future Prospective

Systems to transfect cells with HBV DNA and study its replication have been available for over
three decades enabling the study of processes of chronic HBV infection and the identification of
many agents that target the later stages of the HBV life cycle. These include HBV DNA transcription,
RNA stability, capsid assembly, RNaseH digestion, virion secretion, HBsAg secretion, and reverse
transcription inhibitors. Studies of HepG2-NTCP cells and other cell types that express the NTCP
transgene have led to the identification of Myrcludex B, an agent that interrupts the entry phase of
the HBV life cycle as well as other HBV entry inhibitors. Systems targeting cccDNA could facilitate
efforts to find a cure for chronic HBV infection [11]. Despite the advances made, no system is ideal
for pan-genotypic HBV research or drug development and therefore their robustness and reliability
require further improvement. With the WHO’s vision to end HBV infection by 2030, more work is
needed to develop better models that will facilitate the search for a cure for chronic HBV infection.
This can be achieved through the establishment of cell culture systems that most strictly resemble
human hepatocytes but are more convenient, less costly, limitless in supply or more readily available,
and allow more efficient amplification of infection and spread. Improved efforts to stably maintain
primary human hepatocyte culture conditions and optimization of iHep cells are of interest. This
emphasizes the need to establish a centralized repository of all HBV-related generated materials [141]
and protocols [142], which are readily accessible to HBV researchers, with international collaboration
toward the advancement and development of in vitro model systems for testing new HBV antivirals
with either pan-genotypic or (sub)genotypic activity, depending on the requirement.
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