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Abstract: This generation faces existential threats because of the global assault of the novel Corona
virus 2019 (i.e., COVID-19). With more than thirteen million infected and nearly 600000 fatalities in
188 countries/regions, COVID-19 is the worst calamity since the World War II. These misfortunes are
traced to various reasons, including late detection of latent or asymptomatic carriers, migration, and
inadequate isolation of infected people. This makes detection, containment, and mitigation global
priorities to contain exposure via quarantine, lockdowns, work/stay at home, and social distancing
that are focused on “flattening the curve”. While medical and healthcare givers are at the frontline in
the battle against COVID-19, it is a crusade for all of humanity. Meanwhile, machine and deep learning
models have been revolutionary across numerous domains and applications whose potency have been
exploited to birth numerous state-of-the-art technologies utilised in disease detection, diagnoses, and
treatment. Despite these potentials, machine and, particularly, deep learning models are data sensitive,
because their effectiveness depends on availability and reliability of data. The unavailability of such
data hinders efforts of engineers and computer scientists to fully contribute to the ongoing assault
against COVID-19. Faced with a calamity on one side and absence of reliable data on the other, this
study presents two data-augmentation models to enhance learnability of the Convolutional Neural
Network (CNN) and the Convolutional Long Short-Term Memory (ConvLSTM)-based deep learning
models (DADLMs) and, by doing so, boost the accuracy of COVID-19 detection. Experimental
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results reveal improvement in terms of accuracy of detection, logarithmic loss, and testing time
relative to DLMs devoid of such data augmentation. Furthermore, average increases of 4% to 11% in
COVID-19 detection accuracy are reported in favour of the proposed data-augmented deep learning
models relative to the machine learning techniques. Therefore, the proposed algorithm is effective
in performing a rapid and consistent Corona virus diagnosis that is primarily aimed at assisting
clinicians in making accurate identification of the virus.

Keywords: COVID-19; Corona virus; machine learning; deep learning; CNN; LSTM networks;
image processing

1. Introduction

Corona virus disease 2019 or simply COVID-19 is a potentially severe acute respiratory infection
caused by a strain of the Sarbeco virus subgenus SARS-CoV-2 that belongs to the Coronaviridae
family [1]. It is the seventh Corona virus known to infect humans [1,2], and despite its similarity to
the Severe Acute Respiratory Syndrome (SARS) Corona viruses traced to bats, clinically, it differs from
both SARS-CoV-1 and the Middle East Respiratory Syndrome (MERS-CoV) [2]. Alarm regarding this
virus is traced to an outbreak of pneumonia of unknown cause in Wuhan City of Hubei Province in
China in December 2019. The clinical presentation is a respiratory infection with symptom severity
ranging from a mild common cold-like illness to a severe viral pneumonia leading to acute respiratory
distress syndrome that is potentially fatal [3]. Transmission of SARS to humans was traced from civet
cats (in China in 2002 [4]). The Corona virus strain that causes MERS was traced to camels (in Saudi
Arabia in 2012 [5]). Epidemiologically, there are many other known Corona virus strains that circulate
among animals without evidence of transmission to humans until now [6].

Clinically, as established via genetic sequencing, the new Corona virus is believed to be associated
with animals, because most of the initial cases were associated with the marine and animal market in
Wuhan, China [6]. This provides subsisting links to the zoonotic origin of the virus. While the potential
animal reservoir and intermediary host(s) are unknown at this point, studies suggest the new Corona
virus may have originated from a recombination between a bat Corona virus and an origin-unknown
Corona virus [7]. The virus is transmitted between humans from an infected person to another through
proximity contact without protection [8].

More recent data suggests that the virus may be airborne and have a short lifetime [9]. Therefore,
two main elements of COVID-19 transmission are respiratory and contiguity. Respiratory droplets are
generated when an infected person exhibits respiratory symptoms (for example, sneezing, coughing,
etc.), whence a person in close contact is at risk of being exposed to potentially infective respiratory
droplets [1]. These droplets may also land on surfaces, where the virus could remain viable; thus,
the infected individual and his/her immediate environment can serve as a source of transmission,
which is known as contact transmission [10].

Typical symptoms of COVID-19 include fever, cough, shortness of breath and oftentimes
the infection develops into pneumonia. It may also cause severe complications for people with
weak immunity systems, the elderly, and the people with pre-existing chronic diseases such as cancer,
diabetes, and chronic lung disease [11]. Therefore, both the World Health Organisation (WHO) and
the Centre for Disease Control (CDC) have established that early detection and containment of this
virus are necessary to efficiently curtail the spread of this pandemic [12].

Meanwhile, the potency and utility of Machine Learning (ML) methods has seen an explosion
of its use across numerous medical fields, including classification of cardiovascular diseases [13,14],
classification of diabetic retinopathy types [15], and classification of corneal patterns [16]. These
methods have shown potential in reducing medical errors, early detection or tracking of asymptomatic
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carriers as well as techniques to enhance disease treatment and provision of effective healthcare to
patients. Notwithstanding their utility, ML methods are known to have limitations related to:

• Manual extraction and selection of features.
• Poor performance when dealing with imbalanced datasets.
• Over-fitting.
• Complexity and time consumption.

For their part, DLMs, such as CNNs [17–19] and ConvLSTM [20–22], have been widely applied in
several medical fields as improvements to ML techniques. While ML techniques and DLMs may seem
instinctive candidates in our present crusade to annihilate COVID-19, the absence of reliable data to
exploit the “learnability” inherent to DLMs makes them palpable choices.

Generative adversarial networks (GANs) have emerged as the preferred technique to address
data unavailability across a wide range of learning paradigms. However, many classes of GANs are
known to experience instability during the training phase and gradient saturation [23]. Nevertheless,
it remains a veritable tool for applications that require data augmentation.

Consequently, in this study, we ameliorate data unavailability via two data augmentation
strategies. First, we employ a set of simple image transformations to distend a limited dataset by
ten folds to levels effective for learnability by the DLMs. Second, we utilise the potency of GANs for
data augmentation. Following both data augmentation steps, we utilise two deep learning models
(DLMs) (i.e., Convolutional Neural Network (CNN) and the Convolutional Long Short-Term Memory
(ConvLSTM)) in image-based detection of COVID-19.

The rest of this study is structured as follows. Section 2 presents the architecture of our CNN
and ConvLSTM algorithms as well as the data augmentation process that is discussed to enhance
the performance of the models. The experimental requirements to establish the performance of our
models as well as discussions of the outcomes are presented in Section 3.

2. Data Augmentation and Efficient Learning by DLMs

Faced with an existential threat, humanity must put its best feet forward with any and every
solution to support detection, diagnosis, and treatment of COVID-19. Meanwhile, machine and deep
learning techniques have proven potent in numerous medical techniques [13–22], and epidemiological
techniques [24,25]. This study supports engineering and computational science efforts in our collective
battle to defeat the COVID-19 scourge. In this section, we present details of two DLMs for detection of
the COVID-19 virus from medical images.

Like any ML technique or DLM, given image-based modalities, our proposed models are taught
to discriminate between negative and positive tests for COVID-19. However, absence or unreliability
of such data impedes the potency of DLMs due to absence of adequate features. This study presents
two data augmentation techniques based on simple image transformations and GANs, which has
been used in COVID-19 detection based on chest X-ray images [26]. However, in this study, both data
augmentation strategies are executed on X-ray and CT images for enhanced COVID-19 detection.

Consequently, our study presents data-augmented DLMs that despite constrains of lack of and/or
limited size of data (or unreliability) are still capable of producing accurate and efficient results. Both
data augmentation processes are followed by the use of two DLMs, i.e., CNN and ConvLSTM, for
COVID-19 status detection. These two DLMs consist of the phases enumerated in the sequel, which
make our data-augmented deep learning models introduced in subsequent subsections.

Data pre-processing phase. This phase enhances the size and quality of the available dataset.
Technically, in our case, this entails distending the deficient dataset into a capacious one. This is
accomplished via the use of different transformations, such as scaling, rotation and flipping on
the available images. In this manner, each image can produce new ones, each with valuable information
to support latter stages of our DLM architecture. As a first step, all images are uniformly resized to
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generate tensors that represent a generalisation of matrices and vectors that can be used for further
feature extraction.

Feature extraction phase. In this phase, various features to support the learning process of
the proposed machine and deep learning models are determined and extracted. The large pool of images
emanating from the pre-processing phase provides an abundance of learnable features, which feed
the classifier. Considering its central role, this phase is critical to the success of the proposed technique.
As outlined in the introductory comments of this study, the proposed CNN and the ConvLSTM-based
DLMs consist of five convolutional layers and one convolutional layer, respectively, each followed by
Max. pooling operations. These architectures support the needed learning to discern the COVID-19
status of the given input image.

Classification phase. The classifier uses feature sequences emanating from the feature extraction
to represent the input data. Consequently, there is no positive and negative cases needed for further
transformations since the generated feature maps are one-dimensional. As a result, the Global Average
Pooling (GAP) is used in both proposed DLMs.

2.1. Data Augmentation Process Based on Image Transformations

Our first data augmentation strategy involves the use of facile image transformations (scaling,
rotation (using different angles) and flipping operations) to proliferate the dataset. In this study, each
image is augmented into 10 images via 90-, 80-, and 270-degree rotations, resizing using 0.25, 0.5, 2,
3, 4, and 5 scaling factors and flipping. Consequently, the hitherto limited dataset of 50 images (25
for both COVID-19 negative and positive outcomes) distends into 500 images. Furthermore, each
image is converted into a tensor, which is an important step in its subsequent use in both (i.e., CNN
and ConvLSTM) DLMs. Figure 1 presents the architecture and data flow for the proposed technique.
As seen therein, input images are propagated to provide the needed learning required by the DLMs.
The simplicity of this approach as well as the integration of data augmentation into the DLMs motivates
the naming (DADLM) for these data-augmented DLMs.
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Figure 1. Architecture showing data flow in the proposed image transformation deep learning models
(DLMs).

As mentioned earlier, both of the proposed DADLMs (i.e., CNN DADLM and ConvLSTM DADLM)
are also implemented on two sets of data consisting X-ray and CT images pre-labelled as COVID-19
positive and negative. The first dataset comprises 56 X-ray images equally divided and pre-labelled as
COVID-19 positive and negative classes that are distended 10 folds to realise 2880 COVID-19 positive
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(i.e., infected) and the same number of negative (i.e., normal) images. Figure 2 presents samples of
images from the two datasets.Viruses 2020, 12, x FOR PEER REVIEW 5 of 29 
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pre-labelled COVID-19 Positive and Normal CT images.

2.2. Convolutional GAN

Given a training set, the generative adversarial network (GAN) facilitates learning to generate new
data with the same statistics as the training set [29]. Since their emergence in 2014, GANs have emerged
as the preferred technique to ameliorate data unavailability with applications across wide-ranging
learning paradigms be it semi-supervised, supervised or reinforcement [30].

Traditionally, a GAN model consists of two stages: generator and discriminator. The generator
network generates feature maps from the input images, while the discriminator reconstructs these
feature maps and discriminates between the real and generated images using a classification layer [25].
Since the objective is to generate images rather than to obtain a decision, unlike standard use of
GANs, our study limits its use to the data augmentation process by precluding the need for its use in
classification. Specifically, our study uses a convolutional GAN (i.e., CGAN), which exacerbates many
of the difficulties plaguing GAN training, including instability and gradient saturation [30].

In CGAN, the generator phase consists of five convolutional transpose layers (Conv2D
Transpose)-Conv1, Conv2, Conv3, Conv4 and Conv5, each consisting of 8, 4, 2, 1, and 1 filter,
respectively. The input images are first enrolled into a denoising fully connected layer that is
primed at a size of 8 × 8 × 64, following which a sequence of Conv2D Transpose layers and batch
normalisation (BN) layers are applied to generate a feature map of the input images. At the other end,
in the discriminator phase, five convolutional layers (Conv2D), Conv1, Conv2, Conv3, Conv4, and
Conv5 each consisting of 64, 2, 4, 8, and 1 filter, respectively, are used to generate a feature map that is
enrolled into a sequence of Conv2D and BN layers required to reconstruct the original image. Finally,
a denoising fully connected layer is applied on the reconstructed image. Figure 3 outlines the CGAN
data augmentation.
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Figure 3. Outline of data flow convolutional generative adversarial network (CGAN) data augmentation.

Following the CGAN data augmentation, the two DLMs (i.e., CNN and ConvLSTM) are used
to facilitate discrimination of the COVID-19 status of an input modality. The integration of CGAN
data augmentation into the DLMs motivates the naming CGAN DADLM. Specifically, this study
proposes CNN CGAN DADLM and ConvLSTM CGAN DADLM for the CNN and ConvLSTM DLMs,
respectively. Technical details of the two DLMs are highlighted in the next subsection.

2.3. Technical Specifications of DLMs

2.3.1. ConvLSTM

The Long Short-Term Memory (LSTM) is a special class of the artificial Recurrent Neural Networks
(RNNs) and, as with the standard RNN structure, it is proven to be stable and reliable for long-range
dependencies and applications in various studies [31]. A drawback of this structure, however, is
the redundancy for spatial data. Convoluted LSTM (i.e., ConvLSTM) is used to overcome this problem.
Structurally, it replaces the fully connected layers in the LSTM with convolutional layers. If states
are viewed as they would in the hidden representations of moving objects, the larger transitional
kernel of ConvLSTM should be capable of capturing faster motions, as depicted in Figure 4. To ensure
that the states have the same dimensions as their inputs, padding is undertaken prior to applying
the convolution operation. All states are initialised to zero before the first input, which corresponds
to the so-called “total ignorance” of the future [32–34]. The ConvLSTM has the ability to encode
the spatio-temporal information in its memory cell. Equations (1) to (5) formalise the mathematical
rigours of the ConvLSTM.

it = σ(WxiXt + WhiHt−1 + Wci ◦ Ct−1 + bi) (1)

ft = σ
(
Wx f Xt + Wh f Ht−1 + Wc f ◦ Ct−1 + b f

)
(2)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt + WhcHt−1 + bc) (3)

ot = σ(WxoXt + WhoHt−1 + Wco ◦ Ct + bo) (4)

Ht = ot ◦ tanh(Ct) (5)

where it is the input gate, Ct−1 is the status at the previous cell, ft is the forget gate, Ht is the final
state of the latest state Ct, ot is the output gate, and ◦ is the Hadamard product.
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Figure 4. Architecture of the Convolutional Long Short-Term Memory (ConvLSTM).

The above architecture (i.e., Figure 4) elucidates previous assertions regarding use of the larger
transitional kernel of the ConvLSTM to capture slight variations. Further, as already mentioned, to
ensure that the states have the same dimensions as their inputs, they are padded before applying
the convolution operation, and subsequently, all states are initialised as zero.

2.3.2. The Convolutional Layer

The convolutional layer is the second type of feature extraction tools deployed in the proposed
DLMs. The convolutional layer is used to extract the feature map from the input images by applying
two-dimensional digital filters. The weights of these digital filters are set randomly in order to transform
the input image into its feature map as illustrated in Figure 5. The DLM contains the hierarchical
layout of feature maps generated from each layer. Consequently, the new value of a certain pixel can
be calculated as:

pnew =
∑
i∈s

pi·wi (6)
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In addition, an activation function is required in order to evaluate the final output of each layer.
Our model is executed using the ReLU activation function, whose output can be obtained in the form
presented in (7).

f (x) = max(0, x) (7)
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2.3.3. Pooling Layer

The pooling layer is the third kind of feature extraction tools deployed in the proposed DLMs.
Each convolutional layer is followed by a pooling layer that serves to reduce the size of the feature
map resulting from the convolutional layer. There are two main types of pooling processes, Max.
pooling and Avg. pooling. In Max. pooling, the maximum value of each window is selected, while
in Avg. pooling, the mean value of the window is selected. Figure 6 illustrates the Max. and Avg.
pooling operations.
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Figure 6. Illustration of Max. and Avg. pooling used in deep learning models (DLMs).

2.4. Classification Network

The classification network consists of two layers. The first layer is the fully connected layer, which
is required to convert the feature map generated by the feature extraction layers into a feature vector
that subsequently serves as an input of the classification layer. The second layer is the classification that
is carried out by deploying a dense layer with a SoftMax activation function. The output probability of
this layer can be obtained as presented in (8).

P(y = j |x ) =
exTw j∑K

k=1 exTwk
(8)

2.5. Network Training

Like in [29], for network training, we use the Adaptive Moment Estimation (ADAM) optimiser [35],
which has a cross-entropy loss function defined as:

V( f (x), t) = −t.ln( f (x)) − (1− t) ln(1− f (x)) (9)

where the alternative label convention (t) = (1 + y)/2, and t ∈ {0, 1} is used.
The cross-entropy loss function compares each element in the vector containing the standard

values after converting it into one-hot encoding and the corresponding element in the vector containing
the probability values that come out of the SoftMax function. The closer the two values are, the closer
the result will be to zero if there is a match between the labels prediction and standard in the training
data. The more the training is conducted in the correct direction, the more the closeness between
the expected value and the standard value and, therefore, the less error expected. This process is
ubiquitous in modern deep neural networks.

The feature extraction stage of the proposed algorithm is performed with a series of a ConvLSTM
layer and three Convolutional (CNV) layers, each followed by a Max. pooling layer. Subsequent to
these layers, a global average pooling (GAP) acts on the fully connected layer. Finally, a dense layer
with size of two classes (i.e., positive (normal) and negative (infected)) is utilised for the classification
decision in the classification phase. The CNV layers act as feature extractors, where each CNV layer
applies its specific number of filters and produces its feature maps. Beginning with the feature maps
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produced from the first CNV layer, the subsequent Max. pooling layer produces resized pooled
feature map that acts as input to the next CNV layers. The final pooled feature maps of the last Max.
pooling layer are rearranged as vectors and inserted into the GAP layer. Figure 7a,b presents a visual
representation of technical specifications of the proposed DLMs.
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3. Experimental Validation

This section presents experiments and performance analysis to validate the efficiency of
the proposed techniques for COVID-19 detection. We present the technical specifications of the proposed
DLMs, the metrics used to evaluate them as well as the outcomes and discussions about their
performance. The simulation experiments are carried out using Python 3.5 programming language.
The proposed DLMs are built using Keras deep learning library, while both SVM and k-NN are executed
using scikit-learn, while the simulation experiments are implemented via GPU interfaces.

3.1. Evaluation Metrics

Our study is primarily focused on estimating the efficiency of the two proposed data-augmented
DLMs, i.e., using both the simple image transformations and CGAN data augmentation strategies (i.e.,
DADLM and CGAN DADLM), in discriminating between COVID-19 status (positive and negative
cases) of the given images. Therefore, accuracy-based metrics to assess efficiency in terms of accuracy
of detection, logarithmic loss, and testing time will be used. These metrics are defined in the remainder
of this subsection.

3.1.1. Accuracy of Detection (ACCD)

Accuracy of detection (ACCD) is given by Equation (10):

ACCD = ◦ ◦ =
TN + TP

TP + FP + TN + FN
× 100 (10)

where TP, FN, TN and FP represent true positives, false negatives, true negatives, and false
positives, respectively.

3.1.2. Logarithmic Loss

The logarithmic loss (Log Loss) is utilised with multiple class classifications. It provides an
assessment of false classifications in the dataset. Given N samples belonging to M classes, the log loss
is computed using (11) [36].

LogLoss =
−1
N

N∑
a=1

M∑
b=1

Zab × log(pab) (11)

where Zab indicates if the sample belongs to class a or b or not and pab denotes the probability that
sample (a) belongs to class (b). Log loss values closer to zero indicate a higher level of accuracy.

3.1.3. Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) curve is utilised as another evaluation metric to
provide an accurate visualisation of the simulation results. Within a ROC curve, the TP rate (sensitivity)
is represented as a function of the FP rate (specificity) at distinct cut-off points [37]. Every point on
the ROC curve illustrates a sensitivity/specificity pair congruent to a specific decision threshold. A
test with good discrimination (i.e., no overlap in the two distributions) implies that the ROC curve
passes through the upper left corner (i.e., 100% sensitivity, and 100% specificity). Therefore, the nearer
the ROC curve to the upper left corner is, the higher the overall accuracy of the test. The accuracy of
the proposed technique is indicated by the area under the curve under the ROC curve (AROC). Both
the high and low performance are visualised in the ROC curves in Figure 8.
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3.1.4. Testing the Execution Time

The Test Execution Time (TET) is a metric to represent the mean time taken to test the input images
for (k) rounds of the testing operation.

3.2. Simulation Results

Our experiments are designed to assess the impact of data augmentation on the accuracy of
COVID-19 detection. Therefore, execution is carried out via a cohort of two experiments: one with
prior data augmentation and the other without it. The former implies direct use of machine learning
techniques and deep learning models for the detection.

In this study, Support Vector Machines (SVMs) and k-nearest neighbour (k-NN) machine learning
techniques are employed as machine learning (ML) techniques. The SVM is implemented with a search
grid using a sigmoid gamma function kernel for training, while the k-NN is implemented with number
of neighbours of five and uniformly weighted functions for training [38]. There are several techniques
for k-NN, such as KD-tree [39], fast library for approximate nearest neighbours (FLANN) [40], cover
tree [41], and semi-convex hull tree [42]. However, this study implements k-NN using the brute-force,
because of its competitive performance prior to neighbour search for small data samples. This
consideration is important for our application since the COVID-19 image datasets are quite small (i.e.,
without augmentation). Furthermore, our choice is reinforced by the fact that brute-force k-NN exhibit
high performance as presented in several image processing applications [34,42,43].

In the second set of experiments devoid of data augmentation, we assess the performance of
CNN and and ConvLSTM DLMs in COVID-19 detection. The DLMs are carried out on a huge training
data in order to construct a sufficient feature hierarchy that represents the input data. A small input
data cannot satisfy this priority. Therefore, data augmentation is needed to obtain a sufficient amount
of the input data in order to construct a satisfactory feature map. Consequently, data augmentation
is important for the learnability of the DLMs, which in turn influences optimum classification and
performance in COVID-19 detection.

The second cohort of our experiments assesses the impact of prior data augmentation on
the performance of the DLMs. Further, as outlined in the previous section, the proposed DLMs are
implemented for detection of COVID-19. First, data augmentation is performed on the input data in
order to generate a sufficient amount of data. Subsequently, both proposed CNN and ConvLSTM
are used to construct feature maps, after which a GAP layer handles the feature map resulting from
the feature extraction and converts it into a feature vector that is fed into the classification layer. Finally,
classification is carried out using a dense layer with a SoftMax activation function. The main objective is
to build such a DLM that constructs a sufficient feature map hierarchy using both CNN and ConvLSTM.
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Therefore, an optimum DLM based on CNN or ConvLSTM is evaluated by its performance prior to
classification of the desired categories.

In their training phase, the proposed DLMs are assessed using k-fold cross validation, whereby
the learning process is repeated k times to attain the diversity required to validate the learning process.
To accomplish this task, the data set is randomly divided into k groups (or folds) of approximately
equal size. The k − 1 groups are subsequently used to train the DLMs, whilst the remaining groups
are utilised in validating the training. Both the training and validation groups are shifted through
k rounds.

In our experiments, k =10 folds are used, which implies that 90 and 10 percent of the dataset are
used in the training and testing over 10 rounds. Furthermore, in each round, ten percent of the testing
images are crossed over to the next ten percent. While Figure 9 presents an overview of this data
fragmentation pipeline, subsequent subsections present the use of this data fragmentation in the two
proposed experimental scenarios as explained earlier.
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3.2.1. COVID-19 Detection Based on Traditional Machine Learning Techniques

This study also analyses the impact or performance of traditional machine learning techniques
for the detection of COVID-19. Both SVM and k-NN algorithms are selected based on their high
performance in pre-classification tasks and applications in disease diagnosis. Both the SVM and k-NN
algorithms are executed on the same dataset reported earlier, i.e., X-ray and CT images. Figure 10a,b
presents the confusion matrix and ROC curve, respectively, for the SVM technique. As deduced from
these curves, accuracy of the SVM technique is 88%. Similarly, Figure 11a,b presents confusion matrix
and ROC curve for the k-NN algorithm, wherefrom an accuracy of 85% is deduced.

In the remainder of this section, performance evaluation and discussions on outcomes based on
the use of DLMs without prior data augmentation are reported as Scenario 1, while Scenario 2 reports
the performance based on prior data augmentation followed by the use of the CNN and ConvLSTM
DLMs for the two datasets (i.e., X-ray and CT images) used. Finally, we report the performance of
the DLMs using CGAN for data augmentation.
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3.2.2. Scenario 1: DLMs without Data Augmentation

This experimental scenario typifies the execution of DLMs when challenged with unavailable
and/or unreliable data. Its execution provides a basis to assess tenability of the proposed data
augmentation process. In other words, Scenario 1 is designed to establish the importance of efficient
learning in the performance of DLMs.

The simulation of this experimental scenario is undertaken using 150 epochs on the input data,
which itself is segmented into batches each comprising 10 images. This choice is selected after several
trial and error iterations. Figure 12a and b present the outcomes of Scenario 1 for the CNN and
ConvLSTM DLMs, respectively. The training and validation curves indicate unstable and precipitated
variability. The instability exhibited in these curves illustrates the impact of scarcity (or inadequacy)
of input data, which leads to an unstable performance of the DLMs. Additionally, the training and
validation curves show an oscillation between 60% and 80% for the proposed CNN-based DLM, while
it decreases from 80% to 40% in the ConvLSTM DLM. Furthermore, the loss function for the CNN and
ConvLSTM DLMs are presented in Figure 13a and b, respectively. These curves display non-smooth but
degrading variations through both the training and validation stages. Moreover, few spikes indicate
over-fitting through both the training and validation phases and reveal instability. The precipitated
oscillations indicate the impact of the absence of data augmentation in the training process.
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Figure 14a,b presents the confusion matrices for the True Positive Rate (TPR) and True Negative
Rate (TNR), False Positive Rate (FPR) and False Negative Rate (FNR) classification for the CNN and
ConLSTM DLMs, respectively. The TPR represents the success of predicting a COVID-19 image truly
as a COVID-19 positive image, while FPR represents the failure of this case and of predicting it as
a normal image. On the other hand, the TNR represents the success of predicting a normal image
as a COVID-19 negative (i.e., Normal), while FNR presents the failure of this and predicting it as
a COVID-19 positive image.Viruses 2020, 12, x FOR PEER REVIEW 16 of 29 
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Finally, Figure 15a,b presents the ROC curves for the CNN and ConvLSTM DLMs based on
experimental Scenario 1. Despite the unstable nature of the training and validation states described
earlier, these curves reveal appreciable performance in accuracy as high as 91% for the CNN and
ConvLSTM DLMs without prior data augmentation. Nevertheless, this outcome does not meet
the thresholds expected for such applications. Moreover, the learning process is predicated on a slender
dataset. Table 1 presents the values of accuracy and loss at different iterations for both CNN and
ConvLSTM DLMs.
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Table 1. Accuracy and logarithmic loss for different iterations for CNN and ConvLSTM DMLs.

Epochs CNN ConvLSTM

Accuracy Loss Accuracy Loss

10 72 2.623 65.3 1.9612
20 79 1.664 67.8 2.463
30 79.33 1.5187 79.3 1.159
40 73.4 2.919 73.5 2.205
50 0.553 87.5 87.5 0.553
60 74.4 3.035 75.2 1.396
70 87.2 0.9277 78.5 0.997
80 69.7 3.559 72 2.807
90 72.3 2.779 72.3 2.479

100 82.5 1.639 82.5 1.639
110 73.9 3.366 72.8 3.126
120 76.5 2.563 76.5 2.563
130 77.5 2.289 87.5 1.047
140 81 1.958 89 0.992
150 91 0.559 91 0.541

3.2.3. Scenario 2: DLMs with Prior Data Augmentation Using Image Transformations (DADLM)

In the second experimental scenario, we assess the impact of infusing a prior pixel-based
image transformation data argumentation technique to precede execution of both DLMs (i.e., CNN
and ConvLSTM). Here, simple image operations including rotation, scaling, blurring, and flipping
transforms are utilised for data augmentation.

Figure 16a,b presents the accuracy for both the CNN- and ConvLSTM-based DLMs with data
augmentation. As seen from these outcomes, contrary to Scenario 1, the curves exhibit some stability.
Furthermore, we note that the accuracy oscillates in the range of 80% to 99% and 60% to 99% for
the CNN- and ConvLSTM-based DLMs, respectively. Additionally, contrary to Scenario 1, little or no
variations are visible in the training set curves. Generally, training and validation can be easily tracked,
which makes the performance reliable.
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Figure 16. Outcomes for CNN1 DADLM with prior data augmentation for the first dataset showing (a)
Accuracy and (b) Logarithmic loss.

Figure 17a,b presents the loss curves for the two models with data augmentation. Much like
the accuracy analysis, we see that, unlike Scenario 1, despite the degradations during training epochs,
the curves exhibit less variations. The loss curve for the CNN-based DLM is degraded from 3 to
0.25, while that of the ConvLSTM-based DLM appears relatively complicated, because the original
data contains a subset of the images used for training. This is an indicator that, although the data
augmentation is performed, the provided features from the data are not sufficient for superior training.
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Figure 18a,b presents the confusion matrices for the two models based on the second experimental
scenario. Similarly, Figure 19a,b presents the ROC curves for the two DLMs. Therefore, we deduce
accuracies of 99% and 95% for the CNN-based and ConvLSTM-based DLMs, respectively. Compared
with the accuracy obtained in Scenario 1, both models show better efficiency. Furthermore, the outcome
validates earlier claims regarding the impact of prior data augmentation as the trio of accuracy,
logarithmic loss, and ROC metrics show marked improvements relative to those reported in Scenario 1.
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Figure 19. Outcomes for ConvLSTM1 DADLM with prior data augmentation for the first dataset
showing (a) Confusion matrix and (b) ROC curve.

3.2.4. Analysis of the Impact of the Proposed DADLM on the Second Dataset

Figure 20a,b presents the accuracy of the proposed DLMs on a dataset demarcated into two
categories, each of comprising of 288 images for COVID-19 positive (i.e., infected) and negative (i.e.,
normal) classifications. Much like previous implementations of the DADLM data augmentation,
the image transformations described in Section 2 are used to proliferate these sub-datasets by 10 folds,
i.e., to 2880 images in each category. However, in contrast to the outcomes reported for the first dataset,
the curves presented (i.e., Figure 20) are quite stable. The accuracy curve oscillates in the range from
80% to 99% for the CNN-based DADLM (i.e., CNN2 DADLM). On the other hand, it oscillates between
60% and 99% for the validation, i.e., testing, curves for the ConvLSTM DADLM (i.e., ConvLSTM2

DADLM). Similarly, marginal variations are observed for the training set. Therefore, it can be surmised
that the tracking of the training and validation is reliable since stability is observed in both curves.
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DADLM and (b) ConvLSTM2 DADLM.

Figure 21a,b presents the logarithmic loss curves for the second dataset. Therefrom, we can
deduce that the curves exhibit less variations than those of the previous dataset with the logarithmic
loss values degrading during the training epochs. The logarithmic loss curve for the CNN2 DADLM
degrades from 0.5 to zero, while that for the ConvLSTM2 DADLM (i.e., in Figure 21b) presents a more
complicated outcome.
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The confusion matrices and ROC curves reported in Figures 22 and 23 present the performance of
the proposed CNN and ConvLSTM DADLMs based on the second dataset, i.e., CNN2 and ConLSTM2.
Specifically, from Figure 23a,b, we see that both DADLMs have accuracy reaching 99%. These outcomes
are better than those reported for Scenarios 1 and 2 using the previous dataset. Furthermore, unlike
the results reported for the first dataset, here, the curves support the deduction that both the training and
validation tests are more stable and reliable. The stability is traced to the distended dataset size arising
from our proposed data augmentation. These findings validate the earlier claims regarding the impact
of data augmentation on enhancing the accuracy of image-based detection of COVID-19. Additionally,
Figures 24 and 25 present the confusion matrices and ROC curves for the CNN2 and ConvLSTM2
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3.2.5. DLMs with Prior Data Augmentation Based on CGAN (CGAN DADLM)

This section presents an analysis of the performance of the proposed DLMs with data augmentation
using the convolutional generative adversarial network (CGAN) introduced earlier in Section 2.
The proposed DLMs with CGAN data augmentation are implemented on both datasets, i.e., the X-ray
and CT images. Like its previous use, throughout the experiments reported, subscripts 1 and 2 will be
used to denote use of the X-ray and CT images, respectively.

First, the proposed modalities are performed on X-ray images whose results for training and
validation phases along the epochs (100 epoch) of the proposed CNN model with GAN data
augmentation (i.e., CNN1 CGAN DADLM) are presented in the curves in Figure 24a and b, respectively.
Similarly, Figure 25a and b present the curves for accuracy and logarithmic loss for both training and
validation phases of the proposed ConvLSTM with GAN data augmentation (i.e., ConvLSTM1 CGAN
DADLM). In addition, Figure 26 presents the confusion matrix and ROC curve for the proposed CNN1

CGAN DADLM, while Figure 27 presents similar confusion matrix and ROC curve for the proposed
ConvLSTM1 CGAN DADLM. From these results, we see that the proposed CNN1 CGAN DLM records
a testing accuracy of 99%, while the proposed ConvLSTM1 CGAN DADLM achieved an accuracy
of 96%.
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Figure 27. Outcomes for ConvLSTM1 CGAN DADLM with prior data augmentation for the first
dataset showing (a) Confusion matrix and (b) ROC curve.

Furthermore, the proposed CGAN DADLMs are implemented on our second datasets, i.e., the CT
images. Figure 28a,b presents curves for training and validation phases of the proposed CNN2 CGAN
DADLM, while Figure 29a,b presents similar curves for accuracy and logarithmic loss for both training
and validation phases for the proposed ConvLSTM2 CGAN DADLM. Additionally, Figure 30 presents
confusion matrix and ROC curve for the proposed CNN2 CGAN DADLM, while Figure 31 presents
the confusion matrix and ROC curve for the proposed ConvLSTM2 CGAN DADLM. From these
results, we deduce that the proposed CNN2 CGAN DADLM records a testing accuracy of 83%, while
an accuracy of 81% is reported for the proposed ConvLSTM2 CGAN DADLM.Viruses 2020, 12, x FOR PEER REVIEW 21 of 29 
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dataset showing (a) Accuracy and (b) Logarithmic loss.
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the second dataset showing (a) Confusion matrix and (b) ROC curve.

4. Discussion

Given a limited dataset, the experiments reported in the preceding section sought to assess
the impact of data augmentation on image-based detection of COVID-19 as an important step to assist
doctors and other specialists in making conclusive diagnosis regarding COVID-19 status of patients.

Based on this objective, the experiments involved performance analysis along two broad
boundaries, i.e., presence and absence of data augmentation. Furthermore, this analysis was predicated
on the type of learning strategy employed, i.e., whether machine or deep learning. In addition, two
algorithmic frameworks were used to perpetuate both learning strategies, i.e., support vector machine
(SVM) and k-nearest neighbour (k-NN) for the machine learning (ML) techniques and convolutional
neural networks (CNN) and convolutional long short-term memory (ConvLSTM) for the deep learning
models (DLMs). Further, these learning strategies are implemented on two datasets comprising X-ray
and computed tomography (CT) images.
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The flow of the experiments reported was to transition from analysis without data augmentation
starting with ML techniques and subsequently to implementation of DLMs with prior data
augmentation. Data augmentation is accomplished via two strategies. First, a simple set of image
transformations were used to distend the size of the two datasets. Second, the more advanced
convolutional generative adversarial network (CGAN) was used to proliferate the two datasets.

For a fair and objective performance assessment, the CGAN data augmentation binary metrics
specified in [29], which include sensitivity (s), specificity (T), positive predictive value (i.e., PPV or True
Positive (TP)), negative predictive value (i.e., NPV or True Negative (TN)), Accuracy (A), F1-score (F),
which is the harmonic mean of precision and sensitivity, and Matthews correlation coefficient (MCC)),
are used to evaluate our proposed DADLMs. These metrics are presented in the binary quality metrics
equation matrix in Figure 32. As deduced from that figure, both MCC and Accuracy (A) take into
consideration the TP, FP, TN and FN, whereas MCC is generally regarded as a balanced measure that
can be used even if classes are of different sizes [44], Accuracy takes into account the number of sets
applied in the five-fold and the number of classes, i.e., M and N.
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Table 2 presents a summary of outcomes of six out of the seven binary quality metrics for our
models (i.e., excluding the detection accuracy, which is reported and discussed separately). From
these results, we see (best four entries for each metric highlighted in bold) that the two proposed
data-augmented models, i.e., DADLM and CGAN DADLM outperform all the other methods. Further,
between them, the image-based transformations data-augmented DLM, i.e., DADLM, performs better
with the CT images while the CGAN data-augmented DLM, i.e., CGAN DADLM, presents better
performance with the X-ray images used in the experiments reported. In a head to head comparison
for the X-ray images in the first dataset, we see that although both CNN1 DADLM and CNN1 CGAN
DADLM presented similar results across all six metrics, the CNN1 DADLM has a slight edge. Similarly,
for the CT images in the second dataset, head to head evaluation shows that the CNN2 DADLM presents
the best performance in terms of specificity, PPV, and MCC. Hence, for both datasets, the image-based
transformation focused data augmentation DLM edges out all the other models. Metrics such as those
presented here provide the conclusions regarding image-based contributions to support doctors and
other specialists in making efficient diagnosis of COVID-19.
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Table 2. Outcomes of binary classification quality metrics for proposed DADLMs and traditional ML
techniques (all results expressed as percentages).

Model Sensitivity Specificity PPV NPV F1-Score MCC

CNN1 DLM 98.7 83.6 85.7 98.5 91.7 83.2
ConvLSTM1 DLM 98.4 83.3 85.7 98.0 91.6 82.7
CNN1 DADLM 99.7 98.7 98.7 99.7 99.0 98.4
ConvLSTM1 DADLM 100 90.1 91.0 100 95.3 90.6
CNN2 DADLM 99.7 98.7 98.7 99.7 99.0 98.4
ConvLSTM2 DADLM 99.6 98.6 98.6 99.6 99.0 98.1
SVM 95.5 80.7 83.1 94.7 88.8 76.9
k-NN 95.5 74.3 79.5 94.0 86.7 71.6
CNN1 CGAN DADLM 100 97.8 97.7 100 99.0 97.7
ConvLSTM1 CGAN DADLM 100 92.4 91.6 100 95.7 92.0
CNN2 CGAN DADLM 87.5 80.0 75.0 90.0 80.7 66.4
ConvLSTM2 CGAN DADLM 87.1 74.1 79.4 83.3 83.1 61.9

Additionally, in delivering with the main of the study and to further establish the performance of
our data augmentation DLMs, we present, in Figure 33, a summary of the outcomes in terms of detection
accuracy for the two datasets, two experimental scenarios and two machine learning techniques as
explained above. This chart presents the lucid validation of the impact of data augmentation for
the methods reported, where subscripts 1 and 2 indicate the use of the first and second datasets,
respectively. To enhance readability of the chart, blocks in different shades of blue denote outcomes
based on the first dataset (i.e., X-ray images), while different shades of red indicate results emanating
from CT images, i.e., the second dataset. Furthermore, dotted blocks denote our proposed DADLM,
i.e., DLM using image transformations for data augmentation, while solid blocks indicate the proposed
DLM using CGAN for data augmentation. Finally, diamond brick blocks indicate ML techniques and
DLMs without prior data augmentation.Viruses 2020, 12, x FOR PEER REVIEW 25 of 29 
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The results reported indicate that, relative to the different DLMs reported, a low performance for
the ML techniques with increase in detection accuracy ranging from 11 to 14%. Similarly, focusing
on the X-ray images dataset, we note that despite their better performance than the ML techniques,
DLMs without data augmentation (i.e., CNN1 DLM and ConvLSTM1 DLM) fall short of the accuracy
reported the image transformations-based versions of both DLMs, i.e., CNN1 DADLM and ConvLSTM1

DADLM, as well as their CGAN data-augmented versions, i.e., CNN1 CGAN DADLM and ConvLSTM1

CGAN DADLM.
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Remarkably, for the X-ray images dataset, both data-augmented CNN DLMs (i.e., CNN1 DADLM
and CNN1 CGAN DADLM) report best performance with 99% detection accuracy for COVID-19
positive (i.e., infected) and negative (i.e., normal) classes.

While a similar trend is observed in the CT images dataset, the below-par performance of
the CGAN data-augmented DLMs (i.e., CNN2 CGAN DADLM and ConvLSTM2 CGAN DADLM) is
noteworthy. The difference of 16 and 18% between the CGAN and image transformations-based data
augmentation DADLMs is remarkable. A plausible explanation would be, as with most DLMs, there
are losses associated at each layer of the CGAN used in our CGAN DADLM. This causes distortions
to subsequent layers which accumulate recursively. In comparison, the pixel-wise, image-based
transformations used in our image transformation-based data-augmented DLM, i.e., DADLM, is
immune to these types of losses.

Notwithstanding its remarkable performance in the CT images dataset, incidences of negative false
predictions were observed with the image transformation-based data-augmented DLM (i.e., DADLM).
These misclassifications are attributed to loss of image details during transformations used, especially
from the impact of low resolution on the rescaling operation. Interestingly, there are more occurrences
of these misclassifications in results from the X-ray images than from the CT images dataset.

Finally, to extrapolate the impact of the data augmentation strategies proposed in this study, we
present, in Table 3, a comparison with similar efforts. Constrained by limited number of such studies
and considering the incidence of pneumonia in COVID-19 diagnosis, we include studies focussed on
image-based detection of pneumonia in our performance analysis. Motivation for this stems from
a report from the WHO that earliest cases of COVID-19 were reported as pneumonia and, even today,
the most common diagnosis of severe COVID-19 is severe pneumonia. Therefore, we surmise, this
should not significantly impact any conclusions made.

Table 3. Comparison of average detection accuracy from proposed models alongside those from
traditional and recent methods.

Model Year Implementation Description Accuracy
(%)

Proposed 2020 X-ray and CT images for
COVID-19 detection

CNN1 DADLM 99.0
ConvLSTM1 DADLM 95.0

CNN1 CGAN DADLM 99.0
ConvLSTM1 CGAN DADLM 96.0

[45] 2018 X-ray images (pneumonia) CNN 92.8
[46] 2019 X-ray images (pneumonia) CNN + 2 Dense Layers + Augmentation 93.7
[19] 2019 X-ray images (pneumonia) CNN + 3 Dense Layers 95.3
[47] 2019 X-ray images (pneumonia) CNN + 2 Dense Layers 96.7
[23] 2020 X-ray images (pneumonia) CNN + Random Forest 97.0

[29] 2020 X-ray images (COVID-19) CNN + Actual data + Synthetic
Augmentation 95.0

[48]
2020 X-ray images (COVID-19) Alexnet + GAN data augmentation 80.6

Googlenet + GAN data augmentation 85.2
Resnet18 + GAN data augmentation 100

[49] 2020

X-ray images (pneumonia) Alexnet + GAN data augmentation 96.1
Squeeznet + GAN data augmentation 97.8

Google + GAN data augmentation 96.8
Resnet18 + GAN data augmentation 99.0

Moreover, we also include comparisons with [29,48] that report COVID-19 detection based on
X-ray images. We further note that [48,49] make use of GAN in data augmentation, which makes
them ideal like for like platforms to evaluate the performance of our proposed DADLMs. To provide
a level playing ground, we limit the comparison to the X-ray images dataset. Therefore, we report
only results from CNN1 DADLM, ConvLSTM1 DADLM, CNN1 CGAN DADLM, and ConvLSTM1

CGAN DADLM.
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As observed from Table 3, notwithstanding differences in deployment, our proposed data
augmentation strategies, i.e., DADLM and CGAN DADLM, match or outperform the reported
competitors. In fact, with 99% average accuracy in detection of COVID-19 positive (i.e., infected) and
negative (i.e., normal) cases, the proposed data augmentation strategies using CNN DLM (i.e., CNN1

DADLM and CNN1 CGAN DADLM) outperform most of the methods reported.

5. Concluding Remarks

Faced with an existential crisis, mankind must pull together solidarity and technology to save
itself. While medical and healthcare providers are the first line of defence against the Corona
virus (COVID-19) pandemic, engineers, scientists, and other professionals all have a role to play in
defeating this common enemy. Over time, machine and deep learning tools have emerged as veritable
tools to enhance and improve technologies across all domains and applications, including disease
detection, diagnosis, treatment, and cure. The study presented explored deployment of these tools
in supporting the battle against COVID-19. While this would seem instinctive, another challenge
arises because of inadequate access to image-based data from patients during and after the infection,
i.e., recoveries. To overcome both challenges, our study presented a data augmentation framework
that distends the limited dataset of X-ray and CT images by 100%. This enhanced dataset was
subsequently used to improve the learnability of the proposed deep learning models (DLMs). We
analysed performance of our strategy alongside two scenarios with and without data augmentation
for two datasets of different sizes. Furthermore, we compared the performance of the DLMs against
traditional machine learning techniques employing the SVM and k-NN algorithms. Across all metrics
reported, our proposed data-augmented DLMs outperformed the other approaches. In terms of
detection accuracy for COVID-19, the proposed DADLM technique presented improvements between
4% and 8% compared to similar DLMs devoid of data augmentation. This increases to the range from
11% to 14%, when compared to the SVM and k-NN machine learning techniques. In a head to head
comparison between our two proposed data augmentation strategies, the image-based transformations
DLM (i.e., DADLM) edges out the CGAN data-augmented DLM (CGAN DADLM) in terms of seven
binary classification quality metrics (i.e., sensitivity specificity, positive predictive value (i.e., True
Positive (TP)), negative predictive value (i.e., True Negative (TN)), Accuracy, F1-score, and Matthews
correlation coefficient) for both datasets used in the experiments reported. However, compared to
recent studies reporting image-based detection of COVID-19 and pneumonia, both our DADLMs, i.e.,
the pixel-wise image-based transformations and CGAN data augmentation strategies, show superior
performance. Metrics such as those presented in the study provide useful conclusions regarding
image-based contributions to support doctors’ diagnosis of COVID-19.

In the ongoing work, additional image-based modalities are being sourced to expand the width
(i.e., in terms of availability) as the depth (in terms of reliability) expands. The proposed models will
be refined to further enhance accuracy. Finally, other health informatics will be integrated to develop
a more robust DLM framework for efficient COVID-19 management covering containment, mitigation,
identification, tracking as well as disease detection, diagnosis, and treatment. With our humanity and
ability to exploit our technological advances, we will collectively defeat this scourge and use today’s
experiences to prepare for future similar battles when (not if) they come.
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