Next Issue
Volume 13, February
Previous Issue
Volume 12, December
 
 

Viruses, Volume 13, Issue 1 (January 2021) – 142 articles

Cover Story (view full-size image): Stimulated emission depletion image of a porcine alveolar macrophage cell infected with African swine fever virus. Two viral proteins present in the replication area (virus factory) are visualised; the major capsid protein p72 (red) and the structural protein p54 (green). This super-resolution technique clearly shows the ring of capsid protein around these 200 nm virions. The membrane-associated p54 has previously only been seen as a pleomorphic cloud in the factory by confocal microscopy but is seen here to have a reticular nature. At the periphery of the factory, we can see some p54-labelled membrane assembly intermediates feeding into newly formed virions labelled with p72. Image credit Sophie Aicher. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 3423 KiB  
Article
Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding
by Yue Yuan, Caron A. Jacobs, Isabel Llorente Garcia, Pedro M. Pereira, Scott P. Lawrence, Romain F. Laine, Mark Marsh and Ricardo Henriques
Viruses 2021, 13(1), 142; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010142 - 19 Jan 2021
Cited by 8 | Viewed by 4718
Abstract
The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. [...] Read more.
The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For one of the first times, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host CD4+ T cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function. Full article
Show Figures

Figure 1

19 pages, 612 KiB  
Review
Plant Viruses: From Targets to Tools for CRISPR
by Carla M. R. Varanda, Maria do Rosário Félix, Maria Doroteia Campos, Mariana Patanita and Patrick Materatski
Viruses 2021, 13(1), 141; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010141 - 19 Jan 2021
Cited by 34 | Viewed by 6621
Abstract
Plant viruses cause devastating diseases in many agriculture systems, being a serious threat for the provision of adequate nourishment to a continuous growing population. At the present, there are no chemical products that directly target the viruses, and their control rely mainly on [...] Read more.
Plant viruses cause devastating diseases in many agriculture systems, being a serious threat for the provision of adequate nourishment to a continuous growing population. At the present, there are no chemical products that directly target the viruses, and their control rely mainly on preventive sanitary measures to reduce viral infections that, although important, have proved to be far from enough. The current most effective and sustainable solution is the use of virus-resistant varieties, but which require too much work and time to obtain. In the recent years, the versatile gene editing technology known as CRISPR/Cas has simplified the engineering of crops and has successfully been used for the development of viral resistant plants. CRISPR stands for ‘clustered regularly interspaced short palindromic repeats’ and CRISPR-associated (Cas) proteins, and is based on a natural adaptive immune system that most archaeal and some bacterial species present to defend themselves against invading bacteriophages. Plant viral resistance using CRISPR/Cas technology can been achieved either through manipulation of plant genome (plant-mediated resistance), by mutating host factors required for viral infection; or through manipulation of virus genome (virus-mediated resistance), for which CRISPR/Cas systems must specifically target and cleave viral DNA or RNA. Viruses present an efficient machinery and comprehensive genome structure and, in a different, beneficial perspective, they have been used as biotechnological tools in several areas such as medicine, materials industry, and agriculture with several purposes. Due to all this potential, it is not surprising that viruses have also been used as vectors for CRISPR technology; namely, to deliver CRISPR components into plants, a crucial step for the success of CRISPR technology. Here we discuss the basic principles of CRISPR/Cas technology, with a special focus on the advances of CRISPR/Cas to engineer plant resistance against DNA and RNA viruses. We also describe several strategies for the delivery of these systems into plant cells, focusing on the advantages and disadvantages of the use of plant viruses as vectors. We conclude by discussing some of the constrains faced by the application of CRISPR/Cas technology in agriculture and future prospects. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology)
Show Figures

Figure 1

29 pages, 4294 KiB  
Article
Interactions of Viral Proteins from Pathogenic and Low or Non-Pathogenic Orthohantaviruses with Human Type I Interferon Signaling
by Giulia Gallo, Grégory Caignard, Karine Badonnel, Guillaume Chevreux, Samuel Terrier, Agnieszka Szemiel, Gleyder Roman-Sosa, Florian Binder, Quan Gu, Ana Da Silva Filipe, Rainer G. Ulrich, Alain Kohl, Damien Vitour, Noël Tordo and Myriam Ermonval
Viruses 2021, 13(1), 140; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010140 - 19 Jan 2021
Cited by 8 | Viewed by 3705
Abstract
Rodent-borne orthohantaviruses are asymptomatic in their natural reservoir, but they can cause severe diseases in humans. Although an exacerbated immune response relates to hantaviral pathologies, orthohantaviruses have to antagonize the antiviral interferon (IFN) response to successfully propagate in infected cells. We studied interactions [...] Read more.
Rodent-borne orthohantaviruses are asymptomatic in their natural reservoir, but they can cause severe diseases in humans. Although an exacerbated immune response relates to hantaviral pathologies, orthohantaviruses have to antagonize the antiviral interferon (IFN) response to successfully propagate in infected cells. We studied interactions of structural and nonstructural (NSs) proteins of pathogenic Puumala (PUUV), low-pathogenic Tula (TULV), and non-pathogenic Prospect Hill (PHV) viruses, with human type I and III IFN (IFN-I and IFN-III) pathways. The NSs proteins of all three viruses inhibited the RIG-I-activated IFNβ promoter, while only the glycoprotein precursor (GPC) of PUUV, or its cleavage product Gn/Gc, and the nucleocapsid (N) of TULV inhibited it. Moreover, the GPC of both PUUV and TULV antagonized the promoter of IFN-stimulated responsive elements (ISRE). Different viral proteins could thus contribute to inhibition of IFNβ response in a viral context. While PUUV and TULV strains replicated similarly, whether expressing entire or truncated NSs proteins, only PUUV encoding a wild type NSs protein led to late IFN expression and activation of IFN-stimulated genes (ISG). This, together with the identification of particular domains of NSs proteins and different biological processes that are associated with cellular proteins in complex with NSs proteins, suggested that the activation of IFN-I is probably not the only antiviral pathway to be counteracted by orthohantaviruses and that NSs proteins could have multiple inhibitory functions. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses)
Show Figures

Figure 1

15 pages, 4921 KiB  
Article
RSV and HMPV Infections in 3D Tissue Cultures: Mechanisms Involved in Virus-Host and Virus-Virus Interactions
by Johan Geiser, Guy Boivin, Song Huang, Samuel Constant, Laurent Kaiser, Caroline Tapparel and Manel Essaidi-Laziosi
Viruses 2021, 13(1), 139; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010139 - 19 Jan 2021
Cited by 17 | Viewed by 3638
Abstract
Respiratory viral infections constitute a global public health concern. Among prevalent respiratory viruses, two pneumoviruses can be life-threatening in high-risk populations. In young children, they constitute the first cause of hospitalization due to severe lower respiratory tract diseases. A better understanding of their [...] Read more.
Respiratory viral infections constitute a global public health concern. Among prevalent respiratory viruses, two pneumoviruses can be life-threatening in high-risk populations. In young children, they constitute the first cause of hospitalization due to severe lower respiratory tract diseases. A better understanding of their pathogenesis is still needed as there are no approved efficient anti-viral nor vaccine against pneumoviruses. We studied Respiratory Syncytial virus (RSV) and human Metapneumovirus (HMPV) in single and dual infections in three-dimensional cultures, a highly relevant model to study viral respiratory infections of the airway epithelium. Our investigation showed that HMPV is less pathogenic than RSV in this model. Compared to RSV, HMPV replicated less efficiently, induced a lower immune response, did not block cilia beating, and was more sensitive to IFNs. In dual infections, RSV-infected epithelia were less permissive to HMPV. By neutralizing IFNs in co-infection assays, we partially prevented HMPV inhibition by RSV and significantly increased the number of co-infected cells in the tissue. This suggests that interference in dual infection would be at least partly mediated by the host immune response. In summary, this work provides new insight regarding virus-host and virus-virus interactions of pneumoviruses in the airway epithelium. This could be helpful for the proper handling of at-risk patients. Full article
(This article belongs to the Special Issue The Application of 3D Tissue Culture Systems in Virology)
Show Figures

Figure 1

21 pages, 5952 KiB  
Article
A Novel In Vitro Culture Model System to Study Merkel Cell Polyomavirus–Associated MCC Using Three-Dimensional Organotypic Raft Equivalents of Human Skin
by Amanda S. W. Loke, B. Jack Longley, Paul F. Lambert and Megan E. Spurgeon
Viruses 2021, 13(1), 138; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010138 - 19 Jan 2021
Cited by 6 | Viewed by 2901
Abstract
Merkel cell polyomavirus (MCPyV) is a human polyomavirus causally linked to the development of Merkel cell carcinoma (MCC), an aggressive malignancy that largely arises within the dermis of the skin. In this study, we recapitulate the histopathology of human MCC tumors in vitro [...] Read more.
Merkel cell polyomavirus (MCPyV) is a human polyomavirus causally linked to the development of Merkel cell carcinoma (MCC), an aggressive malignancy that largely arises within the dermis of the skin. In this study, we recapitulate the histopathology of human MCC tumors in vitro using an organotypic (raft) culture system that is traditionally used to recapitulate the dermal and epidermal equivalents of skin in three dimensions (3D). In the optimal culture condition, MCPyV+ MCC cells were embedded in collagen between the epidermal equivalent comprising human keratinocytes and a dermal equivalent containing fibroblasts, resulting in MCC-like lesions arising within the dermal equivalent. The presence and organization of MCC cells within these dermal lesions were characterized through biomarker analyses. Interestingly, co-culture of MCPyV+ MCC together with keratinocytes specifically within the epidermal equivalent of the raft did not reproduce human MCC morphology, nor were any keratinocytes necessary for MCC-like lesions to develop in the dermal equivalent. This 3D tissue culture system provides a novel in vitro platform for studying the role of MCPyV T antigens in MCC oncogenesis, identifying additional factors involved in this process, and for screening potential MCPyV+ MCC therapeutic strategies. Full article
(This article belongs to the Special Issue The Application of 3D Tissue Culture Systems in Virology)
Show Figures

Figure 1

12 pages, 928 KiB  
Article
Semipersistently Transmitted, Phloem Limited Plant Viruses Are Inoculated during the First Subphase of Intracellular Stylet Penetrations in Phloem Cells
by Jaime Jiménez, Aránzazu Moreno and Alberto Fereres
Viruses 2021, 13(1), 137; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010137 - 19 Jan 2021
Cited by 6 | Viewed by 2738
Abstract
The green peach aphid Myzus persicae Sulzer is the main vector of the semipersistently transmitted and phloem-limited Beet yellows virus (BYV, Closterovirus). Studies monitoring the M. persicae probing behavior by using the Electrical penetration graphs (EPG) technique revealed that inoculation of BYV [...] Read more.
The green peach aphid Myzus persicae Sulzer is the main vector of the semipersistently transmitted and phloem-limited Beet yellows virus (BYV, Closterovirus). Studies monitoring the M. persicae probing behavior by using the Electrical penetration graphs (EPG) technique revealed that inoculation of BYV occurs during unique brief intracellular punctures (phloem-pds) produced in companion and/or sieve element cells. Intracellular stylet punctures (or pds) are subdivided in three subphases (II-1, II-2 and II-3), which have been related to the delivery or uptake of non-phloem limited viruses transmitted in a non-persistent or semipersistent manner. As opposed to non-phloem limited viruses, the specific pd subphase(s) involved in the successful delivery of phloem limited viruses by aphids remain unknown. Therefore, we monitored the feeding process of BYV-carrying M. persicae individuals in sugar beet plants by the EPG technique and the feeding process was artificially terminated at each phloem-pd subphase. Results revealed that aphids that only performed the subphase II-1 of the phloem-pd transmitted BYV at similar efficiency than those allowed to perform subphase II-2 or the complete phloem-pd. This result suggests that BYV inoculation occurs during the first subphase of the phloem-pd. The specific transmission mechanisms involved in BYV delivery in phloem cells are discussed. Full article
(This article belongs to the Special Issue Closteroviridae)
Show Figures

Figure 1

16 pages, 2784 KiB  
Article
Structural Mapping of Mutations in Spike, RdRp and Orf3a Genes of SARS-CoV-2 in Influenza Like Illness (ILI) Patients
by Bandar Alosaimi, Asif Naeem, Majed F. Alghoribi, Lilian Okdah, Maaweya E. Hamed, Ahmad S. AlYami, Athari Alotaibi and Mushira Enani
Viruses 2021, 13(1), 136; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010136 - 19 Jan 2021
Cited by 4 | Viewed by 3495
Abstract
In December 2019, the emergence of SARS-CoV-2 virus in China led to a pandemic. Since both Influenza Like Illness (ILI) and COVID-19 case definitions overlap, we re-investigated the ILI cases using PCR for the presence of SARS-CoV-2 in 739 nasopharyngeal swabs collected from [...] Read more.
In December 2019, the emergence of SARS-CoV-2 virus in China led to a pandemic. Since both Influenza Like Illness (ILI) and COVID-19 case definitions overlap, we re-investigated the ILI cases using PCR for the presence of SARS-CoV-2 in 739 nasopharyngeal swabs collected from November 2019 to March 2020. SARS-CoV-2 RNA was found in 37 samples (5%) collected mostly during February 2020. It was followed by confirmation of evolutionary and spatial relationships using next generation sequencing (NGS). We observed that the overall incidence of ILI cases during 2019–2020 influenza season was considerably higher than previous years and was gradually replaced with SARS-CoV-2, which indicated a silent transmission among ambulatory patients. Sequencing of representative isolates confirmed independent introductions and silent transmission earlier than previously thought. Evolutionary and spatial analyses revealed clustering in the GH clade, characterized by three amino acid substitutions in spike gene (D614G), RdRp (P323L) and NS3 (Q57H). P323L causes conformational change near nsp8 binding site that might affect virus replication and transcription. In conclusion, assessment of the community transmission among patients with mild COVID-19 illness, particularly those without epidemiological link for acquiring the virus, is of utmost importance to guide policy makers to optimize public health interventions. The detection of SARS-CoV-2 in ILI cases shows the importance of ILI surveillance systems and warrants its further strengthening to mitigate the ongoing transmission of SARS-CoV-2. The effect of NS3 substitutions on oligomerization or membrane channel function (intra- and extracellular) needs functional validation. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

19 pages, 4111 KiB  
Article
The Urinary Polyomavirus-Haufen Test: A Highly Predictive Non-Invasive Biomarker to Distinguish “Presumptive” from “Definitive” Polyomavirus Nephropathy: How to Use It—When to Use It—How Does It Compare to PCR Based Assays?
by Volker Nickeleit, Vicki G. Davis, Bawana Thompson and Harsharan K. Singh
Viruses 2021, 13(1), 135; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010135 - 19 Jan 2021
Cited by 4 | Viewed by 2735
Abstract
“Definitive” biopsy proven polyomavirus nephropathy (PyVN), usually caused by BK polyomavirus (BKPyV), remains a significant infection of kidney transplants. Diagnosis depends upon an allograft biopsy and outcome depends upon early intervention. Here, we report data on a non-invasive biomarker for PyVN, the urinary [...] Read more.
“Definitive” biopsy proven polyomavirus nephropathy (PyVN), usually caused by BK polyomavirus (BKPyV), remains a significant infection of kidney transplants. Diagnosis depends upon an allograft biopsy and outcome depends upon early intervention. Here, we report data on a non-invasive biomarker for PyVN, the urinary PyV-Haufen test. Test results were compared to those of conventional laboratory assays targeting PyV replication, i.e., BKPy-viremia, -viruria and urinary decoy cell shedding. Of 809 kidney transplant recipients, 228 (28%) showed PyV replication with decoy cell shedding and/or BKPy-viremia by quantitative PCR; only a subset of 81/228 (36%) showed “definitive” PyVN. Sensitivity and specificity for identifying patients with PyVN was: 100% and 98%, respectively, urinary PyV-Haufen test; 50% and 54%, respectively, urinary decoy cell shedding; 97% and 32%, respectively, BKPy-viremia with cut-off of ≥250 viral copies/mL; 66% and 80%, respectively, for BKPy-viremia ≥104 viral copies/mL. The PyV-Haufen test showed a very strong correlation with the severity of PyVN (Spearman’s ρ = 0.84) and the Banff PyVN disease classes (p < 0.001). In comparison, BKPy-viremia and -viruria levels by PCR displayed modest correlations with PyVN severity (Spearman’s ρ = 0.35 and 0.36, respectively) and were not significantly associated with disease classes. No association was found between decoy cell shedding and PyVN severity or disease classes. Pilot data demonstrated that PyVN resolution with decreasing Banff pvl-scores was reflected by a gradual decrease in PyV-Haufen shedding; such a tight association was not noted for BKPy-viremia. In conclusion, urinary PyV-Haufen testing is a highly specific, non-invasive method to accurately diagnose patients with “definitive” PyVN and to optimize patient management. Assay specifics are discussed. Full article
(This article belongs to the Special Issue Polyomaviruses)
Show Figures

Figure 1

24 pages, 15350 KiB  
Review
Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies
by Maxwell T. Finkelstein, Adam G. Mermelstein, Emma Parker Miller, Paul C. Seth, Erik-Stephane D. Stancofski and Daniela Fera
Viruses 2021, 13(1), 134; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010134 - 19 Jan 2021
Cited by 46 | Viewed by 9562
Abstract
Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) [...] Read more.
Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) that can be used therapeutically and prophylactically and for vaccines against SARS-CoV-2. Structural studies with SARS-CoV-2 neutralizing mAbs have revealed a diverse set of binding modes on the spike’s receptor-binding domain and N-terminal domain and highlight alternative targets on the spike. We consider this structural work together with mAb effects in vivo to suggest correlations between structure and clinical applications. We also place mAbs against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses in the context of the SARS-CoV-2 spike to suggest features that may be desirable to design mAbs or vaccines capable of conferring broad protection. Full article
(This article belongs to the Special Issue Antibodies and B Cell Memory in Viral Immunity)
Show Figures

Figure 1

15 pages, 1508 KiB  
Article
Intra-Host Diversity of SARS-Cov-2 Should Not Be Neglected: Case of the State of Victoria, Australia
by Alix Armero, Nicolas Berthet and Jean-Christophe Avarre
Viruses 2021, 13(1), 133; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010133 - 19 Jan 2021
Cited by 35 | Viewed by 6068
Abstract
Since the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the etiological agent of the current COVID-19 pandemic, a rapid and massive effort has been made to obtain the genomic sequences of this virus to monitor (in near real time) the [...] Read more.
Since the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the etiological agent of the current COVID-19 pandemic, a rapid and massive effort has been made to obtain the genomic sequences of this virus to monitor (in near real time) the phylodynamic and diversity of this new pathogen. However, less attention has been given to the assessment of intra-host diversity. RNA viruses such as SARS-CoV-2 inhabit the host as a population of variants called quasispecies. We studied the quasispecies diversity in four of the main SARS-CoV-2 genes (ORF1a, ORF1b, S and N genes), using a dataset consisting of 210 next-generation sequencing (NGS) samples collected between January and early April of 2020 in the State of Victoria, Australia. We found evidence of quasispecies diversity in 68% of the samples, 76% of which was nonsynonymous variants with a higher density in the spike (S) glycoprotein and ORF1a genes. About one-third of the nonsynonymous intra-host variants were shared among the samples, suggesting host-to-host transmission. Quasispecies diversity changed over time. Phylogenetic analysis showed that some of the intra-host single-nucleotide variants (iSNVs) were restricted to specific lineages, highlighting their potential importance in the epidemiology of this virus. A greater effort must be made to determine the magnitude of the genetic bottleneck during transmission and the epidemiological and/or evolutionary factors that may play a role in the changes in the diversity of quasispecies over time. Full article
(This article belongs to the Special Issue Viral Genetic Diversity)
Show Figures

Figure 1

12 pages, 2286 KiB  
Article
Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18-hACE2 Mice
by Pratima Kumari, Hussin A. Rothan, Janhavi P. Natekar, Shannon Stone, Heather Pathak, Philip G. Strate, Komal Arora, Margo A. Brinton and Mukesh Kumar
Viruses 2021, 13(1), 132; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010132 - 19 Jan 2021
Cited by 171 | Viewed by 47493
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can cause neurological disease in humans, but little is known about the pathogenesis of SARS-CoV-2 infection in the central nervous system (CNS). Herein, using K18-hACE2 mice, we demonstrate that SARS-CoV-2 neuroinvasion and encephalitis is associated with [...] Read more.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can cause neurological disease in humans, but little is known about the pathogenesis of SARS-CoV-2 infection in the central nervous system (CNS). Herein, using K18-hACE2 mice, we demonstrate that SARS-CoV-2 neuroinvasion and encephalitis is associated with mortality in these mice. Intranasal infection of K18-hACE2 mice with 105 plaque-forming units of SARS-CoV-2 resulted in 100% mortality by day 6 after infection. The highest virus titers in the lungs were observed on day 3 and declined on days 5 and 6 after infection. By contrast, very high levels of infectious virus were uniformly detected in the brains of all the animals on days 5 and 6. Onset of severe disease in infected mice correlated with peak viral levels in the brain. SARS-CoV-2-infected mice exhibited encephalitis hallmarks characterized by production of cytokines and chemokines, leukocyte infiltration, hemorrhage and neuronal cell death. SARS-CoV-2 was also found to productively infect cells within the nasal turbinate, eye and olfactory bulb, suggesting SARS-CoV-2 entry into the brain by this route after intranasal infection. Our data indicate that direct infection of CNS cells together with the induced inflammatory response in the brain resulted in the severe disease observed in SARS-CoV-2-infected K18-hACE2 mice. Full article
(This article belongs to the Special Issue Pathogenesis of Human and Animal Coronaviruses)
Show Figures

Figure 1

17 pages, 4306 KiB  
Article
Analysis and Molecular Determinants of HIV RNase H Cleavage Specificity at the PPT/U3 Junction
by Mar Álvarez, Enrique Sapena-Ventura, Joanna Luczkowiak, Samara Martín-Alonso and Luis Menéndez-Arias
Viruses 2021, 13(1), 131; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010131 - 18 Jan 2021
Cited by 2 | Viewed by 2986
Abstract
HIV reverse transcriptases (RTs) convert viral genomic RNA into double-stranded DNA. During reverse transcription, polypurine tracts (PPTs) resilient to RNase H cleavage are used as primers for plus-strand DNA synthesis. Nonnucleoside RT inhibitors (NNRTIs) can interfere with the initiation of plus-strand DNA synthesis [...] Read more.
HIV reverse transcriptases (RTs) convert viral genomic RNA into double-stranded DNA. During reverse transcription, polypurine tracts (PPTs) resilient to RNase H cleavage are used as primers for plus-strand DNA synthesis. Nonnucleoside RT inhibitors (NNRTIs) can interfere with the initiation of plus-strand DNA synthesis by enhancing PPT removal, while HIV RT connection subdomain mutations N348I and N348I/T369I mitigate this effect by altering RNase H cleavage specificity. Now, we demonstrate that among approved nonnucleoside RT inhibitors (NNRTIs), nevirapine and doravirine show the largest effects. The combination N348I/T369I in HIV-1BH10 RT has a dominant effect on the RNase H cleavage specificity at the PPT/U3 site. Biochemical studies showed that wild-type HIV-1 and HIV-2 RTs were able to process efficiently and accurately all tested HIV PPT sequences. However, the cleavage accuracy at the PPT/U3 junction shown by the HIV-2EHO RT was further improved after substituting the sequence YQEPFKNLKT of HIV-1BH10 RT (positions 342–351) for the equivalent residues of the HIV-2 enzyme (HQGDKILKV). Our results highlight the role of β-sheets 17 and 18 and their connecting loop (residues 342–350) in the connection subdomain of the large subunit, in determining the RNase H cleavage window of HIV RTs. Full article
(This article belongs to the Special Issue In Memory of Stephen Oroszlan)
Show Figures

Figure 1

13 pages, 451 KiB  
Article
Prevalence of Co-Infections with Respiratory Viruses in Individuals Investigated for SARS-CoV-2 in Ontario, Canada
by Adriana Peci, Vanessa Tran, Jennifer L. Guthrie, Ye Li, Paul Nelson, Kevin L. Schwartz, AliReza Eshaghi, Sarah A. Buchan and Jonathan B. Gubbay
Viruses 2021, 13(1), 130; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010130 - 18 Jan 2021
Cited by 24 | Viewed by 3930
Abstract
Background: Co-infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with respiratory viruses, bacteria and fungi have been reported to cause a wide range of illness. Objectives: We assess the prevalence of co-infection of SARS-CoV-2 with seasonal respiratory viruses, document the respiratory viruses [...] Read more.
Background: Co-infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with respiratory viruses, bacteria and fungi have been reported to cause a wide range of illness. Objectives: We assess the prevalence of co-infection of SARS-CoV-2 with seasonal respiratory viruses, document the respiratory viruses detected among individuals tested for SARS-CoV-2, and describe characteristics of individuals with respiratory virus co-infection detected. Methods: Specimens included in this study were submitted as part of routine clinical testing to Public Health Ontario Laboratory from individuals requiring testing for SARS-CoV-2 and/or seasonal respiratory viruses. Results: Co-infection was detected in a smaller proportion (2.5%) of individuals with laboratory confirmed SARS-CoV-2 than those with seasonal respiratory viruses (4.3%); this difference was not significant. Individuals with any respiratory virus co-infection were more likely to be younger than 65 years of age and male than those with single infection. Those with SARS-CoV-2 co-infection manifested mostly mild respiratory symptoms. Conclusions: Findings of this study may not support routine testing for seasonal respiratory viruses among all individuals tested for SARS-CoV-2, as they were rare during the study period nor associated with severe disease. However, testing for seasonal respiratory viruses should be performed in severely ill individuals, in which detection of other viruses may assist with patient management. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

13 pages, 2048 KiB  
Article
Effect of Small Polyanions on In Vitro Assembly of Selected Members of Alpha-, Beta- and Gammaretroviruses
by Alžběta Dostálková, Barbora Vokatá, Filip Kaufman, Pavel Ulbrich, Tomáš Ruml and Michaela Rumlová
Viruses 2021, 13(1), 129; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010129 - 18 Jan 2021
Cited by 4 | Viewed by 3315
Abstract
The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and [...] Read more.
The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed. Full article
(This article belongs to the Special Issue Molecular Determinants of Enveloped Virus Assembly)
Show Figures

Figure 1

13 pages, 5193 KiB  
Article
Antiviral Screen against Canine Distemper Virus-Induced Membrane Fusion Activity
by Neeta Shrestha, Flavio M. Gall, Jonathan Vesin, Marc Chambon, Gerardo Turcatti, Dimitrios Fotiadis, Rainer Riedl and Philippe Plattet
Viruses 2021, 13(1), 128; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010128 - 18 Jan 2021
Cited by 7 | Viewed by 3543
Abstract
Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a [...] Read more.
Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

12 pages, 1971 KiB  
Article
Gaps in Serologic Immunity against Contemporary Swine-Origin Influenza A Viruses among Healthy Individuals in the United States
by Joshua N. Lorbach, Theresa Fitzgerald, Carolyn Nolan, Jacqueline M. Nolting, John J. Treanor, David J. Topham and Andrew S. Bowman
Viruses 2021, 13(1), 127; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010127 - 18 Jan 2021
Cited by 5 | Viewed by 2416
Abstract
Influenza A Viruses (IAV) in domestic swine (IAV-S) are associated with sporadic zoonotic transmission at the human–animal interface. Previous pandemic IAVs originated from animals, which emphasizes the importance of characterizing human immunity against the increasingly diverse IAV-S. We analyzed serum samples from healthy [...] Read more.
Influenza A Viruses (IAV) in domestic swine (IAV-S) are associated with sporadic zoonotic transmission at the human–animal interface. Previous pandemic IAVs originated from animals, which emphasizes the importance of characterizing human immunity against the increasingly diverse IAV-S. We analyzed serum samples from healthy human donors (n = 153) using hemagglutination-inhibition (HAI) assay to assess existing serologic protection against a panel of contemporary IAV-S isolated from swine in the United States (n = 11). Age-specific seroprotection rates (SPR), which are the proportion of individuals with HAI ≥ 1:40, corresponded with lower or moderate pandemic risk classifications for the multiple IAV-S examined (one H1-δ1, one H1-δ2, three H3-IVA, one H3-IVB, one H3-IVF). Individuals born between 2004 and 2013 had SPRs of 0% for the five classified H3 subtype IAV-S, indicating youth may be particularly predisposed to infection with these viruses. Expansion of existing immunologic gaps over time could increase likelihood of future IAV-S spillover to humans and facilitate subsequent sustained human-to-human transmission resulting in disease outbreaks with pandemic potential. Full article
(This article belongs to the Special Issue Viral Cross-Species Transmission)
Show Figures

Figure 1

14 pages, 1513 KiB  
Review
Formation and Function of Liquid-Like Viral Factories in Negative-Sense Single-Stranded RNA Virus Infections
by Justin M. Su, Maxwell Z. Wilson, Charles E. Samuel and Dzwokai Ma
Viruses 2021, 13(1), 126; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010126 - 18 Jan 2021
Cited by 25 | Viewed by 8475
Abstract
Liquid–liquid phase separation (LLPS) represents a major physiochemical principle to organize intracellular membrane-less structures. Studies with non-segmented negative-sense (NNS) RNA viruses have uncovered a key role of LLPS in the formation of viral inclusion bodies (IBs), sites of viral protein concentration in the [...] Read more.
Liquid–liquid phase separation (LLPS) represents a major physiochemical principle to organize intracellular membrane-less structures. Studies with non-segmented negative-sense (NNS) RNA viruses have uncovered a key role of LLPS in the formation of viral inclusion bodies (IBs), sites of viral protein concentration in the cytoplasm of infected cells. These studies further reveal the structural and functional complexity of viral IB factories and provide a foundation for their future research. Herein, we review the literature leading to the discovery of LLPS-driven formation of IBs in NNS RNA virus-infected cells and the identification of viral scaffold components involved, and then outline important questions and challenges for IB assembly and disassembly. We discuss the functional implications of LLPS in the life cycle of NNS RNA viruses and host responses to infection. Finally, we speculate on the potential mechanisms underlying IB maturation, a phenomenon relevant to many human diseases. Full article
(This article belongs to the Topic Liquid-Liquid Phase Separation)
Show Figures

Figure 1

14 pages, 3648 KiB  
Review
HIV Capsid and Integration Targeting
by Alan N. Engelman
Viruses 2021, 13(1), 125; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010125 - 18 Jan 2021
Cited by 28 | Viewed by 4523
Abstract
Integration of retroviral reverse transcripts into the chromosomes of the cells that they infect is required for efficient viral gene expression and the inheritance of viral genomes to daughter cells. Before integration can occur, retroviral reverse transcription complexes (RTCs) must access the nuclear [...] Read more.
Integration of retroviral reverse transcripts into the chromosomes of the cells that they infect is required for efficient viral gene expression and the inheritance of viral genomes to daughter cells. Before integration can occur, retroviral reverse transcription complexes (RTCs) must access the nuclear environment where the chromosomes reside. Retroviral integration is non-random, with different types of virus-host interactions impacting where in the host chromatin integration takes place. Lentiviruses such as HIV efficiently infect interphase cells because their RTCs have evolved to usurp cellular nuclear import transport mechanisms, and research over the past decade has revealed specific interactions between the HIV capsid protein and nucleoporin (Nup) proteins such as Nup358 and Nup153. The interaction of HIV capsid with cleavage and polyadenylation specificity factor 6 (CPSF6), which is a component of the cellular cleavage and polyadenylation complex, helps to dictate nuclear import as well as post-nuclear RTC invasion. In the absence of the capsid-CPSF6 interaction, RTCs are precluded from reaching nuclear speckles and gene-rich regions of chromatin known as speckle-associated domains, and instead mis-target lamina-associated domains out at the nuclear periphery. Highlighting this area of research, small molecules that inhibit capsid-host interactions important for integration site targeting are highly potent antiviral compounds. Full article
(This article belongs to the Special Issue Capsid-Targeting Antivirals and Host Factors)
Show Figures

Figure 1

14 pages, 518 KiB  
Review
Update on the Transmission of Zika Virus Through Breast Milk and Breastfeeding: A Systematic Review of the Evidence
by Elizabeth Centeno-Tablante, Melisa Medina-Rivera, Julia L. Finkelstein, Heather S. Herman, Pura Rayco-Solon, Maria Nieves Garcia-Casal, Lisa Rogers, Kate Ghezzi-Kopel, Mildred P. Zambrano Leal, Joyce K. Andrade Velasquez, Juan G. Chang Asinc, Juan Pablo Peña-Rosas and Saurabh Mehta
Viruses 2021, 13(1), 123; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010123 - 18 Jan 2021
Cited by 12 | Viewed by 3000
Abstract
We systematically searched regional and international databases and screened 1658 non-duplicate records describing women with suspected or confirmed ZIKV infection, intending to breastfeed or give breast milk to an infant to examine the potential of mother-to-child transmission of Zika virus (ZIKV) through breast [...] Read more.
We systematically searched regional and international databases and screened 1658 non-duplicate records describing women with suspected or confirmed ZIKV infection, intending to breastfeed or give breast milk to an infant to examine the potential of mother-to-child transmission of Zika virus (ZIKV) through breast milk or breastfeeding-related practices. Fourteen studies met our inclusion criteria and inform this analysis. These studies reported on 97 mother–children pairs who provided breast milk for ZIKV assessment. Seventeen breast milk samples from different women were found positive for ZIKV via RT-PCR, and ZIKV replication was found in cell cultures from five out of seven breast milk samples from different women. Only three out of six infants who had ZIKV infection were breastfed, no evidence of clinical complications was found to be associated with ZIKV RNA in breast milk. This review updates our previous report by including 12 new articles, in which we found no evidence of ZIKV mother-to-child transmission through breast milk intake or breastfeeding. As the certainty of the present evidence is low, additional studies are still warranted to determine if ZIKV can be transmitted through breastfeeding. Full article
(This article belongs to the Special Issue Zika Virus: Unanswered Questions)
Show Figures

Figure 1

11 pages, 748 KiB  
Review
The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present
by Keiya Uriu, Yusuke Kosugi, Jumpei Ito and Kei Sato
Viruses 2021, 13(1), 124; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010124 - 17 Jan 2021
Cited by 28 | Viewed by 4845
Abstract
The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. [...] Read more.
The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. At present, lentiviruses, including HIV, the causative agent of AIDS, are known to encode a viral protein called Vif to overcome the antiviral effects of the APOBEC3 proteins of their hosts. Recent studies have revealed that the acquisition of an anti-APOBEC3 ability by lentiviruses is a key step in achieving successful cross-species transmission. Here, we summarize the current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections and introduce a scenario of the coevolution of mammalian APOBEC3 genes and viruses. Full article
(This article belongs to the Special Issue APOBECs and Virus Restriction)
Show Figures

Figure 1

15 pages, 6705 KiB  
Article
Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism
by Xiaoyu Niu, Yixuan J. Hou, Kwonil Jung, Fanzhi Kong, Linda J. Saif and Qiuhong Wang
Viruses 2021, 13(1), 122; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010122 - 17 Jan 2021
Cited by 9 | Viewed by 3307
Abstract
Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. [...] Read more.
Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62–10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92–8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07–7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1–4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage. Full article
(This article belongs to the Special Issue Enteric Viruses in Animals)
Show Figures

Figure 1

10 pages, 8621 KiB  
Article
Quinacrine, an Antimalarial Drug with Strong Activity Inhibiting SARS-CoV-2 Viral Replication In Vitro
by Mónica Salas Rojas, Raúl Silva Garcia, Estela Bini, Verónica Pérez de la Cruz, Juan Carlos León Contreras, Rogelio Hernández Pando, Fernando Bastida Gonzalez, Eduardo Davila-Gonzalez, Mario Orozco Morales, Armando Gamboa Domínguez, Julio Sotelo and Benjamín Pineda
Viruses 2021, 13(1), 121; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010121 - 17 Jan 2021
Cited by 19 | Viewed by 3937
Abstract
Quinacrine (Qx), a molecule used as an antimalarial, has shown anticancer, antiprion, and antiviral activity. The most relevant antiviral activities of Qx are related to its ability to raise pH in acidic organelles, diminishing viral enzymatic activity for viral cell entry, and its [...] Read more.
Quinacrine (Qx), a molecule used as an antimalarial, has shown anticancer, antiprion, and antiviral activity. The most relevant antiviral activities of Qx are related to its ability to raise pH in acidic organelles, diminishing viral enzymatic activity for viral cell entry, and its ability to bind to viral DNA and RNA. Moreover, Qx has been used as an immunomodulator in cutaneous lupus erythematosus and various rheumatological diseases, by inhibiting phospholipase A2 modulating the Th1/Th2 response. The aim of this study was to evaluate the potential antiviral effect of Qx against denominated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Vero E6 cells. The cytotoxicity of Qx in Vero E6 cells was determined by the MTT assay. Afterwards, Vero E6 cells were infected with SARS-CoV-2 at different multiplicities of infections (MOIs) of 0.1 and 0.01 in the presence of Qx (0–30 µM) to determinate the half maximal effective concentration (EC50). After 48 h, the effect of Qx against SARS-CoV-2 was assessed by viral cytotoxicity and viral copy numbers, the last were determined by digital real-time RT-PCR (ddRT-PCR). Additionally, electron and confocal microscopy of Vero E6 cells infected and treated with Qx was studied. Our data show that Qx reduces SARS-CoV-2 virus replication and virus cytotoxicity, apparently by inhibition of viral ensemble, as observed by ultrastructural images, suggesting that Qx could be a potential drug for further clinical studies against coronavirus disease 2019 (COVID-19) infection. Full article
(This article belongs to the Special Issue Drug-Repositioning Opportunities for Antiviral Therapy)
Show Figures

Figure 1

15 pages, 1360 KiB  
Article
Environmental Surveillance through Next-Generation Sequencing to Unveil the Diversity of Human Enteroviruses beyond the Reported Clinical Cases
by Andrés Lizasoain, Daiana Mir, Gisella Masachessi, Adrián Farías, Nélida Rodríguez-Osorio, Matías Victoria, Silvia Nates and Rodney Colina
Viruses 2021, 13(1), 120; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010120 - 17 Jan 2021
Cited by 6 | Viewed by 2395
Abstract
The knowledge about circulation of Human Enteroviruses (EVs) obtained through medical diagnosis in Argentina is scarce. Wastewater samples monthly collected in Córdoba, Argentina during 2011–2012, and then in 2017–2018 were retrospectively studied to assess the diversity of EVs in the community. Partial VP1 [...] Read more.
The knowledge about circulation of Human Enteroviruses (EVs) obtained through medical diagnosis in Argentina is scarce. Wastewater samples monthly collected in Córdoba, Argentina during 2011–2012, and then in 2017–2018 were retrospectively studied to assess the diversity of EVs in the community. Partial VP1 gene was amplified by PCR from wastewater concentrates, and amplicons were subject of next-generation sequencing and genetic analyses. There were 41 EVs detected, from which ~50% had not been previously reported in Argentina. Most of the characterized EVs (60%) were detected at both sampling periods, with similar values of intratype nucleotide diversity. Exceptions were enterovirus A71, coxsackievirus B4, echovirus 14, and echovirus 30, which diversified in 2017–2018. There was a predominance of types from EV-C in 2017–2018, evidencing a common circulation of these types throughout the year in the community. Interestingly, high genetic similarity was evidenced among environmental strains of echovirus 30 circulating in 2011–2012 and co-temporal isolates obtained from patients suffering aseptic meningitis in different locations of Argentina. This study provides an updated insight about EVs circulating in an important region of South America, and suggests a valuable role of wastewater-based epidemiology in predicting outbreaks before the onset of cases in the community. Full article
(This article belongs to the Special Issue Surveillance for Polio and Non-polio Enteroviruses)
Show Figures

Figure 1

11 pages, 1256 KiB  
Article
Respiratory Syncytial Virus G Protein Sequence Variability among Isolates from St. Petersburg, Russia, during the 2013–2014 Epidemic Season
by Vera Krivitskaya, Kseniya Komissarova, Maria Pisareva, Maria Sverlova, Artem Fadeev, Ekaterina Petrova, Veronika Timonina, Anna Sominina and Daria Danilenko
Viruses 2021, 13(1), 119; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010119 - 17 Jan 2021
Cited by 4 | Viewed by 2050
Abstract
Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of [...] Read more.
Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January–April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 283 KiB  
Review
Cellular Receptors Involved in KSHV Infection
by Emma van der Meulen, Meg Anderton, Melissa J. Blumenthal and Georgia Schäfer
Viruses 2021, 13(1), 118; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010118 - 17 Jan 2021
Cited by 10 | Viewed by 3417
Abstract
The process of Kaposi’s Sarcoma Herpes Virus’ (KSHV) entry into target cells is complex and engages several viral glycoproteins which bind to a large range of host cell surface molecules. Receptors for KSHV include heparan sulphate proteoglycans (HSPGs), several integrins and Eph receptors, [...] Read more.
The process of Kaposi’s Sarcoma Herpes Virus’ (KSHV) entry into target cells is complex and engages several viral glycoproteins which bind to a large range of host cell surface molecules. Receptors for KSHV include heparan sulphate proteoglycans (HSPGs), several integrins and Eph receptors, cystine/glutamate antiporter (xCT) and Dendritic Cell-Specific Intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This diverse range of potential binding and entry sites allows KSHV to have a broad cell tropism, and entry into specific cells is dependent on the available receptor repertoire. Several molecules involved in KSHV entry have been well characterized, particularly those postulated to be associated with KSHV-associated pathologies such as Kaposi’s Sarcoma (KS). In this review, KSHV infection of specific cell types pertinent to its pathogenesis will be comprehensively summarized with a focus on the specific cell surface binding and entry receptors KSHV exploits to gain access to a variety of cell types. Gaps in the current literature regarding understanding interactions between KSHV glycoproteins and cellular receptors in virus infection are identified which will lead to the development of virus infection intervention strategies. Full article
(This article belongs to the Special Issue Virus Receptors and Viral Tropism)
17 pages, 3572 KiB  
Article
MicroRNAs for Virus Pathogenicity and Host Responses, Identified in SARS-CoV-2 Genomes, May Play Roles in Viral-Host Co-Evolution in Putative Zoonotic Host Species
by Sigrun Lange, Elif Damla Arisan, Guy H. Grant and Pinar Uysal-Onganer
Viruses 2021, 13(1), 117; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010117 - 16 Jan 2021
Cited by 6 | Viewed by 4466
Abstract
Our recent study identified seven key microRNAs (miR-8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) similar between SARS-CoV-2 and the human genome, pointing at miR-related mechanisms in viral entry and the regulatory effects on host immunity. To identify the putative roles of these miRs [...] Read more.
Our recent study identified seven key microRNAs (miR-8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) similar between SARS-CoV-2 and the human genome, pointing at miR-related mechanisms in viral entry and the regulatory effects on host immunity. To identify the putative roles of these miRs in zoonosis, we assessed their conservation, compared with humans, in some key wild and domestic animal carriers of zoonotic viruses, including bat, pangolin, pig, cow, rat, and chicken. Out of the seven miRs under study, miR-3611 was the most strongly conserved across all species; miR-5197 was the most conserved in pangolin, pig, cow, bat, and rat; miR-1307 was most strongly conserved in pangolin, pig, cow, bat, and human; miR-3691-3p in pangolin, cow, and human; miR-3934-3p in pig and cow, followed by pangolin and bat; miR-1468 was most conserved in pangolin, pig, and bat; while miR-8066 was most conserved in pangolin and pig. In humans, miR-3611 and miR-1307 were most conserved, while miR-8066, miR-5197, miR-3334-3p and miR-1468 were least conserved, compared with pangolin, pig, cow, and bat. Furthermore, we identified that changes in the miR-5197 nucleotides between pangolin and human can generate three new miRs, with differing tissue distribution in the brain, lung, intestines, lymph nodes, and muscle, and with different downstream regulatory effects on KEGG pathways. This may be of considerable importance as miR-5197 is localized in the spike protein transcript area of the SARS-CoV-2 genome. Our findings may indicate roles for these miRs in viral–host co-evolution in zoonotic hosts, particularly highlighting pangolin, bat, cow, and pig as putative zoonotic carriers, while highlighting the miRs’ roles in KEGG pathways linked to viral pathogenicity and host responses in humans. This in silico study paves the way for investigations into the roles of miRs in zoonotic disease. Full article
(This article belongs to the Special Issue Pathogenesis of Human and Animal Coronaviruses)
Show Figures

Figure 1

18 pages, 4022 KiB  
Article
Molecular Epidemiological Analysis of the Origin and Transmission Dynamics of the HIV-1 CRF01_AE Sub-Epidemic in Bulgaria
by Ivailo Alexiev, Ellsworth M. Campbell, Sergey Knyazev, Yi Pan, Lyubomira Grigorova, Reneta Dimitrova, Aleksandra Partsuneva, Anna Gancheva, Asya Kostadinova, Carole Seguin-Devaux, Ivaylo Elenkov, Nina Yancheva and William M. Switzer
Viruses 2021, 13(1), 116; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010116 - 16 Jan 2021
Cited by 8 | Viewed by 2850
Abstract
HIV-1 subtype CRF01_AE is the second most predominant strain in Bulgaria, yet little is known about the molecular epidemiology of its origin and transmissibility. We used a phylodynamics approach to better understand this sub-epidemic by analyzing 270 HIV-1 polymerase (pol) sequences [...] Read more.
HIV-1 subtype CRF01_AE is the second most predominant strain in Bulgaria, yet little is known about the molecular epidemiology of its origin and transmissibility. We used a phylodynamics approach to better understand this sub-epidemic by analyzing 270 HIV-1 polymerase (pol) sequences collected from persons diagnosed with HIV/AIDS between 1995 and 2019. Using network analyses at a 1.5% genetic distance threshold (d), we found a large 154-member outbreak cluster composed mostly of persons who inject drugs (PWID) that were predominantly men. At d = 0.5%, which was used to identify more recent transmission, the large cluster dissociated into three clusters of 18, 12, and 7 members, respectively, five dyads, and 107 singletons. Phylogenetic analysis of the Bulgarian sequences with publicly available global sequences showed that CRF01_AE likely originated from multiple Asian countries, with Vietnam as the likely source of the outbreak cluster between 1988 and 1990. Our findings indicate that CRF01_AE was introduced into Bulgaria multiple times since 1988, and infections then rapidly spread among PWID locally with bridging to other risk groups and countries. CRF01_AE continues to spread in Bulgaria as evidenced by the more recent large clusters identified at d = 0.5%, highlighting the importance of public health prevention efforts in the PWID communities. Full article
(This article belongs to the Special Issue HIV Molecular Epidemiology for Prevention 2020)
Show Figures

Figure 1

8 pages, 849 KiB  
Case Report
The Pivotal Role of Viruses in the Pathogeny of Chronic Lymphocytic Leukemia: Monoclonal (Type 1) IgG K Cryoglobulinemia and Chronic Lymphocytic Leukemia Diagnosis in the Course of a Human Metapneumovirus Infection
by Jérémy Barben, Alain Putot, Anca-Maria Mihai, Jérémie Vovelle and Patrick Manckoundia
Viruses 2021, 13(1), 115; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010115 - 16 Jan 2021
Viewed by 2851
Abstract
Background: Type-1 cryoglobulinemia (CG) is a rare disease associated with B-cell lymphoproliferative disorder. Some viral infections, such as Epstein–Barr Virus infections, are known to cause malignant lymphoproliferation, like certain B-cell lymphomas. However, their role in the pathogenesis of chronic lymphocytic leukemia (CLL) is [...] Read more.
Background: Type-1 cryoglobulinemia (CG) is a rare disease associated with B-cell lymphoproliferative disorder. Some viral infections, such as Epstein–Barr Virus infections, are known to cause malignant lymphoproliferation, like certain B-cell lymphomas. However, their role in the pathogenesis of chronic lymphocytic leukemia (CLL) is still debatable. Here, we report a unique case of Type-1 CG associated to a CLL transformation diagnosed in the course of a human metapneumovirus (hMPV) infection. Case presentation: A 91-year-old man was initially hospitalized for delirium. In a context of febrile rhinorrhea, the diagnosis of hMPV infection was made by molecular assay (RT-PCR) on nasopharyngeal swab. Owing to hyperlymphocytosis that developed during the course of the infection and unexplained peripheral neuropathy, a type-1 IgG Kappa CG secondary to a CLL was diagnosed. The patient was not treated for the CLL because of Binet A stage classification and his poor physical condition. Conclusions: We report the unique observation in the literature of CLL transformation and hMPV infection. We provide a mini review on the pivotal role of viruses in CLL pathophysiology. Full article
(This article belongs to the Special Issue Viruses and Autoimmunity)
Show Figures

Figure 1

13 pages, 2401 KiB  
Article
Studies on the Efficacy, Potential Cardiotoxicity and Monkey Pharmacokinetics of GLP-26 as a Potent Hepatitis B Virus Capsid Assembly Modulator
by Selwyn J. Hurwitz, Noreen McBrearty, Alla Arzumanyan, Eugene Bichenkov, Sijia Tao, Leda Bassit, Zhe Chen, James J. Kohler, Franck Amblard, Mark A. Feitelson and Raymond F. Schinazi
Viruses 2021, 13(1), 114; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010114 - 15 Jan 2021
Cited by 13 | Viewed by 2516
Abstract
While treatment options are available for hepatitis B virus (HBV), there is currently no cure. Anti-HBV nucleoside analogs and interferon-alpha 2b rarely clear HBV covalently closed circular DNA (cccDNA), requiring lifelong treatment. Recently, we identified GLP-26, a glyoxamide derivative which modulates HBV capsid [...] Read more.
While treatment options are available for hepatitis B virus (HBV), there is currently no cure. Anti-HBV nucleoside analogs and interferon-alpha 2b rarely clear HBV covalently closed circular DNA (cccDNA), requiring lifelong treatment. Recently, we identified GLP-26, a glyoxamide derivative which modulates HBV capsid assembly. The impact of GLP-26 on viral replication and integrated DNA was assessed in an HBV nude mouse model bearing HBV transfected AD38 xenografts. At day 45 post-infection, GLP-26 reduced HBV titers by 2.3–3 log10 versus infected placebo-treated mice. Combination therapy with GLP-26 and entecavir reduced HBV log10 titers by 4.6-fold versus placebo. Next, we examined the pharmacokinetics (PK) in cynomolgus monkeys administered GLP-26 via IV (1 mg/kg) or PO (5 mg/kg). GLP-26 was found to have 34% oral bioavailability, with a mean input time of 3.17 h. The oral dose produced a mean peak plasma concentration of 380.7 ng/mL, observed 0.67 h after administration (~30-fold > in vitro EC90 corrected for protein binding), with a mean terminal elimination half-life of 2.4 h and a mean area under the plasma concentration versus time curve of 1660 ng·hr/mL. GLP-26 was 86.7% bound in monkey plasma. Lastly, GLP-26 demonstrated a favorable toxicity profile confirmed in primary human cardiomyocytes. Thus, GLP-26 warrants further preclinical development as an add on to treatment for HBV infection. Full article
(This article belongs to the Special Issue Capsid-Targeting Antivirals and Host Factors)
Show Figures

Figure 1

14 pages, 1949 KiB  
Article
Intranasal Infection of Ferrets with SARS-CoV-2 as a Model for Asymptomatic Human Infection
by Helen E. Everett, Fabian Z. X. Lean, Alexander M. P. Byrne, Pauline M. van Diemen, Shelley Rhodes, Joe James, Benjamin Mollett, Vivien J. Coward, Paul Skinner, Caroline J. Warren, Kevin R. Bewley, Samantha Watson, Shellene Hurley, Kathryn A. Ryan, Yper Hall, Hugh Simmons, Alejandro Núñez, Miles W. Carroll, Ian H. Brown and Sharon M. Brookes
Viruses 2021, 13(1), 113; https://0-doi-org.brum.beds.ac.uk/10.3390/v13010113 - 15 Jan 2021
Cited by 50 | Viewed by 5233
Abstract
Ferrets were experimentally inoculated with SARS-CoV-2 (severe acute respiratory syndrome (SARS)-related coronavirus 2) to assess infection dynamics and host response. During the resulting subclinical infection, viral RNA was monitored between 2 and 21 days post-inoculation (dpi), and reached a peak in the upper [...] Read more.
Ferrets were experimentally inoculated with SARS-CoV-2 (severe acute respiratory syndrome (SARS)-related coronavirus 2) to assess infection dynamics and host response. During the resulting subclinical infection, viral RNA was monitored between 2 and 21 days post-inoculation (dpi), and reached a peak in the upper respiratory cavity between 4 and 6 dpi. Viral genomic sequence analysis in samples from three animals identified the Y453F nucleotide substitution relative to the inoculum. Viral RNA was also detected in environmental samples, specifically in swabs of ferret fur. Microscopy analysis revealed viral protein and RNA in upper respiratory tract tissues, notably in cells of the respiratory and olfactory mucosae of the nasal turbinates, including olfactory neuronal cells. Antibody responses to the spike and nucleoprotein were detected from 21 dpi, but virus-neutralizing activity was low. A second intranasal inoculation (re-exposure) of two ferrets after a 17-day interval did not produce re-initiation of viral RNA shedding, but did amplify the humoral response in one animal. Therefore, ferrets can be experimentally infected with SARS-CoV-2 to model human asymptomatic infection. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop