
 
 

Viruses 2020, 12, 817; doi:10.3390/v12080817 www.mdpi.com/journal/viruses 

Article 

Host Transcriptional Response to Persistent Infection 
with a Live-Attenuated Porcine Reproductive  
and Respiratory Syndrome Virus Strain 
Jayeshbhai Chaudhari 1,2, Chia-Sin Liew 3, Aspen M. Workman 4, Jean-Jack M. Riethoven 3, 
David Steffen 2, Sarah Sillman 2 and Hiep L. X. Vu 1,5,* 

1 Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; 
jayeshvet03@gmail.com 

2 School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln,  
Lincoln, NE 68583, USA; dsteffen1@unl.edu (D.S.); sarah.vitosh@unl.edu (S.S.) 

3 Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;  
chiasin.liew@unl.edu (C.-S.L.); jeanjack@unl.edu (J.-J.M.R.) 

4 USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;  
aspen.workman@usda.gov  

5 Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA 
* Correspondence: hiepvu@unl.edu; Tel.: +1-402-472-4528 

Received: 24 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 

Abstract: Both virulent and live-attenuated porcine reproductive and respiratory syndrome virus 
(PRRSV) strains can establish persistent infection in lymphoid tissues of pigs. To investigate the 
mechanisms of PRRSV persistence, we performed a transcriptional analysis of inguinal lymphoid 
tissue collected from pigs experimentally infected with an attenuated PRRSV strain at 46 days post 
infection. A total of 6404 differentially expressed genes (DEGs) were detected of which 3960 DEGs 
were upregulated and 2444 DEGs were downregulated. Specifically, genes involved in innate 
immune responses and chemokines and receptors associated with T-cell homing to lymphoid 
tissues were down regulated. As a result, homing of virus-specific T-cells to lymphoid tissues seems 
to be ineffective, evidenced by the lower frequencies of virus-specific T-cell in lymphoid tissue than 
in peripheral blood. Genes associated with T-cell exhaustion were upregulated. Likewise, genes 
involved in the anti-apoptotic pathway were upregulated. Collectively, the data suggested that the 
live-attenuated PRRSV strain establishes a pro-survival microenvironment in lymphoid tissue by 
suppressing innate immune responses, T-cell homing, and preventing cell apoptosis. 

Keywords: PRRSV; persistent infection; RNA-sequencing; transcriptome; apoptosis; T-cell 
exhaustion 

 

1. Introduction 

Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single 
stranded RNA virus that belongs to the family Arteriviridae, under the order Nidovirales [1]. Based on 
phylogenetic analysis, PRRSV was originally classified into two types: type 1 or PRRSV-1, which 
originated in Europe, and type 2 or PRRSV-2, which originated in North America. The International 
Committee on Taxonomy of Viruses (ICTV) recently updated the arterivirus taxonomic structure in 
which PRRSV-1 and PRRSV-2 are now respectively classified as two species: Betaarterivirus Suid 1 
and Betaarterivirus Suid 2 [2]. PRRSV infects pigs of all ages; however, clinical manifestations are 
more severe when the virus infects pregnant sows and young pigs, causing reproductive failure and 
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respiratory distress, respectively (reviewed in [3]). PRRSV is endemic in most swine producing 
countries worldwide, causing significant economic losses to swine producers [4]. 

PRRSV mainly infects cells of the monocyte/macrophage lineage [5]. CD163 is the main receptor 
for virus entry into susceptible cells [6]. Inside infected pigs, lung and lymphoid tissues are the main 
target sites of infection [7]. During acute infection, intensive inflammation is commonly observed in 
lung and lymphoid tissues, as there is significant infiltration with immune cells. At the same time, 
numerous apoptotic cells are also detected in the infected tissues during acute infection. Interestingly, 
the majority of apoptotic cells do not contain viral antigens, indicating that the virus induces 
apoptosis in bystander, non-infected cells [8]. Cytokines in the microenvironment of the infected 
tissues might be responsible for inducing apoptosis of bystander cells. Apoptotic cells are also 
detected in the endometrial-placental junctional areas of pregnant sows experimentally infected with 
PRRSV [9]. In vitro studies revealed that viral glycoprotein 5 (GP5) is a major inducer of apoptosis 
[10] although this was not reproduced in a subsequent study [11]. Besides GP5, nonstructural protein 
(nsp) 4 and 10 were also reported to be proapoptotic proteins [12]. Transcriptomic analysis of lung 
tissues of PRRSV-infected pigs during acute infection revealed a large set of differentially expressed 
genes (DEGs), in which increased expression of various proinflammatory cytokines (IL1A, IL1B, IL8, 
and IL18), chemoattractants (CCL2, CCL3, CCL4, and CCL5), and pattern recognition receptors (PRR) 
(TLR 3, 7, 8) were detected [13,14]. Likewise, canonical pro-apoptotic genes were upregulated during 
acute PRRSV infection in various tissues [15,16]. 

Pigs infected with PRRSV are viremic for approximately one month. After viremia resolves, the 
virus can establish a “smoldering” type of infection in lymphoid tissues for an extended period of 
time. Specifically, infectious virus can be demonstrated from tonsils of pigs experimentally infected 
with a wild-type PRRSV strain at 150 days post-infection (dpi) [17] while viral RNA can be detected 
for up to 250 dpi [18]. PRRS modified-live virus (MLV) vaccine strains can also establish persistent 
infection. Between 10% and 30% of pigs vaccinated with MLV vaccines carry infectious virus in their 
tonsil at day 60 after vaccination which can transmit the virus to naïve contact pigs [19]. 

Persistent infection is a common phenomenon of arteriviruses. Lactate dehydrogenase-elevating 
virus (LDV) (e.g., Gammaarterivirus lacdeh) and Simian hemorrhagic fever virus (SHFV) (e.g., 
Deltaarterivirus hemfev) establishes an asymptomatic, lifetime persistent infection in their respective 
natural host [20,21]. Likewise, Equine Arteritis virus (EAV) (e.g., Alphaarterivirus equid) establishes 
long-term persistent infection in a small portion of horses (Reviewed in [22]). Host genetics play an 
important role in EAV persistence. Specifically, the long-term persistence of EAV in infected horses 
is associated with a specific allele of the CXCL16 gene (CXCL16S) [23]. Transcriptomic analysis of the 
ampullae, the primary site of EAV persistence in stallion, identified an enhanced expression of 
CXCL16 and CXCR6 which modulate local inflammatory responses and infiltration of lymphocytes 
to the site of infection [24]. Moreover, the infiltrating T-cells might be exhausted as upregulated 
expression of several markers of T-cell exhaustion was observed in the ampullae tissue of long-term 
EAV carriers. 

The mechanisms of PRRSV persistence remain poorly understood. A genome-wide association 
study (GWAS) was conducted to identify host factors associated with PRRSV persistence. While no 
quantitative trait loci (QTL) with major effects on PRRSV persistence were identified, the study 
revealed eight genomic regions that explained at least 0.1% of the genetic variance in the GWAS [25]. 
These regions contain multiple genes that play a role in recruitment and activation of T-cells (T-cell 
transcription factor 7—TCF7), chemotactic cytokines (CCL1, CCL2, and CCL8), and T-cell migration 
(CD34) [25]. Recently, a study of experimental infection in pigs with PRRSV-1 revealed that during 
persistent infection, viral proteins are minimally expressed and viral genomes exist predominantly 
in the form of double stranded RNA (dsRNA) [26]. Interestingly, no significant difference in host 
transcriptional response between persistently infected and non-infected pigs was observed in this 
study. It is noteworthy that this study only analyzed a set of 189 selected swine immune genes from 
trachea bronchial lymph node (TBLN) tissue [26]. 

The goal of this study is to elucidate the putative mechanisms by which PRRSV can establish 
persistent infection. Genome-wide transcriptomic analysis of RNA collected from the inguinal lymph 
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node of pigs persistently infected with a live-attenuated PRRSV strain revealed a large number of 
DEGs. Genes involved in innate immune response and genes encoding chemokines and receptors 
important for T-cell homing and trafficking were downregulated. On the other hand, genes involved 
in the anti-apoptotic pathway and T-cell exhaustion were upregulated. Functional studies revealed 
that the frequencies of virus-specific IFN-γ-secreting cells are lower in lymphoid tissue than in 
peripheral blood mononucleated cells (PBMCs). Collectively, the results shed important insight into 
the mechanisms of PRRSV persistence in the host. 

2. Materials and Methods 

2.1. Virus, Cells, and Reagents 

The attenuated PRRSV strain designated CON90 used in this study was recovered from an 
infectious cDNA clone constructed using viral RNA extracted from the attenuated CON-P90 [27]. 
MARC-145 cells, a monkey kidney cell line [28], were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1 × penicillin-streptomycin 
(100 units/mL of penicillin, and 100 µg/mL of streptomycin (Life Technologies, Grand Island, NY, 
USA). PBMCs and lymph node-derived cells were cultured in complete RPMI-1640 medium (cRPMI) 
supplemented with 10% FBS, 1 × of GlutaMax-1 (Life Technologies, Grand Island, NY, USA), 100 
units/mL of penicillin, and 100 µg/mL of streptomycin (Sigma-Aldrich, St. Louis, MO, USA). Mouse 
monoclonal antibody specific to PRRSV N protein SDOW17 was purchased from the National 
Veterinary Services Laboratories (Ames, IA, USA). Anti-porcine CD3ε (clone BB23-8E6-8C8; FITC-
conjugated), anti-porcine CD4 (clone 74-12-4; PECy7 -conjugated), anti-porcine CD8 (clone 76-2-11; 
Alexa Flour 647 -conjugated), and anti-porcine IFN-γ (clone P2G10; PE-conjugated), were purchased 
from BD Biosciences (San Diego, CA, USA). Alexa Flour 488- conjugated goat anti-mouse IgG was 
purchased from Invitrogen (Eugen, OR, USA). 

2.2. Animal Study and Tissue Collection 

The pig experiment conducted in this study was approved by the University of Nebraska-
Lincoln (UNL) Institutional Animal Care and Use Committee under the protocol number 1360. Ten 
3-week-old PRRSV, porcine circovirus type 2 (PCV2), and SIV negative pigs were purchased from 
the Midwest Research Swine (Glencoe, MN, USA). The pigs were randomly assigned to two groups 
of five pigs, which were accommodated in two separate rooms in the animal biosecurity level 2 
(ABSL-2) research facilities at UNL. After 1 week of acclimation, pigs in group 1 were injected with 
DMEM to serve as negative controls, whereas pigs in groups 2 were inoculated intramuscularly with 
105.0 TCID50 of live-attenuated PRRSV strain CON90. Whole blood samples with anticoagulant EDTA 
were collected to obtain plasma and PBMCs. Plasma samples were stored at −70 °C for measurement 
of viremia and antibody response. A portion of freshly isolated PBMCs were used for measurement 
of T cell responses while the rest of PBMCs were cryopreserved for future analysis. At 46 days post-
infection (dpi), sample of inguinal lymph node (ILN) was aseptically collected from the pigs under 
anesthesia. One half of the INL was stored in cRPMI for lymphocyte isolation while the other half of 
the INL was minced and stored in TRIzol Reagent (Life Technologies, Carlsbad, CA, USA) for RNA 
extraction. 

2.3. Quantification of Viral Loads 

Viral loads in plasma and tissues were measured by a commercial RT-qPCR kit (Tetracore Inc., 
Rockville, MD, USA). Viral loads in plasma was reported as log10 copies per ml, whereas viral loads 
in tissues were reported as log10 copy per µg of total RNA used in the RT-qPCR reaction. For statistical 
purposes, samples that had no detectable levels of viral RNA were assigned a value of 0 log10 copies. 
  

https://www.sciencedirect.com/topics/medicine-and-dentistry/reverse-transcription-polymerase-chain-reaction
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2.4. Isolation of PBMCs and ILN Cells 

PBMCs were isolated from EDTA-whole blood as previously described [29,30]. Single cell 
suspension was isolated from ILN immediately after collection as follows. The tissue was processed 
to remove connecting tissue and cut into small pieces which were placed in a 70- µm nylon cell 
strainer (Corning, Durham, NC, USA) in the presence of cRPMI. The tissue pieces were pressed 
against the nylon mesh by using the plunger of a 3 mL syringe. The resulting cell suspension was 
collected into a 50 mL conical tube which was passed through a 70-µm cell strainer one more time to 
remove large tissue debris. Cells were pelleted by centrifugation at 700× g for 10 min at room 
temperature and treated with a 5 mL red blood cell (RBC) lysis buffer (Life Technologies, Carlsbad, 
CA, USA). RBC lysis reaction was ceased by adding ice cold PBS containing 4% FBS, followed by 
centrifugation at 700 × g for 10 min at room temperature. Cell pellet was resuspended in cRPMI. To 
determine cell concentration and viability, samples of PBMC and ILN-derived cells were stained with 
acridine orange and propidium iodide (ViaStainTM AOPI Staining Solution, Nexcelom, Lawrence, 
MA, USA) and counted using an automatic cell counter (Cellometer Auto 2000, Nexcelom, Lawrence, 
MA, USA). Freshly isolated cells were used for Elispot and flow cytometric analysis. The remaining 
cells were cryopreserved in 10% DMSO, 40% FBS, and 50% RPMI-1640 and stored in liquid nitrogen. 

2.5. Measurements of Immune Responses 

PRRSV antibody levels in plasma were measured at the Veterinary Diagnostic Center of the 
University of Nebraska by using the commercial ELISA IDEXX PRRS X3 Ab Test (IDEXX 
Laboratories, Westbrook, ME, USA) following the manufacturer’s instructions. The serum-virus 
neutralization (SVN) assay was performed as previously described [31] using plasma rather than 
serum. Results were expressed as the log2 of the reciprocal of the highest dilution that showed a ≥90% 
reduction in the number of fluorescent foci presenting in the control wells. 

The frequencies of IFN-γ-secreting cells (IFN-γ SCs) in PBMCs and ILN-derived cells were 
measured by using an IFN-γ Elispot assay as previously described [32,33]. Briefly two replicates of 
250,000 PBMCs or ILN cells freshly collected from each pig were plated into two wells of a 96-well 
plate with PVDF membrane that were coated with anti-porcine IFN-γ antibody. The cells were 
stimulated with 100 µL of cRPMI containing 2.5 × 104 TCID50 of CON90. For positive control, cells 
were plated at 5000 cells per well, followed by stimulation with a 100 µL cRPMI containing 10 ng/mL 
of phorbol 12 myristate 13-acetate (PMA) and 1 µg/mL of ionomycin. For negative control, cells were 
simply cultured in cRPMI. At 18 h post stimulation, the plate was washed with PBS- containing 0.05% 
Tween 20 (PBS-T) followed by incubation with biotin-labeled antibody against porcine IFN-γ (clone 
P2C11, BD Biosciences Pharmingen, San Diego, USA). Spots were developed by using alkaline 
phosphatase-conjugated streptavidin (Southern Biotech, Birmingham, AL, USA) in conjunction with 
alkaline phosphatase substrate (Vector laboratories, Burlingame, CA, USA). Spots were counted and 
analyzed using an AID Elispot Reader Version 7.0 (AID GmbH, Strassberg, Germany). 

2.6. Flow Cytometric Analysis of Immune Cells 

Freshly isolated PBMCs and ILN cells were ex vivo stimulated with 1 × 105 TCID50 of CON90 as 
described above. A Cocktail solution consisting of 10 ng/mL of PMA and 1 µg/mL of ionomycin was 
included as a positive control while cRPMI served as a negative control. At 12 hrs post-stimulation, 
100 µL of cRPMI containing 1 µg/mL of Golgi-plug brefeldin A (BD Bioscience, San Jose, CA, USA) 
was added and further incubated for 6 hrs. Samples were centrifuged at 500 × g for 10 min at room 
temperature. Cells were resuspended in flow cytometry staining buffer (FACS buffer) (PBS with 4% 
FBS and 0.1% sodium azide), and stained with anti-porcine CD3ε, CD4, and CD8 monoclonal 
antibodies and incubated on ice for 30 min in the dark. Cells were washed thrice using FACS buffer. 
The cells were fixed and permeabilized with 4% paraformaldehyde and 0.1% triton X-100, 
respectively, followed by intracellular staining with an IFN-γ antibody. Cells were analyzed by using 
a Cytek DxP10 cytometer (Cytek Biosciences, Fremont, CA, USA) and acquired data were analyzed 
using the FlowJo software (BD Biosciences, San Jose, CA, USA) with gating based upon fluorescence 
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minus one (FMO) control. For each sample, 100,000 events were acquired. Relevant cell population 
was gated on CD3+ prior to analyzing the CD4+ and CD8+ cells (Figure S1a). IFN-γ positive cells were 
counted from individual CD4+, CD8+, and CD4+CD8+ double positive (DP) cells (Figure S1b). 

2.7. RNA Sequencing 

Total RNA was isolated from ILN collected from the infected and non-infected using the TRIzol 
reagent according to the manufacturer’s protocol. RNA was re-purified using RNeasy Mini Kit 
(Qiagen, Hilden, NRW, Germany) according to the manufacturer instructions, followed by a DNase 
treatment using Turbo DNA-freeTM kit (Life Technologies, V.A. Graiciuno 8, Vilnius, Lithuania) to 
remove DNA contamination. Purified RNA was submitted to Novogene Bioinformatics Technology 
Co.Ltd for RNA sequencing. 

Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for 
Illumina® (NEB, Ipswich, MA, USA) following manufacturer’s recommendations and index codes 
were added to attribute sequences to each sample. Briefly, mRNA was purified from 1 mg of total 
RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent 
cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First 
strand cDNA was synthesized using random hexamer primer and M- MuLV Reverse Transcriptase 
(RNase H). Second strand cDNA synthesis was subsequently performed using DNA Polymerase I 
and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase 
activities. After adenylation of 3′ ends of DNA fragments, NEBNext Adaptor with hairpin loop 
structure were ligated to prepare for hybridization. In order to select cDNA fragments of 
preferentially 150~200 bp in length, the library fragments were purified with AMPure XP system 
(Beckman Coulter, Beverly, MA, USA). Then 3 µl USER enzyme (NEB, Ipswich, MA, USA) was used 
with size-selected, adaptor-ligated cDNA at 37 °C for 15 min followed by 5 min at 95 °C before PCR. 
Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and 
Index (X) Primer. Finally, PCR products were purified using AMPure XP system and library quality 
was assessed on the Agilent Bioanalyzer 2100 system. The libraries were sequenced on an Illumina 
platform Hiseq 2000 and approximately 40 million raw 125 bp/150 bp paired-end) reads were 
generated. 

2.8. Differential Expression Analysis 

RNA-Seq reads were first trimmed with Trim Galore version 0.6.4 [34,35], which include filtering 
reads shorter than 30bp and low-quality ends from reads (Phred score: <20) and the option of 
removing reads with Ns. The quality of reads before and after trimming was checked with FastQC 
version 0.11.7 [36]. The filtered reads were aligned to the Sus scrofa genome (Sscrofa11.1; 
GCF_000003025.6) using TopHat version 2.0.14 [37–39] with a read mismatch of 0 and a maximum 
multi hits of 5 and further default parameters. Alignment files generated by TopHat were then used 
to generate gene counts using HTSeq version 0.9.1 (htseq-count), with a minimum alignment quality 
of 10 [40]. A data matrix of gene counts for all samples was created using a custom Python script and 
the data matrix was used to run the differential gene expression analysis in DESeq2 version 1.22.1 
[41]. Genes with an adjusted P value smaller than 0.05 and a log2 fold change larger than 1 were 
considered as differentially expressed. The differential expression result table generated by DESeq2 
was annotated with gene information obtained from Ensembl BioMart for Sus scrofa, supplemented 
by annotation from the GTF file. To visualize the level of PRRSV RNA genome, reads mapped to the 
PRRSV CON90 genome were counted base by base, normalized to counts per million and 
subsequently used to generate a coverage track using deepTools version 3.4.3 [42]. 

2.9. GO Enrichment Analysis and KEGG Pathway Analysis of Differentially Expressed Genes 

Gene Ontology (GO) in the database (http://www.geneontology.org/) is an international 
standardized classification system for gene function, and it supplies a set of controlled vocabulary to 
comprehensively describe the properties of genes and gene products. GO enrichment analysis of 
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DEGs was implemented by the GOseq R package [43], in which gene length bias was corrected. GO 
terms with corrected p-value less than 0.05 were considered significantly enriched by differentially 
expressed genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database resource for 
understanding high-level functions and utilities of the biological system, such as the cell, the 
organism, and the ecosystem, from molecular-level information, especially large-scale molecular 
datasets generated by genome sequencing and other high-throughput experimental technologies 
(http://www.genome.jp/kegg/). KOBAS version 3.0 [44] was used to test the statistical enrichment of 
differential expression genes in KEGG pathway. 

2.10. Statistical Analysis 

Virus-specific T-cell data were analyzed by unpaired t-test analysis using GraphPad prism 
software version 8.3.1 (GraphPad Software, LLC, San Diego, CA, USA). A p < 0.05 was considered 
significant. 

2.11. Data Access 

Sequencing data from RNA-Seq were deposited in the NCBI GEO and are available under 
accession number GEO: GSE153174 

3. Results 

3.1. The Attenuated PRRSV Strain CON90 Established Persistent Infection in Pigs 

All pigs inoculated with CON90 became viremic starting from 2 dpi. The viremia level increased 
and peaked at 7 dpi (Figure 1a). Pigs inoculated with CON90 did not displayed any clinical signs 
throughout the course of this study. At 46 dpi, ILN was collected and RNA was extracted. RT-PCR 
analysis revealed that viral RNA genome was detected in all five CON90-infected pigs but none of 
the sham-inoculated pigs (Figure 1b). Subsequently, the RNA samples were subjected to RNA-seq. 
An average of 32 million paired-end reads were obtained for each RNA sample (Table S1). To confirm 
the presence of viral RNA during persistent infection in pigs, the reads were mapped to the CON90 
genome. Viral RNA reads were only detected from ILN of CON90-infected pigs which mapped 
throughout the viral genome (Figure 1c). The results demonstrate that all five pigs in this study were 
persistently infected with the attenuated PRRSV strain CON90. 

http://www.genome.jp/kegg/
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Figure 1. Post-inoculation viral RNA detection in plasma and inguinal lymph node (ILN) tissue. (a) 
Viral RNA in plasma at indicated dpi and (b) viral RNA level in ILN tissue at 46 dpi as determined 
by a commercial qRT-PCR kit (Tetracore Inc., Rockville, MD, USA). Dataset represents mean ± S.E.M 
values calculated from five pigs in each treatment group. (c) Coverage plot of the RNA reads mapped 
to CON90 genome. Y axis represents the count per million (cpm) while the X axis represents the viral 
genome. Yellow boxes under the plot with GenBank accession numbers indicate the viral open 
reading frames. 

3.2. Robust Host Responses to CON90 Persistent Infection in ILN 

To examine the host responses to CON90 persistent infection, RNA reads were mapped to the 
reference pig genome (Sscrofa11.1; GCF_000003025.6). Principal component analysis (PCA) indicated 
that control and CON90-infected pigs formed separated clusters indicating that they had distinct 
transcriptional profiles (Figure 2a). The infected pigs showed more variability than the control pigs. 
In addition, one pig in the CON90-infected group (CON_429) showed a unique transcriptional 
profile, as it associated closer to the control pigs. This association is likely due to the different genetic 
makeup of this pig than the other four animals within this group. 
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Direct comparison of RNA transcripts between control and CON90-infected animals revealed a 
profound change in the transcriptional profiles in the ILN tissue of CON90-infected pigs. Out of 17553 
genes in the annotated porcine genome, there were 6404 DEGs (FDR < 5%, |log2| fold change ≥ 1), of 
which 3960 DEGs were upregulated and 2444 DEGs were downregulated (Figure 2b and Table S2). 

 

Figure 2. Two-dimensional principal component analysis (PCA) plot and volcano plot. (a) Principal 
component analysis (PCA) score plot. The control animals are indicated by red dots labeled “DMEM_ 
animal number,” while the CON90-infected animals are indicated by cyan dots labeled “CON_animal 
number”; (b) the volcano plot of differentially expressed genes between CON90-infected and control 
pigs. Red dots denote significantly down-regulated genes (p < 0.05, log2 fold change ≤−1), green dots 
indicated significantly up-regulated genes (p < 0.05, log2 fold change ≥1), and grey dots represent 
genes that were not differentially expressed. 

To understand their biological functions, DEGs were subjected to GO enrichment analysis. GO 
terms having a corrected value of p < 0.05 were considered statistically significant (Table S3). 
Significantly enriched GO terms were grouped under three categories: biological processes, 
molecular function, and cellular components. Thirty highly enriched GO terms in CON90-infected 
pigs are shown (Figure 3a). A large number of DEGs are enriched into the category of biological 
processes (cytoskeleton organization, multicellular organism development, regulation of 
intracellular signal transduction, cell communication, cell surface receptor signaling, regulation of 
programmed cell death etc.,), followed by molecular function (cellular macromolecular catabolic 
processes, kinase activity, phosphotransferase activity, DNA binding, metal ion binding) and cellular 
components (ribonucleoprotein complexes, bounding membrane of organelles). KEGG pathway 
analysis revealed multiple enriched pathways including apoptosis, chemokine signaling, cellular, 
senescence, mitophagy, lysosome, endocytosis, and MAPK (Figure 3b and Table S4). Detailed 
analysis of selected enriched pathways is presented in the respective sections below. 
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Figure 3. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis of differentially expressed genes (DEGs). (a) GO analysis of DEGs at 46 dpi. Top 30 
most significant GO categories p-value < 0.05 are shown; (b) KEGG pathway enrichment analysis was 
performed for DEGs. The graph depicts the top 36 overrepresented KEGG pathways. Pathways 
showing, p-value < 0.05 are considered statistically significantly overrepresented. The left side 
indicates the enrichment score (p-value) while the right side of the graph indicates the number of 
genes in the respective pathways. 
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3.3. Expression of Genes Involved in the Innate Immune Response 

The innate immune system is the first line of defense against invading pathogens, with the major 
influence on the development of strong adaptive immune responses. CON90 is capable of inducing 
type I IFNs both in vitro and in vivo [27]. In the current study, we did not detect differential 
expression of type I IFN or interferon stimulated genes (ISG) RNA transcripts, suggesting that the 
type-I IFN was not induced in ILN of CON-infected pigs at 46 dpi. We observed an upregulation of 
RNA-sensing molecules including TLR3 (dsRNA), TLR7, and TLR8 (ssRNA) (Figure 4a). On the other 
hand, no differential expression of signaling molecules downstream of TLR pathways including 
interferon regulatory factors (IRF) IRF3 and IRF7, was observed (Table S2). In addition, we observed 
an upregulation of TLR10 mRNA in CON90-infected pigs. While the ligands and signaling pathway 
involving TLR10 remain poorly understood, it has been demonstrated that TLR10 can act as an anti-
inflammatory receptor which can also suppress TLR3-induced IFN-β production [45]. Interestingly, 
we observed an increased expression of CD200 (OX2) and its receptor CD200R (Figure 4a). CD200R 
is an inhibitory immune receptor that is expressed on myeloid cells and B- and T-lymphocytes [46], 
while CD200 is widely expressed on multiple cell types including endothelial cells, neurons, and 
lymphocytes [47]. CD200/CD200R interaction suppresses cytokine production, and inflammatory 
responses [48]. 

The complement system is another crucial component of the innate immunity. It acts as an 
important link between innate and adaptive immune system. Thus, viruses have developed a 
mechanism to modulate complement responses by down-regulating activation proteins and up-
regulation of regulatory proteins [49]. In the current study, increased expression of regulatory 
proteins (CFH, CFI, and CD55) was observed from CON90-infected animals (Figure 4b). Conversely, 
C1q, a classical complement component involved in increasing virus neutralizing ability of antibodies 
[50] was down-regulated (Figure 4b). Collectively, the data suggest that the CON90 virus suppresses 
both complement activation and inflammatory responses at the site of persistent infection. 

 

Figure 4. Genes involved in innate immune pathways. Hierarchical clustering analysis of gene 
expression profile. Each column represents one pig with given treatment and each horizontal line 
refers to a gene. The associated dendrogram is shown on the left of the heat map. Color legend is on 
right of the figure. Red indicates genes with increased expression, while blue indicates genes with 
reduced expression relative to the geometrical means. (a) Heatmap showing gene expression profile 
of innate immune genes; (b) heat map showing the profile of differentially expressed genes involved 
in complement pathways. 

3.4. Expression of Genes Involved in the Apoptotic Pathway 

Apoptosis is a powerful innate immunity mechanism to curtail viral spread through eliminating 
virally infected cells. Apoptosis can be triggered by both extrinsic and intrinsic stimuli [51]. It is well 
documented that PRRSV induces apoptosis in tissues of infected pigs, especially during an acute 
phase of the infection [15,16,52]. In this study, expression of TNFRSF1A (TNFα receptor 1) gene that 
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contains a death domain [53], was downregulated in the ILN of infected pigs (Figure 5). Similarly, 
expression of pro-apoptotic genes including AIFM2, CHAC1, and OSR1, was downregulated (Figure 
5). On the other hand, expression of BIRC3 and Bfl-1/A1 (BCL2A1), two apoptosis inhibitors that 
interfere with caspase activation [54], was upregulated. Furthermore, expression of several negative 
regulators of apoptotic genes including BCL-2-associated killer 1 (BAK1), damage induced apoptosis 
suppressor (DDIAS), X-linked inhibitor of apoptosis protein (XIAP), MCL1, API, BNIP2, and FAIM 
was upregulated. Collectively, these results suggest that the pro-apoptotic signaling pathway was 
suppressed in ILN tissue of pigs persistently infected with CON90. 

 

Figure 5. Expression of genes involved in apoptotic regulation in inguinal LN. Heatmap showing 
gene expression profile of apoptotic genes in ILN tissue from persistently infected and mock-infected 
animals. This heatmap was generated in the same manner as described in the legend to Figure 4. 

3.5. Expression of Genes Involved in Immune Cell Migration and T-Cell Functions 

Lymphocyte activation occurs in the secondary lymphoid organs. Activated T-cells then migrate 
to the sites of infection where they exert their effector functions to eliminate infected cells [55]. Cell-
adhesion molecules, chemokines, and receptors play a central role in regulating T-cell migration [56]. 
PRRSV mainly persists in lymphoid tissue of infected pigs [17,18]. In this study, expression of several 
important chemokine ligands (CCL19, CCL21, CCL24, CCL22, CX3CL1, and CCL14) and chemokine 
receptors (CCR6 and CCR10) which play an essential role in migration and localization of 
lymphocytes and antigen-presenting cells (APCs) to the lymphoid tissues was down regulated in ILN 
of CON90-infected pigs (Figure 6a). On the other hand, expression of CD274 (PD-1), a marker of T-
cell exhaustion, was upregulated (Figure 6b). Likewise, expression of inhibitory receptors HAVCR2 
(also known as TIM3) and TGIT, which transmit the inhibitory signals for T-cell differentiation and 
effector activities [57], was upregulated. We also found increased expression of other co-inhibitory 
molecules (BTLA, FASLG, FAS, and IDO1) that are associated with the regulation of T-cell exhaustion 
during chronic viral infection (Figure 6b). Together, the results suggest that T-cell migration to ILN, 
one of the sites of PRRSV persistence, might be affected because of the down regulation of important 
chemokines and receptors, and that the T-cells in ILN might be exhausted. Interestingly, markers of 
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regulatory T-cells (Treg) were downregulated in ILN of infected pigs (Figure 6c), suggesting that Treg 

might not be present in ILN at 46 dpi. 

 
Figure 6. Analysis of cell-mediated immune responses in persistently infected animals. (a) Heatmap 
showing the expression of known cytokines and chemokines and receptors which showed a 
significant change; (b) heatmap showing the genes associated with T-cell development and effector 
functions; (c) heatmap showing the genes involved in T cell-mediated regulatory responses. These 
heatmaps were generated in the same manner as described in the legend to Figure 4. 

3.6. Frequencies of Virus-Specific T Cells in PMBCs and ILN 

Since the expression of chemokines and receptors important for T-cell migration was 
downregulated in ILN, we sought to compare the frequencies of virus-specific T-cells in PBMCs and 
in ILN using the IFN-γ SC Elispot assay. The number of spots was similar when PBMCs and ILN 
cells were stimulated with non-specific T-cell activator PHA/Ionomycin. However, the number of 
spots was significantly lower in ILN than in PBMCs when the cells were stimulated with whole 
PRRSV antigen (Figure 7a). The results clearly indicate that the frequencies of PRRSV-specific IFN-γ 
SCs were significantly lower in ILN than in PBMCs. To further elucidate the phenotypes of PRRSV-
specific T-cells, we used a multi-color flow cytometric assay to identify subsets of T-cells that secrete 
IFN-γ in response to PRRSV activation ex vivo. CD4+ CD8+ DP cells were the major T-cell population 
secreting IFN-γ, both in PBMCs and ILN. Swine have a significant population of extrathymic CD4+ 
CD8+ DP T cells that represent memory T-cells [58]. Similar to the Elispot assay, the flow cytometric 
assay also indicated that the percentage of T-cell secreting IFN-γ was comparatively lower in ILN 
than in PBMCs (Figure 7b). Cells collected from DMEM-inoculated pigs did not show any significant 
T-cell reactivities after ex vivo stimulation with CON90, both in Elispot and in flow cytometry assays 
(data not shown). 
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Figure. 7 Analysis of IFN-ϒ secreting cells during persistent PRRSV infection. PBMCs and ILN cells 
were collected from five pigs that were infected with CON90 at 46 dpi. The cells were stimulated with 
CON90 as described in the Materials and Methods. For positive control, the cells were stimulated 
with PMA and ionomycin (PMA/IONO). (a) Frequencies of IFN-ϒ SCs in PBMCs and ILN measured 
by IFN-ϒ Elispot. PMA/IONO spots counted as per 5000 cells/well and extrapolated for 5 × 105 cells. 
(b) Percentage subset of T cell secreting IFN-γ as measured by flow cytometric analysis. Dataset 
represents mean ± S.E.M values calculated from five pigs in each treatment group. *p < 0.05. 

3.7. Expression of Genes Involved in the Humoral Immune Response 

A number of genes associated with Th2, or humoral response, were upregulated in the ILN of 
CON90-infected pigs (Figure 8a). IL-21, RGS13, and NUGGC are involved in the development of 
germinal center (GC) and activation of B-cell follicles [59]. TNFSF13B and TNFSF8 are potent 
activators of B-cell lineage and Ig class switching, respectively [60]. B-cell surface antigens MS4A1 
(CD20), activation-induced cytidine deaminase (AICDA) [61], and rafting family member 2 (RFTN2) 
are associated with B-cell receptor signaling. The upregulated expression of these genes in ILN of 
infected animals suggested that the humoral immune response to CON90-infection was not affected. 
To corroborate transcriptome data, we measured both virus-specific antibody levels at various time 
points post-infection. High levels of non-neutralizing antibodies specific to viral N protein (measured 
by a commercial ELISA) were detected in all pigs (Figure 8b). However, only minimal levels of virus-
neutralizing antibodies (titer 1:2) were detected in the serum of infected pigs at 46 dpi (Figure 8c). 
Together, both transcriptomic and serological data indicate that B-cell development and antibody 
production are not affected by CON90-infection. However, low levels of virus-neutralizing 
antibodies are likely due to the virus ability to escape antibody neutralization (see below). 



Viruses 2020, 12, 817 14 of 22 

 

 

Figure 8. Humoral immune response. (a) Heat map of differentially expressed genes associated with 
the humoral immune development. The heatmap was generated in the same manner as described in 
the legend to Figure 4. (b) PRRSV-specific antibodies were detected in the serum using IDEXX PRRS 
X3 Antibody test (IDEXX Laboratories, lnc., Westbrook, ME, USA). The horizontal dotted line 
indicates the cutoff (S/P value, 0.4) of the assay. (c) Serum virus neutralizing antibodies measured 
against CON90 at 39 and 46 days post infection. Dataset represents mean ± S.E.M values calculated 
from five pigs in each treatment group. 

4. Discussion 

PRRSV persists in lymphoid tissue of infected pigs for several months [17,18]. The mechanism 
of PRRSV persistence is not fully understood. We performed genome-wide transcriptome analysis of 
lymphoid tissue collected from pigs persistently infected with an attenuated PRRSV strain using 
RNA-seq technology that detects both host and viral RNA. Viral RNA reads were detected in ILN of 
all five infected pigs. It was reported previously that PRRSV genome mainly exists in dsRNA forms 
in lymphoid tissues during persistent infection [26]. Since only mRNA (purified by using poly-T 
oligo-attached magnetic beads) was used for library construction and RNA sequencing, the viral 
RNA reads detected in this study must be derived from either viral genomic RNA or sub-genomic 
mRNA, not from dsRNA. The viral RNA reads map throughout the viral genome. However, we are 
not able to discern whether these reads are derived from genomic or sub-genomic mRNA because 
we used a short-read RNA sequencing platform. It would be interesting to use long-read RNA 
sequencing to study the viral transcriptome at different states of infection in pigs [62]. 

It was reported previously that no significant DEGs were observed in lymphoid tissue of 
persistently infected animals [26]. In the current study, we identified a large number of DEGs in 
persistently infected animals (Figure 2b). This might be due to the difference in the experimental 
setup. In the previous study, pigs were infected with a wild-type PRRSV-1 whereas in this current 
study, pigs were infected with an attenuated synthetic PRRSV strain [27,63]. Besides, the previous 
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study looked at a small set of selected genes while in this study we look at the genome-wide RNA 
transcriptome.  

GO terms and KEGG analysis revealed that genes involved in the innate immune (complement 
and TLR) pathways, apoptosis, cytokine-chemokine signaling, T-cell exhaustion, and humoral 
responses are highly differentially expressed in PRRSV-infected animals compared to control. The 
complement system is a constituent of innate immunity that serves by neutralizing cell-free viruses, 
lysing virus-infected cells, and boosting virus specific responses [64]. It also links the innate and 
adaptive immune responses, enhances humoral immunity, regulates antibody effector mechanisms, 
and modulates T-cell function [65]. Many viruses have developed a strategy to evade the complement 
pathway by recruiting or enhancing the production of host transcription regulatory components. 
During acute infection (7 dpi), PRRSV significantly represses the expression of complement 
regulatory components (CD55 and C4BPB) in lung tissue [16]. Early complement activation during 
acute infection facilitates the release of newly formed virions from infected cells, yet, chronic viral 
infection is reported to suppress the activity of complement activation proteins and increases the 
activity of regulatory proteins (Reviewed [49]). 

In the current study, we found overexpression of CFH and CFI along with another regulatory 
factor CD55 (decay-accelerating factor). Overexpression of CFH, a major soluble regulator of the 
alternative pathway, results in inhibition of C3 and C5 convertase enzymes. CFI suppresses the 
complement active proteins C3b (opsonin) and C4b via mediating cleavage to their inactive form 
[66,67]. Regulatory factor CD55 is an inhibitor of C3 convertase which prevents C3b deposition on 
the cell surface [68]. Apart from that, we also see the downregulation of C1q, which increases 
neutralizing and hemagglutination inhibition activity of anti-influenza antibodies [50]. Available 
data from previous studies and the current study suggest that activation of complement pathway 
during acute infection helps to disseminate virus, while suppression of complement components like 
C1q, C1r, and C5, and upregulation in regulatory components during persistent infection facilitates 
the virus to escape from the complement system to maintain persistence in lymphoid tissues. 

Most naturally occurring PRRSV strains suppress type I IFN production by inhibiting the 
activation and nuclear translocation of IRF3/IRF7 and NF-kB [69,70]. Deficiency of IRF3/7 results in 
severe mortality to infection with West Nile virus (WNV), Chikungunya virus (CHIKV), and Ross 
River virus infection, and promotes viral persistence in the infected hosts [71–73]. It has been reported 
that PRRSV nsp1β inhibits IRF3 phosphorylation and nuclear translocation; thus, inhibiting IFN 
production [69,74,75]. Interestingly, the synthetic PRRSV-CON and its attenuated form CON90 were 
able to induce type I IFNs [27,76]. Contrary to its nature to induce type I IFN, in the current study no 
upregulation of canonical type I IFN signaling pathway-associated genes was observed. However, 
expression of RNA sensing molecules including TLR3, TLR7, and TLR8 was upregulated in CON90-
infected animals. On the basis of available data, we hypothesize that reduced levels of viral 
replication and sequestration of viral RNA in infected cells during persistent infection might limit 
further activation of type I IFN signaling pathway by preventing interaction with cytoplasmic pattern 
recognition receptors (PRRs). 

Apoptosis or programmed cell death is a potential host immune mechanism against virally 
infected cells to curtail the spread of newly formed viral progenies. Apoptosis is induced by two 
distinct, yet inter-connected signaling pathways, the extrinsic and intrinsic pathways [51]. In order to 
successfully establish persistent infection, viruses have developed mechanisms to inhibit apoptosis. 
For instance, adenovirus (E1B-19K), human cytomegalovirus (UL37), poxviruses (F1L), and myxoma 
virus (M11L) have an inhibitory effect on proapoptotic proteins Bak/Bax [77]. It appears that PRRSV 
can also modulate apoptosis. Studies of pulmonary alveolar macrophages (PAM) infected with 
PRRSV in vitro reveal that the virus stimulates anti-apoptotic pathways early in infection while it 
induces apoptosis late in infection [78]. On the other hand, the virus induces apoptosis in the tissues 
of infected animals during acute infection, but the frequencies of apoptotic cells reduced to normal 
levels observed in control, non-infected pigs from day 20 post-infection [52]. In this study, expression 
of multiple anti-apoptotic genes including XIAP, Bfl-1/A1 (BCL2A1), and BIRC3 was upregulated 
while expression of pro-apoptotic genes (AIFM2, CHAC1, and OSR1) was downregulated. XIAP is 
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an endogenous caspase 9 and 3 inhibitor [79]. Bfl-1/A1 (BCL2A1) is a transcriptional target of nuclear 
factor-kB (NF-kB) that suppresses caspase activation and apoptosis in response to death-inducing 
stimuli like TNFα [54]. BIRC3 is an interaction partner to TNFRSF1B and inhibits apoptosis by 
interfering with the caspase activation [53]. The pro-apoptotic BCL-2 family member like BCL-2-
associated killer 1 (BAK1), which allows the release of cytochrome C via formation of homo-
oligomers and stable insertion into outer mitochondrial membrane was significantly suppressed. 
Thus, the data suggest that apoptosis was suppressed in the ILN of CON90-infected animals during 
persistent infection. 

Chemokine molecules CCL19 and CCL21 play a crucial role in migration, activation, expansion, 
and survival of antiviral T-cells. Suppression of the CCR7 and CCL19/CCL21 axis results in 
dysfunction of T-cells during viral infection [80,81]. CCL19-CCR7 axis plays role in protection against 
multiple viruses, such as HIV [82], herpes simplex virus (HSV-1) [83], HSV-2, hepatitis C virus [84], 
and pseudorabies [85]. Acute PRRSV infection increases the expression of chemokines, leading to the 
infiltration of immune cells toward the sites of infection [16,86]. In this study, expression of both 
CCL19 and CCL21 was significantly downregulated in CON90-infected lymph node (Figure 6a). 
Additionally, expression of different chemoattractant molecules (fractalkine/CX3CL1, CCL14, 
CCL16, CCL17, CCL22, and CCL8) and receptors (CCR6 and CCR10) was also downregulated. It is 
possible that downregulation of these chemokines and receptors might impair T-cells trafficking to 
inguinal lymph node, the site of PRRSV persistence. Our transcriptional data are supported by the 
functional data which demonstrate that the frequencies of IFN-γ SC in ILN were significantly lower 
than in PBMCs (Figure 7). 

Chronic or persistent viral stimulation results in hierarchical loss of effector functions of T-
lymphocytes, including proliferation, cytokine production (e.g., IFN-γ and IL-2), and cytolytic 
responses [57,87,88]. Although the molecular signatures involved in T-cell exhaustion are not 
completely understood, the overexpression of cell surface inhibitory receptors (e.g., PD-1, CTLA-4, 
and others) primarily mediates CD8+ T-cell dysfunction [87–89]. T-cell exhaustion seems to be a 
common phenomenon caused by arteriviruses, as T-cell exhaustion was also reported in horses 
persistently infected with EAV [24]. Recently, it was shown that PRRSV infection alone or co-infection 
with porcine circovirus type 2 (PCV2) can significantly upregulate surface expression of PD-L1 
(CD274) on porcine monocytes-derived dendritic cells (MoDCs) [90]. Increased expression of PD-L1 
on the surface of antigen presenting cells (APCs) possibly contributes to the ineffective T-cell 
responses during the PRRSV infection. In the present study, expression of several markers for T-cells 
exhaustion such as PD-1 (CD279) and its ligand, CD274 (PD-L1) was upregulated in CON90-infected 
animals, suggesting that the T-cells in lymph nodes of persistently infected animals might be 
exhausted (Figure 6b). However, additional studies (e.g., T-cell cytotoxicity and cytokine production) 
are required to fully assess the functionality of T-cells during PRRSV persistence. 

Germinal centers (GCs) are the specialized locations in the secondary lymphoid tissues where 
B-cell maturation, differentiation, somatic hypermutation, and class switching of isotypes take place 
[91]. In the current study, the GC development-associated genes, which includes IL-21 produced by 
follicular helper T-cells [61], the regulator of G protein signaling (RGS13) [92], and GC-associated 
nuclear GTPase (NUGGC) [59], were upregulated in the lymph node of CON90-infected animals. 
Thus, PRRSV infection does not seem to impair GC formation and B-cell activation. This is supported 
by the fact that all five CON90-infected pigs developed a robust antibody response, as measured by 
the IDEXX ELISA (Figure 8b). However, only minimal titers of virus-neutralizing antibodies were 
detected at 46 dpi. Perhaps, PRRSV does not suppress the humoral immune response. Instead, the 
virus evades from antibody-mediated neutralization through different mechanisms such as glycan 
shielding and decoy epitopes [93–95]. 

5. Conclusions 

In summary, we identified a robust host transcriptional response in the inguinal lymphoid tissue 
of pigs persistently infected with the attenuated PRRSV strain CON90. Genes involved in the innate 
immune responses are downregulated. Similarly, chemokines and receptors associated with T-cell 
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homing to the lymphoid tissue are downregulated. This might lead to the lower frequencies of virus-
specific T-cells in lymphoid tissue than in peripheral blood. Additionally, the genes involved in the 
anti-apoptotic pathways are upregulated. Collectively, the data suggest that PRRSV can create a pro-
survival microenvironment at the lymphoid tissue which allows the virus to persist for an extended 
period. 

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/12/8/817/s1. Figure 
S1. Representative flow cytometry gating strategy used to identify IFN-γ secreting CD4α+, CD8α+, and 
CD4α+CD8α+ (DP) T cells from PBMCs and ILN. Table S1. Summary of sequencing quality control and mapping 
data of samples. Table S2. DEGs identified in group DMEM vs. CON90. Table S3. Detail information of GO 
enrichment of DEGs in DMEM vs. CON9. Table S4 Detail information of KEGG pathway enrichment of DEGs 
in DMEM vs. CON90. 
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