Sample number	Sample type	Harvest location	Virus source		
S1	Field soil	Wilkin Cty., MN	Bait plants		
S2	Field soil	Wilkin Cty., MN	Bait plants		
S3	Field soil	Richland Cty., ND	Bait plants		
S4	Field soil	Gooding Cty., ID	Bait plants		
S5	Field soil	Jerome Cty., ID	Bait plants		
S6	Sugar beet root	Renville Cty., MN	Root tissue		

Table S1. Location and form of samples use in this study.

Primer name	Role	Sequence (5' – 3') ^a
MDB-2100	Alphanec P52 For	GTTTGGTATCACACCAGACCTTCAGGAAGCTCTGGAG
MDB-2101	Alphanec P30 Rev	GTTGATAGGTTCAATGAACTCTATCGCGTACTTG
MDB-1867	Satellite coat protein For	CAATACGAAATGGCAGGCTCAT
MDB-1868	Satellite coat protein Rev	ATCAAAGTAACGGACAGTACAA
MDB-2428	RNA 1 fragment 1 For	AAAAGGATCCTAATACGACTCACTATAGAAATTCGATTCTTC
MDB-2376	RNA 1 fragment 1 Rev	GTTAAATCCACTTCAACAGCAAAATTATACTTTGAAGAAG
MDB-2377	RNA 1 fragment 2 For	CTTCTTCAAAGTATAATTTTGCTGTTGAAGTGGATTTAAC
MDB-2378	RNA 1 fragment 2 Rev	TCGGAATAATGAATGATTTTAGTGTCTGGG
MDB-2379	RNA 1 fragment 3 For	CCCAGACACTAAAATCATTCATTATTCCGA
MDB-2380	RNA 1 fragment 3 Rev	TTCCGCTTAAAATATATCTGAGCCGGGGCCACACACATAC
MDB-2381	RNA 1 fragment 4 For	GTATGTGTGTGGCCCCGGCTCAGATATATTTTAAGCGGAA
MDB-2429	RNA 1 fragment 4 Rev	AAAAGGATCCAAGCTTTTTTTTTTTTTTTTTTTTTTTTT
MDB-2460	Alphanec genome For	TAATACGACTCACTATAGAGTATWCATACCAAGWATACS
MDB-2462	Alphanec genome Rev	ATCATATGGGGTGGGGCAAARCCCCTCAATCTG

Table S2. Primers used in this study.

^aRed: BamHI restriction site

Orange: T7 promoter sequence

Green: PolyA of 60 nucleotides

Figure S1. General genome organization of dominant viruses detected through RNAseq applied to sugar beet roots. Lines represent the (+)-sense RNA genomes possessing either no distinguishing terminal features, as in BBSV, or possessing 5'-cap structures (\diamondsuit) and 3'-polyA tails (**A**_n) or tRNA-like structures (*t*). ORFs (boxes) are known or suspected to encode viral activities for replication (\blacksquare), encapsidation (\blacksquare), cell-to-cell movement (\blacksquare), soilborne vector transmission (\blacksquare), virus aggressiveness (\blacksquare), and RNA silencing suppression (\square). Suppression of a stop codon (\blacksquare) to produce read-through proteins is a common theme in the expression of the genomes. Scaling bar = 1000 nucleotides (nt).

B.SatlA		TTCT TTTCTT CACCAT TCACCA TAATAAAGAAGAAGAACT ACCTTAACTCAT TGCA	56			
BySatl	в	GTATTTCT TTTCTT CACCAT TCACCATAATAAAGAAGATGAACTAACCATAACAATATTGCA	60			
Query	57	AGTTTACGCGCTAC CGACAGGTACGGGGGCGCA GTATTA CTTACGGACAGGTATCGGAGTA	116			
Sbjct	61	AGTTACGCOCTAC CGACAG GTACOG GOCGCA GTATTA CTTACG GACAGG TATCGG AGTA	120			
Query	117	GT ATATTC TTGCAA TAGTTA CGTTTA TTCGAA CGTAAA ACGTCA TATCCT TTTTAT GCTT	176			
Sbjet	121	GTATACTC TTGEAA TAGTTA CGTTTA TTGEAA CGTAAA ACGTCA TATCCT TTTTAT GCTT	180			
Query	177	TT TGTGTT CCGGCT AAATTGTTTTTG TATTAA ACTTAC AATACG AA <u>ATG</u> G CAGGCT CATC	236			
Sbjet	181	TT AGTTITICCGGCT AAATTGTTTTTGTATTAAACTTAC AATACGAA <u>ATG</u>	229			
Query	237	AT CGAAGA GOGGTC AGTITC CAATGC GTCGAG CGAAAA AGCAGG GCGAAA TGATCA GCCG	296			
Sbjet	230	CGCCGAGCAAAGAAACAGGGCGAAATGATCAGCCG	264			
Query	297	TC AACAAG TAAGGC AAATGA TCAGGA GTCATG ACTTAC ATACTC GAGAAT TGAAGA TGCG	356			
Sbjet	265	TC AACAAG TAAGAC AAATGA TCAGGA GTCATGATTTGGCGACTC GCGAAT TGAAAA TGCT	324			
Query	357	AACCTTCG TAAACA GTGGTA CTTTGT TA GCTTCT GGAGCT ATTGGA GACATT ACGA	412			
Sbjct	325	GACCTTTG TAAACG GTGGCAATCTAT CGATTA GC GGTGCC GTAGGT GGAATAACAA	380			
Query	413	CGAATATT CCGCAA GGAGAT AATGTC TCTGGA CGGACA GGGTAT CAGATA AATGTA CATT	472			
Sbjet	381	GCAACATC CAACAG GGTGAT AATGTT TCTGGA CGTACC GGGTAT CAAATA AATGTA CATT	440			
Query	473	CTATCAAGATTTGG TTTCAA GCTAGC ATGAAT GCGCTT GCCAAT GTTGAT CGTTTT CGTT	532			
Sbjet	441	CC GTCAAGATGTGGTTTCAAGCTAGTATGAAC GCGCTT GCCAAT GTTGAC CGTTTT CGTT	500			
Query	533	AC ATCTTA TITTAT GATOST CITAAT ACAGGT ACCCCGCCGGTA GTTTCA GATGTA CITG	592			
Sbjet	501	ACATTITIA TITTAT GATOST CITAAT ACAGGT ACACCA ACG GTTGCT GATGTT TTAG	560			
Query	593	AC ACTIGCT TACGTT CTCTCT GATTAC TCATAC TTTGCA CGTACGCAGAAC AGGTTC AAAT	652			
Sbjet	561	AC ACTOCC GTTGTC ATCTCT GACTAT GCGTAT TTTGCT CGTACA CAAAAC AGGTAT AAGA	620			
Query	653	TC CTTGTT GACAAGACCATT CCTATGTCAATT ACTGGT AATTCGAGAGCT GTTAAT TATG	712			
Sbjet	621	TT CTOGTT GATAAG ACAGTT CCTATG TCTATT AGOGGT AATTCT AGAGCT GTTAAT TACG	680			
Query	713	AGCATGAG TTTAAA TTTAAGAATACT GTCGTT GTCGAT TTGTTGGGGACC ACCACC AACT	772			
Sbjet	681	AGCATGAG TTTAAA TTTAAGAATACG GTTACC GTTGAT TCGTTG GGAACG ACAACG AATC	740			
Query	773	AC GOCOGT AATTCT TTCTTT TATTTG ATCATG GATGAT TTAGGT TCTAAT AATAGT ACCT	832			
Sbjet	741	AC GGACGT AATTCT TTTTAT TATTTA GTCATG GGTGAT CTAAGT GTTAACAATAGC ACTT	800			
Query	833	AT GOGGTC AGTTGT ACTGTC OGTTAC TT <u>TGAT GA</u> TTAAAAGCAT ATCTTC TTGTCC TTOG	892			
Sbjet	801	AT GOGATC AGTTGT ACTGTT COCTAC TT <u>TGAT GA</u> TTAA AAGCAT ACCTTC TTGTCC TTCG	860			
Query	893	CGCCGTTT CTCAAC ACAGCGAAGAAT GCCCTT TTTGTC TGCGCC GTTTTT AAACAC AGCA	952			
Sbjet	861	CGCCGTTT CTCAAC ACAGCGAAGAAT GCCCTT TTTGTC TGCGCCCGC CCC-	910			
Query	953	GACTTGTGCTTTCT CTCACA CAAATC CGAGAA CGTGGG TACAAC GATATG TACCAG TGCT	1012			
Sbjet 911		GOGTACT CTG CGTTGA TACCAC TGCT				
Query	1013	TA TOGATT CACTTA AATOGA ATOCTT GACATG TOGTOT AGTOGO TATCAA GATAAT TOCA	1072			
Sbjet	937	T	937			
Query	1073	AAAAACTT GATATT TGATAT AT 1094				

в

unnan	ned p	rotein p	roduct					
Sequend	e ID: Q	uery_62	507 Length: 202	Number of M	latches: 1			
Range	1: 1 to	202 Gra	ohics			Y.	Next.Malith A B	tencious. N
Score 365 bit	s(938)	Expect 9e-136	Method Compositional ma	atrix adjust.	Identities 172/202(85%)	Positives 186/202(92%	Gaps) 0/202(0%)	
BvSat1A	1	MRRAKKQ	GEMISRQQVRQMIRS	HDLATRELKM	LTEVNGGNLSISG	AVGGITSNIQQG	WV 60	
wSat1B	1	MRRAKKQ	GEMISRQQVRQMIRS	HDLHTRELKM	RTFVNGLSG	AIGDITTNIPQG	XNV 60	
wSat1A	61	SGRTGYQ	INVHSVKMWFQASMN	ALANVDRFRY	ILFYDRLNTGTPP	TVADVLDTAVVI	5DY 120	
wSat1B	61	SGRTGYQ	INVHSIKIWFQASMN	ALANVDRFRY	ILFYDRLNTGTPP	VVSDVLDTAYVL	5DY 120	
wSat1A	121	AYFARTO	NRYKILVDKTVPMSI	SGNSRAVNYE	HEFKFKNTVTVDS		YL 180	
8vSat1B	121	SYFARTQ	NREKELVDKTIPMSI	TGNSRAVNYE	HEFKFKNTVVDL	LGTTTNYGRNSFI	FYL 180	
SvSat1A	181	VMGDLSV	NNSTYAISCTVRYFD	202				
BvSat1B	181	IMDDLGS	NNSTYA+SCTVRYFD NNSTYAVSCTVRYFD	202				

Figure S2. Sequence analysis of the novel satellite virus genome discovered in sugar beet using RNAseq. (**A**) The two isoforms, present in roughly equal proportions in gel electrophoresis and abundance in the RNAseq read pool, are 72% similar at the nt level, with the size difference due to deletions in variant BvSat1B of sequence information present in BvSat1A. (**B**) An in-frame deletion in BvSat1B results in a truncated amino terminus of the predicted coat protein of this variant, lacking the first 12 residues present on the homologous protein of BvSat1A (see Figure 5B). Despite these differences, the level of similarity between the proteins of the two variants as predicted is 85% for that encoded by BvSat1A and BvSat1B.

А

Figure S3. Infection of *C. quinoa* with novel Alphanecrovirus synthetic RNA based on RNAseq genome data and detection of infecting virus by ELISA. (**A**) Expanded leaves of *C. quinoa* plants were inoculated with uncapped RNA transcribed from Clones #7 and #10. Necrotic lesions characteristic of members of the Alphanecroviruses emerged on the inoculated leaves at 5 dpi. (**B**) Infected leaves at 10 dpi produced source extracts for the detection of virus by ELISA using anti-TNV-A antiserum. Reduced levels of antigen detected in leaves inoculated with RNA from Clone-source #7 and #10, relative to that from TNV-A, may be due to differential virus accumulation between these clones and TNV-A (+chk) or to sequence variation between the novel virus and TNV-A in the CP (93% AA sequence similarity). The buffer-inoculated and healthy plant (-chk) controls provide the baseline for determining a positive reaction (positive > 3× baseline = 0.472 OD_{405}).