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Abstract: Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several
types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection,
with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a
small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns
of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g.,
germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early
genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication,
late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation
involves more than just progeny production. The EBV life cycle is regulated by signal transduction,
transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this
article, the molecular basis of EBV latency establishment and reactivation is summarized.
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1. Introduction

Epstein–Barr virus (EBV) is an enveloped virus with virions 100–200 nm in diam-
eter [1]. A linear, double-stranded viral DNA genome is contained in the icosahedral
nucleocapsid, and the component between the envelope and nucleocapsid is termed the
tegument. The EBV genome is about 175 kb and encodes about 80 open reading frames
and 44 non-coding RNAs. It is a member of the γ-herpesvirus subfamily, together with
Kaposi sarcoma-associated herpesvirus (KSHV).

EBV was discovered in 1964 in an endemic Burkitt lymphoma (BL) cell culture [1].
As the fourth herpesvirus to be identified, it was named human herpesvirus 4 (HHV-4).
Although discovered in an African tumor specimen, it was soon clear that EBV is ubiquitous,
irrespective of race, nationality, sex, hygienic status, occupation, and presence of tumor.
Indeed, more than 95% of adults worldwide are asymptomatically infected with EBV. The
spread of EBV is mediated by saliva. Many people are infected with the virus during
childhood, i.e., as babies or toddlers, mostly via family members. Others are infected
in their teens or later, usually through friends or partners. Infection during infancy is
not associated with obvious symptoms, whereas infection during/after the teenage years
frequently causes infectious mononucleosis (IM) [2]. After initial infection, the virus
establishes latency predominantly in B cells and cannot be eradicated. From time to time,
latent EBV is reactivated, executes its lytic cycle, and produces progeny viruses, which are
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excreted in saliva [3,4]. Less frequently, persistent EBV infection results in the development
of several types of cancers in lymphocytes and epithelial cells. Such EBV-associated cancers
include BL, Hodgkin’s lymphoma (HL), post-transplant lymphoproliferative disorder
(PTLD), NK/T cell lymphoma (NKTCL), chronic active EBV infection (CAEBV), diffuse
large B cell lymphoma (DLBCL), nasopharyngeal carcinoma (NPC), and gastric carcinoma
(GC) [5].

Herpesviruses establish latency, although the site of latency depends on the virus
(Table 1) [6]. For example, herpes simplex virus 1 (HSV-1) lurks in neurons and human cy-
tomegalovirus (HCMV) in precursor cells of myeloid lineages. Two human γ-herpesviruses,
EBV and KSHV, maintain latency predominantly in B cells in vivo. It must also be men-
tioned that latent infection of EBV is more complex and variable than those of other
herpesviruses. The latent form of EBV infection is further categorized into five patterns,
Latency 0 to III (Table 2), depending on the viral latent gene expression [7]. The molecular
basis of switching to the lytic cycle (i.e., lytic switch genes, transcriptional activators, re-
pressors, and signalings) also differs among herpesviruses, likely because the site of latency
is different (Table 1). In this review article, the molecular mechanisms of EBV latency and
reactivation are explained.

Table 1. Latency and lytic reactivation of human herpesviruses.

Sub-
Family Site of Latency

Viral Gene
Expressed in

Latency

Trigger of
Reactivation

Viral Lytic
Swithch

Gene

Transcriptional
Activator of
Reactivation

Transcriptional
Repressor of
Reactivation

HSV-1

a

neuron cells in
trigeminal

ganglia
LATs

stressors,
immune

suppression
ICP0, ICP4 HCF1, SP1, GR, KLF15,

ROS NGF

VZV
neuron cells in

dorsal root
ganglia

ORF63, VLT
stressors,
immune

suppression
IE62 HCF1, SP1, YY1,

PI3K/AKT, JNK

HCMV b

myeloid lineages,
hematopoietic

progenitor cells,
monocytes

UL138, UL81-
82ast(LUNA),
US28, UL144,

UL111A(vIL10)

stressors,
immune

suppression,
differentiation,
growth factor

IE86(UL122),
IE72(UL123)

PU.1, SP1, C/EBP,
ATF/CREB, AP-1,

NFkB, PPARg,
RAR/RXR

CUX1/CDP, GFI-1,
YY1, CTCF

EBV

g

B cells, epithelial
cells

EBNAs, LMPs,
EBERs

stressors,
immune

suppression,
differentiation,

groth factor,
hypoxia

BZLF1(Zta),
BRLF1(Rta)

SP1, KLF4, MEF2,
C/EBP, ATF/CREB,
AP-1, XBP1s, SMAD,

HIF, ROS, P53,
PI3K/AKT, TORC2,

YAP/TAZ, TET2, ATM,
BLIMP1, TAF-I/NAP1,

NFATc1, CASP1

ZEB, NFkB, MYC,
YY1, JDP2, NO,
E2-2, JAK/STAT,
SMUBP, OCT2,

PAX5, BCL6,
ARKL1, PARP1,

CAF1/HIRA,
KAP1

KSHV B cells,
endothelial cells

LANA, vCYC,
vFLIP, Kaposins

stressors,
immune

suppression,
differentiation,

groth factor,
hypoxia

K-Rta
(ORF50)

C/EBP, AP-1, EGR1,
XBP1, NFAT, HIF, ROS

NFkB, MYC, KAP1,
PI3K/AKT, IFNs,

IRFs, HES1,
FOXO1

Table 2. EBV latency patterns.

Patterns EBERs EBNA1 LMP1/2 EBNA2/3/LP

Latency III + + + +
Latency IIa + + +
Latency IIb + + +
Latency I + +
Latency 0 +
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2. Establishment of Latency

Because EBV infection of differentiated epithelial cells results in the lytic cycle [8,9],
it is speculated that differentiated epithelial cells (likely stratified squamous epithelium
in oral cavity or pharynx) are the initial site for EBV infection and multiplication in vivo.
On the other hand, EBV infection of B cells in vitro predominantly causes latent infection,
suggesting that B cells are the site for EBV latency. In addition, EBV chooses latent infection
in many other cell types, such as established epithelial or T/NK cell lines [10,11]. Such
latency-prone infection is a distinctive feature of EBV (and also KSHV); other herpesviruses
(e.g., HSV) generally execute the lytic program upon de novo infection of many types
of cells (Figure 1). This may be related to the fact that γ-herpesviruses have oncogenic
potential. HSV must replicate as early as possible before being cleared by host immunity,
because lytic replication cycle produces large quantities of viral antigens. By contrast, latent
infection of EBV promotes the growth of infected B cells. Viral genomes are amplified in S
phase, when cell proliferation is induced. Therefore, γ-herpesviruses use a survival strategy
of slow replication in synchronization with host–cell genome replication. Mechanistically,
such latency-prone infection of EBV upon de novo infection can be explained by a viral
unique transactivator BZLF1 and epigenetics [12]. EBV genome DNA, released from a
nucleocapsid, lacks CpG methylation and therefore BZLF1 cannot immediately bind and
activate viral lytic promoters, as further detailed later.

ImmortalizationInfection

Progeny

EBV

Infection

HSV

Latent infection

Lytic infection

Strong immunity

Less immunity

Exponential 
amplificaton

Slow, secure 
amplificaton

Figure 1. Survival strategies of herpesviruses. Infection of herpes simplex virus (HSV) causes lytic
infection and the production of many progeny viruses, although the infected cells and virions may
be targeted by the host immune reaction. Latent infection is maintained when the Epstein–Barr
virus (EBV) infects a B cell, and the virus genome is amplified in synchronization with host cell
amplification after immortalization. Red line indicates viral genome. Yellow and white circles
represent viral lytic and latent gene products, respectively.

Although EBV predominantly establishes latent infection in primary B cells, closer
observations have revealed that lytic genes are also expressed in addition to latent genes
for several weeks upon de novo infection, yet productive viral DNA synthesis does not
take place [11,13]. This period is called the pre-latent abortive lytic phase or, more simply,
the pre-latent phase (Figure 2). The reason for lytic gene expression before establishment of



Viruses 2021, 13, 2344 4 of 20

latency is unclear, but it is possible that leaky expression of lytic genes during the pre-latent
phase is beneficial for immortalization or evasion of cell death [14]. For example, EBV lytic
genes include two anti-apoptotic BCL2 homolog genes (BALF1 and BHRF1) [15] and genes
that downregulate human leukocyte antigen (HLA) gene expression (e.g., BNLF2A, BGLF5,
BILF1, and BDLF3) [16]. The molecular mechanism of this pre-latent lytic gene expression
is still elusive, but it may simply be accounted for by uncontrolled gene expression from
the EBV genome, which lacks suppressive epigenetic modifications, such as CpG methyla-
tion. It may also be explained, at least partly, by the viral mRNAs incorporated into the
virion [17], which can be released into cells upon infection.
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Figure 2. Transition of EBV gene expression upon primary B-cell infection. EBV infection of primary
human B cells triggers the expression of both latent and lytic viral genes, which is termed the pre-
latent phase. Subsequently, viral genes are silenced gradually. Example representative cells with the
indicated patterns of viral gene expression in vivo are shown. Bold letters are B cells, and non-bold
letters indicate non-B cells.

Immediately after infection of primary B cells, the expression of six EBV nuclear
antigen (EBNA) genes, EBNA1, 2, 3A, 3B, 3C, and LP, peaks, and the high levels are
maintained for a long period [18,19]. The nature and functions of these EBV latent genes
have been reviewed elsewhere [20]. A cluster of W promoters (Wp) is activated to induce
EBNAs upon infection. Each Wp is mapped to each component of internal repeat 1 (IR1),
and thus Wp is present as multiple copies. In fact, Wp is vital for EBV because it is
responsible for the expression of EBNA2, a transcriptional cofactor and master regulator
of the reprogramming of the resting B-cell transcriptome (e.g., temporal induction of
MYC) [21]. The Wp exhibits maximum activity in B cells [22], which is mediated by the
B-cell-specific transcription factor PAX5 and CREB/ATF [23–25]. The high number of Wp
(usually about 10 copies) enables high EBNA2 expression immediately after the entry of
EBV into B cells [26]. EBNA2 expression causes repression of Wp and activation of the
C promoter (Cp) [27]. The physiological role of this switching of promoter usage is not
understood, because the Cp is not required for B-cell growth transformation [28]. However,
the Cp may be necessary in vivo. The Cp is located upstream of the Wp as a single copy
and shows maximal activity in B cells [22]; this activity is mediated by EBNA2 and other
factors, including OCT2, E2F, ARID3A, NF-Y, and SP1 [29,30].

Latent membrane proteins (LMPs), such as LMP1, 2A, and 2B, are expressed at low
levels during the first few days after B-cell infection (Figure 2) [19,31]. The mechanism of
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initial suppression of LMP1 was long elusive [32], but MYC, which is induced immediately
after B-cell infection by EBNA2, is responsible for LMP1 suppression [33]. Subsequently,
the expression of LMPs gradually increases over a few weeks. This increase is mediated
in part by EBNA2 [34,35], although other transcription factors, such as nuclear factor-κB
(NF-κB), EBF1, PU.1, IRF7, and CREB/ATF, may also be involved [36–40]. Expression of
LMP1 is important because LMP1 is a constitutively active oncogene of EBV. It mimics
CD40 and elicits multiple signals, such as NF-κB and mitogen-activated protein kinase
(MAPK), needed for cell growth and survival [41].

There seem to be two main expression patterns of lytic genes. The expression of
several lytic genes, such as BHRF1, BOLF1, and BPLF1, is induced in high amounts
immediately after infection, and those levels are maintained for weeks, similar to EBNAs,
whereas the expression of other lytic genes increases gradually, reminiscent of LMPs
(Figure 2) [19,42]. The reason for the different expression patterns of lytic genes is not clear,
but it is possible that swiftly induced lytic genes are influenced by EBNA genes, given
that they are frequently adjacent to each other. Thus, the first few days after EBV infection
are characterized by low expression of LMPs and lytic genes, whereas EBNA genes are
abundantly expressed, a pattern termed latency IIb (Figure 2) [31]. This pattern of EBV
infection is observed in some B cells of IM patients. The pre-latent phase continues for
weeks (or months) until the expression of lytic genes is silenced, and the virus establishes
latency III, where latent genes are fully expressed and lytic genes are suppressed. Latency
III cells can be seen in the presence of weak host–cell immunity, as seen in IM, PTLD, and
the lymphoblastoid cell line (LCL) (Figure 2). LCL is a B cell line immortalized by infection
of EBV.

3. Restriction of Latent Genes

If naïve B cells are infected with EBV, they move to germinal centers of the lymph
nodes and spleen, where expression of EBNA2, EBNA3, and LP is suppressed to establish
latency II (or IIa) (Figure 2). EBNA1–3 and LP are transcribed from the Cp in latency III, but
the promoter is silenced and EBNA1 is instead expressed from the Qp in latency II. Because
Cp activation is predominantly dependent on EBNA2 [43], the Cp is downregulated
in association with decreased EBNA2. However, the trigger for decreased EBNA2 in
germinal centers is unknown. Germinal center-specific transcriptional repressors, such as
BCL6, may play a role in this process, because EBNA2 and BCL6 expression is inversely
correlated [44]. Furthermore, treatment of latency III cells with IL-21 resulted in decreased
Cp activity [45]. Because IL-21 induced BLIMP1 and OCT2, these factors may be involved
in repression of the Cp. Although EBNA2, EBNA3, and LP are suppressed, LMP1, 2A, and
2B are expressed in latency II even in the absence of EBNA2. Cytokines, including IL-4,
IL-6, IL-10, IL-13, and IL-21, have been implicated in EBNA2-independent expression of
LMP1 [45–49], and the transcription factors NF-κB, AP-2, IRF7, C/EBP, and STAT in LMP1
promoter activation [37–39,46,47,50,51]. The HL, derived from B cells, typically shows this
expression pattern. Some non-B-cell cancers, such as CAEBV, NKTCL, and NPC, also use
this mode—Wp/Cp is not active in cells other than B lymphocytes.

LMP1, LMP2A, and LMP2B can be silenced in BL and GC, which is termed latency
I (Figure 2) [11]. The mechanism of this silencing is unclear, but because latency III cell
lines can be isolated from latency I parental cell lines in cell culture, which lacks immune
pressure, elimination of cells that express LMPs by host immunity likely plays a role in
the process.

The mostly silenced mode is latency 0, in which only EBERs are expressed, in pe-
ripheral memory B cells (Figure 2) [11]. The mechanism of this silencing of EBNA1 is not
known, but host immunity may be involved.

4. Reactivation from Latency

Reactivation of EBV can be induced in cultured cells by chemical reagents, such
as phorbol ester, calcium ionophore, histone deacetylase (HDAC) inhibitors, and DNA
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methylase inhibitors, and by biological stimulation through transforming growth factor β
(TGF-β), anti-immunoglobulin, hypoxia, reactive oxygen species, and temperature shifts
(Figure 3) [52–54]. Although the trigger is unknown, EBV reactivation can occur in response
to a variety of stimuli (Figure 3).

Viruses 2021, 13, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Cis- and trans-acting elements of BZLF1 promoter and signaling pathways. Cis-acting ele-
ments of the BZLF1 promoter sequence sufficient for induction in response to lytic stimuli are de-
picted as boxes. Transcription factors that bind the elements are indicated by ellipses. Inducing re-
agents/stimuli and signaling molecules are also shown. Modified from [54].  

EBV encodes two immediate-early (IE) genes, BZLF1 (also known as Z, Zta, ZEBRA, 
or EB1) and BRLF1 (R or Rta) [55]. Expression of the IE genes is suppressed in the latent 
phase but accelerated by inducing reagents or stimulation. BZLF1 and BRLF1 are tan-
demly and adjoiningly mapped in the EBV genome near the EBNA1 gene. The fact that 
these IE genes are situated within the intron sequence of EBNA1 in a complementary ori-
entation is interesting, because HSV LAT is complementary to ICP0. 

BZLF1 is a viral transcription factor, similar to host AP-1 and CREB, and has a basic 
leucine zipper (bZip) motif [56,57]. It forms a homodimer via the bZip motif, binds to 
DNA and induces transcription of viral downstream genes [58]. BZLF1 binds to binding 
motif similar to AP-1, called BZLF1-responsive element (ZRE), which are abundant in the 
promoters of viral lytic genes, especially early genes, and induces transcription [59,60]. 
Uniquely, this transcription factor binds to CpG-methylated DNA [61–63]. This enables 
BZLF1 to activate transcription of the viral lytic genes silenced by CpG methylation in 
latent cells. In addition, BZLF1 functions as an origin of lytic replication (ori-Lyt) binding 
protein in lytic viral DNA synthesis [64]. By contrast, BRLF1 is a transcriptional activator 
that acts in three ways [55]. First, it binds directly to BRLF1-responsive element (RRE) of 
promoter and activates transcription as a transcription factor. [65,66]. Second, it is a tran-
scriptional co-factor that binds indirectly to GC-rich motifs by binding to other cellular 
transcription factors, such as SP1 and OCT-1 [67,68]. Third, it regulates signaling path-
ways, such as MAPK and phosphatidylinositol 3-kinase (PI3K) [69,70]. Both IE genes are 
essential for lytic reactivation, because the lytic cycle is blocked by knockout of either 
gene. Furthermore, exogenous overexpression of BZLF1 or BRLF1 in latently infected cells 
can trigger lytic reactivation. BRLF1, but not BZLF1, is needed for EBV reactivation in 
EBV-positive normal oral keratinocytes [8]. However, BZLF1 is presumed to be more im-
portant because more efficient reactivation can be achieved by exogenous expression of 
BZLF1 than of BRLF1, at least in many cell lines. 

Figure 3. Cis- and trans-acting elements of BZLF1 promoter and signaling pathways. Cis-acting
elements of the BZLF1 promoter sequence sufficient for induction in response to lytic stimuli are
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EBV encodes two immediate-early (IE) genes, BZLF1 (also known as Z, Zta, ZEBRA,
or EB1) and BRLF1 (R or Rta) [55]. Expression of the IE genes is suppressed in the latent
phase but accelerated by inducing reagents or stimulation. BZLF1 and BRLF1 are tandemly
and adjoiningly mapped in the EBV genome near the EBNA1 gene. The fact that these IE
genes are situated within the intron sequence of EBNA1 in a complementary orientation is
interesting, because HSV LAT is complementary to ICP0.

BZLF1 is a viral transcription factor, similar to host AP-1 and CREB, and has a basic
leucine zipper (bZip) motif [56,57]. It forms a homodimer via the bZip motif, binds to
DNA and induces transcription of viral downstream genes [58]. BZLF1 binds to binding
motif similar to AP-1, called BZLF1-responsive element (ZRE), which are abundant in the
promoters of viral lytic genes, especially early genes, and induces transcription [59,60].
Uniquely, this transcription factor binds to CpG-methylated DNA [61–63]. This enables
BZLF1 to activate transcription of the viral lytic genes silenced by CpG methylation in latent
cells. In addition, BZLF1 functions as an origin of lytic replication (ori-Lyt) binding protein
in lytic viral DNA synthesis [64]. By contrast, BRLF1 is a transcriptional activator that acts
in three ways [55]. First, it binds directly to BRLF1-responsive element (RRE) of promoter
and activates transcription as a transcription factor [65,66]. Second, it is a transcriptional
co-factor that binds indirectly to GC-rich motifs by binding to other cellular transcription
factors, such as SP1 and OCT-1 [67,68]. Third, it regulates signaling pathways, such as
MAPK and phosphatidylinositol 3-kinase (PI3K) [69,70]. Both IE genes are essential for lytic
reactivation, because the lytic cycle is blocked by knockout of either gene. Furthermore,
exogenous overexpression of BZLF1 or BRLF1 in latently infected cells can trigger lytic
reactivation. BRLF1, but not BZLF1, is needed for EBV reactivation in EBV-positive normal
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oral keratinocytes [8]. However, BZLF1 is presumed to be more important because more
efficient reactivation can be achieved by exogenous expression of BZLF1 than of BRLF1, at
least in many cell lines.

Expression of BZLF1 is regulated at the transcriptional level. Therefore, research
has focused on the BZLF1 promoter sequence (Figure 3). Reporter assays showed that a
short sequence in the BZLF1 promoter (−221 to +12) was sufficient for its activation by
12-O-tetradecanoylphorbol-13-acetate (TPA) [71] and anti-immunoglobulin [72] (Figure 3).
This short promoter sequence consists of four copies of ZI, and one ZII and two ZIII motifs.
ZIA, B, and D are bound by MEF2 family transcription factors and ZIA, C, and D are
bound by SP1/KLF4 [73–75]. MEF2 is a negative regulator bound to the promoter in
latency; it activates the promoter in response to calcium signaling. SP1/3 proteins are
ubiquitous host transcription factors and their stable binding to ZIA, C, and D underscores
the basal activity of the BZLF1 promoter [73]. KLF-family transcription factors have similar
consensus binding motifs to SP1. KLF4 binds and activates the BZLF1 promoter [75] in
a differentiation-dependent manner [76]. The sequence of the ZII domain is similar to
the consensus binding sequence of CREB and AP-1, and is bound by a range of bZip
transcription factors [71,77,78] needed for promoter activation by various stimuli. XBP-1
protein is inactive unless activated by splicing upon endoplasmic reticulum (ER) stress, and
the spliced form of XBP-1 (XBP-1s) is associated with plasma cell differentiation. XBP-1s
binds to the ZII element and activates the BZLF1 promoter [77]. Once produced, BZLF1
protein, as a viral transcription factor, activates its own promoter by binding to the ZIIIA
and B domains [79]. HIF-1 binds to hypoxia-response element (HRE) between ZID and
ZIIR, triggering BZLF1 promoter activation [80]. The BZLF1 promoter is activated by
TGF-β via MAPK signaling, as well as by binding of SMAD [81].

Two major cis-acting elements are crucial for negative regulation of the BZLF1 pro-
moter (Figure 3). ZEB1/2 proteins bind to the ZV and ZV’ domains located around the
transcriptional start site of BZLF1 and suppress transcription of BZLF1 [82,83]. The ZIIR
element, located between ZID and ZII, is a strong silencer of the promoter [84,85], although
the ZIIR-binding protein has not yet been identified. Other suppressive factors recently
identified include MYC and KAP1 [86,87].

The BRLF1 promoter is activated by transcription factors, such as SP1, EGR1, BLIMP1,
NF1, and BZLF1, and suppressed by YY1 and ZEB [61,88–92].

When IE genes are expressed at a certain level, these transcriptional activators induce
transcription of viral early genes (Figure 4). Among the early class genes, BMLF1/BSLF2
(also named SM, Mta, and EB2), the homolog of HSV ICP27, encodes an essential pro-
tein involved in viral gene expression by affecting multiple processes, including RNA
metabolism, transcription, and translation [93–100]. Other early gene products include
enzymes involved in nucleotide metabolism, such as thymidine kinase (TK) and ribonu-
cleotide reductase (RR), which presumably play supportive roles, especially in resting cells
(Table 3). In addition to six essential viral replication genes (BALF5, BMRF1, BALF2, BBLF4,
BSLF1, BBLF2/3), BKRF3 (uracilDNA glycosylase) and BZLF1 (oriLyt-binding protein)
have also been identified to be crucial for replication [64,101–103] (Table 3). These viral fac-
tors trigger viral DNA replication in the replication compartment of the nucleus [64]. After
viral DNA replication, a complex of viral gene products, dubbed the viral preinitiation
complex (vPIC), mediates late gene expression from the amplified viral DNA [104–110]
(Table 4). Basically, this complex recognizes two features of DNA; TATT motif instead of
TATA at the promoter, and lack of epigenetic modifications, such as methylation. The TATT
motif is specifically found in the late gene promoters and one of the vPIC, BcRF1, recognizes
the motif. Lack of epigenetic marks is an earmark of newly synthesized viral DNA.
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Figure 4. Schematic diagram of EBV lytic cycle. Lytic induction results in a coordinated cascade
of viral gene expression and viral DNA replication, followed by encapsidation, envelopment, and
progeny production. Red line indicates viral genome. Green, orange, and blue circles represent viral
IE, early, and late gene products, respectively. TGN, trans-Golgi network. Modified from [111].

Table 3. Herpesviral genes involved in viral lytic DNA synthesis.

EBV Necessity # HSV HCMV Function

BZLF1 * essential UL9 * UL84 * oriLyt-binding
BALF5 essential UL30 UL54 polymerase catalytic subunit (Pol)
BMRF1 essential UL42 UL44 processivity subunit of polymerase

BALF2 essential UL29 UL57 single-stranded DNA-binding protein
(ssDNABP)

BBLF4 essential UL5 UL105 helicase
BSLF1 essential UL52 UL70 primase

BBLF2/3 essential UL8 UL102 primase-binding protein

BKRF3 essential UL29 UL114 uracil-DNA glycosylase, involved in DNA
repair

BXLF1 supportive UL23 – thymidine kinase (TK)
BORF2 supportive UL39 UL45 ribonucleotide reductase (RR) large subunit
BaRF1 supportive UL40 – ribonucleotide reductase (RR) small subunit

BLLF3 supportive UL50 UL72 deoxyuridine triphosphate
nuclotidohydrolase (dUTPase)

* These genes share the function, but have no sequential homology. # Necessity for EBV lytic replication.

Table 4. vPIC genes of EBV, KSHV, and HCMV.

EBV HCMV Presumed Function and/or Nature

BcRF1 UL87 TATT-binding protein, associates with RNAPII
BDLF3.5 UL91
BDLF4 UL92 stabilized by phosphorylation

BFRF2 UL49 DNA-binding protein, having potential
zinc-finger domain

BGLF3 UL95 hub of vPIC, phosphorylation increased
association with BFRF2 and BVLF1

BVLF1 UL79 elongation factor (in HCMV)

Late genes include many viral structural genes, such as major capsid protein (MCP),
viral capsid antigen (VCA), major tegument protein (BNRF1), and glycoproteins (gB and
gp350). Encapsidation takes place in the nucleus, and the nucleocapsid is transported
to the cytoplasm through the nuclear membrane, a process in which two viral proteins,
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BFRF1 and BFLF2, and other viral and cellular factors are involved [112]. During this
nuclear egress, the nucleocapsid must twice cross the lipid bilayer membrane. The nucle-
ocapsid buds into the inner nuclear membrane to obtain an envelope (primary or initial
envelopment), which is removed by fusion with the outer nuclear membrane. The naked
nucleocapsid next buds into a membranous organelle in the cytoplasm (possibly the trans-
Golgi network (TGN), endosome, or a related organelle). Tegument components are also
incorporated at this step of secondary envelopment. Finally, fusion of the organelle with
the plasma membrane releases mature progeny virions. The functions of EBV lytic genes
are summarized elsewhere [113].

5. Epigenetic Regulation of Latency Establishment

The episomal EBV genome in latently infected cells is modified by CpG methylation
and assembled with histones to form a chromatin structure. However, EBV genome DNA in
the viral nucleocapsid is devoid of epigenetic marks, such as histones and CpG methylation
(Figure 5) [114–116]. When primary B cells are infected with EBV, the EBV genome is
first chromatinized by histone assembly, followed by histone modification, for example
of histone H3 K27 trimethylation (H3K27me3) and H3K9me3 [117]. Those suppressive
histone modifications restrict EBV gene expression but permit leaky expression of many
viral genes, which is recognized as lytic gene expression in the pre-latent phase. Suppressive
histone modifications, such as H3K27me3, H4K20me3 and H3K9me3, during the pre-latent
phase are not sufficient for complete suppression of viral genes, likely because the viral
genome is associated with activating histone modifications, such as histone H3K4me3 and
acetylation (Figure 5). Interestingly, the major tegument protein BNRF1 associates with
histone chaperone molecules upon infection of primary B cells and increases the active
histone mark, H3K4me3, on the viral genome [118]. In addition to those histone lysine
methylations, a series of reports have indicated that arginine methyltransferases, especially
PRMT5, play an important role in transformation [119–122]. After histone modifications,
CpG methylation of viral DNA occurs, over weeks to months [116]. After completion of
CpG methylation, viral lytic gene expression is strongly suppressed (Figure 5).

In contrast to viral genome chromatinization, suppressive histone markers and CpG
methylation of the host genome are disrupted when primary B cells are infected, and grad-
ually restored thereafter [123–125]. However, even in established LCL, CpG methylation of
the host genome is significantly lower compared to that in primary B cells (Figure 5). It
is speculated that immediate collapse of host genome CpG methylation upon infection is
needed for overexpression of the key host genes for growth transformation.

The situation is different in epithelial cells. Viral genomic DNA starts to be CpG-
methylated as early as day 11 and is completed by day 17 after infection of an immortalized
normal gastric epithelial cell line. Demethylation of the host genome is not detected in the
epithelial cell line.

Instead, CpG methylation takes place from day 17 to 28, a period associated with de-
creased expression of genes involved in tumor suppression and cell differentiation [126]. It
is assumed that, in epithelial cells, suppressive histone modifications also take place before
CpG DNA methylation, as in B cells [127]. The reason why large-scale host genome CpG
demethylation does not occur in epithelial cells is unclear, but differences in the cell cycle
may account for delayed CpG methylation of EBV genome DNA in B lymphocytes. Pri-
mary B cells used in such experiments are in G0 phase and thus completely growth-halted,
whereas the epithelial cells used are established cell lines or immortalized normal epithelial
cell lines. In resting cells, gene expression is generally suppressed to a minimal level by
CpG methylation, but immortalized cells must express genes that support proliferation.
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Figure 5. Morphology and epigenetic state of primary B cells infected with EBV. The EBV genome in
virions is devoid of nucleosome structure and CpG DNA methylation, but is modified by histones
and CpG methylation in infected cells. The host cell morphology and genome are significantly
influenced by EBV infection. The red line indicates latent viral genome. Dark gray shadows in nuclei
indicate strong heterochromatinization. Green, orange, and blue circles represent viral lytic gene
products, and white circles represent viral latent gene products.

EBV super-enhancers are clusters of enhancers dense with transcription factors and
cofactors, and mediate strong activation of specific genes that regulate cell identity and
fate [128]. EBV super-enhancers are typically composed of EBNA2, EBNA-LP, EBNA3A,
EBNA3C, NF-κB, and RBPJκ, and are associated with a high level of histone
acetylation [129,130]. Chromatin loop structures are formed by CTCF and assembling
enhancers, with which RNAPII is frequently associated. Induction of critical host genes,
such as MYC, BCL2, IRF4, MCL1, EBF, and RUNX3, in primary B-cell infection is dependent
on EBV super-enhancers [129–132].

6. Epigenetic Regulation of Latent Gene Restriction

Silencing of viral genes in infected cells by histone modification and CpG methylation
is not a complicated concept. However, the maintenance of latency must be intricately reg-
ulated, because only a handful of appropriate latent genes should be expressed efficiently
while other latent and lytic genes must be silenced. Excessive transcription of improper
genes in an inappropriate context, or insufficient expression of necessary genes, would
negatively affect the infected cells and virus genome. Moreover, the density of genes in
the EBV genome is high (about 80 genes in 175 kb; ~2.2 kb per gene), in comparison to the
human genome (about 20,000 genes in 3,000,000 kb; ~150 kb per gene). In this respect, CpG
methylation of particular promoters plays a primary role. For example, Wp/Cp/Qp activ-
ity is inversely correlated with CpG methylation level of the promoter [114,133–140]. The
LMP1 promoter is also regulated by CpG methylation [114,135,141,142]. TET2, which me-
diates the conversion of methylated CpG into hydroxymethylcytosine, ultimately leading
to CpG demethylation, increases the expression of EBNAs and LMPs [143,144]. Further-
more, a component of polycomb repressive complex 1 (PRC1) and DNA methyltransferase
(DNMT) enzymes are crucial for the suppression of EBNAs and LMPs [145]. These reports
demonstrate the importance of CpG methylation in fine-tuning viral latent gene expression.

Heterochromatin tends to expand the suppressive region to neighboring euchromatin
sequences. Therefore, once a part of the viral genome has been silenced by CpG methyla-
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tion, the methylation may spread to neighboring promoters, which could be needed for
maintenance of EBV latency. To block the ripple of suppression, however, EBV uses a host
insulator protein, CTCF [146,147]. Qp must be kept active in latency I and II to mediate
the expression of EBNA1 when Wp/Cp and other lytic promoters are silenced by CpG
methylation. CTCF protein binds upstream of Qp and prevents suppressive epigenetic
modifications, such as histone H3K9me3 and CpG methylation, thereby sustaining high
promoter activity [148]. Moreover, analysis of the 3D organization of latent viral genome
revealed that CTCF binding does not act as a simple epigenetic insulator. In complex with
the host factor Cohesion, CTCF mediates loop formation of the viral genome in infected
cells, which influences the epigenetic state and thereby alters gene expression. In latency I,
CTCF/Cohesion mediates chromatin-loop formation between the origin of plasmid repli-
cation (OriP) and Qp, and increases Qp activity possibly via OriP-bound factors, EBNA1,
and chromatin-remodeling factors, such as ORC and SNF2h [149]. In latency III, OriP
forms a chromatin loop with the Cp and LMP1 promoters via CTCF/Cohesion, and EBNA1
and chromatin remodeling factors at the OriP mediate activation of Cp and the LMP1
promoter [149–151].

The silencing of latent genes is associated with higher levels of suppressive histone
modification, such as histone H3K9me3 and H3K27me3 [152,153]. Appropriate transcrip-
tional activation of latent gene promoters, including Cp/Wp/Qp and LMP promoters, is
mediated by active histone marks, such as histone acetylation and H3K4me3 [151,153].

7. Epigenetic Regulation of Reactivation

Although almost all EBV lytic genes are silenced by CpG methylation in EBV-positive
cell lines, CpG DNA methylation of the BZLF1 promoter is maintained at a low level,
like those of latent promoters such as the Qp and LMP1 promoters [63,75,114]. Few CpG
dinucleotides are present in the BZLF1 promoter, whereas CpG dinucleotides are denser
in other latent and lytic promoters, including the BRLF1 promoter [63,75]. Therefore,
it is assumed that BZLF1 transcription is not primarily silenced by CpG methylation
in cell culture. Alternatively, the BZLF1 promoter is silenced by suppressive histone
modifications, such as H3K27me3 and H3K9me3 [63,154–156]. Silencing of the BZLF1
promoter by histone methylation rather than CpG methylation is essential for prompt
induction in response to lytic stimuli. These suppressive histone methylations are rapidly
demethylated, but methyl-CpG is a stable mark that requires multistep demethylation
(hydroxymethylcytosine formation, followed by glycosylase reaction and base excision
repair, or de novo DNA synthesis) [157]. Moreover, the BZLF1 promoter is modified not
only by suppressive, but also by activating, histone modifications [155,156], generating
bivalent chromatin [158]. Therefore, the BZLF1 promoter is capable of activating the
transcription of BZLF1 at any time. BZLF1 protein binds CpG-methylated DNA motifs and
induces transcription of downstream viral genes [61–63]. These unique properties make
BZLF1 a key factor for EBV reactivation from latency.

CpG DNA methylation of the viral genome is eliminated by de novo viral genome
replication [114]. vPIC mediates viral late gene transcription only from unmethylated
DNA, which is why late gene expression occurs after viral DNA synthesis [159].

8. Involvement of Lytic Genes in Oncogenesis

It was previously speculated that only latent genes (not lytic genes) were involved in
the oncogenesis of EBV-associated cancers, because lytic genes were not readily detectable
in those cancers. However, it is now understood that lytic genes are also expressed to some
extent in cancer cells. Lytic genes of EBV are implicated in oncogenesis [14,160–164]. For
example, in cell culture, pre-latent lytic gene expression contributes to B-cell transforma-
tion [116,165]. EBV in NPC has been shown to frequently express lytic genes and such lytic
genes play an important role in oncogenesis [164]. EBV in CAEBV and other lymphomas,
such as NKTCL and DLBCL, frequently has intragenic deletions, which presumably caused
more lytic gene expression and tumor formation [163,166,167]. When humanized mice
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are infected with BZLF1-kockout EBV, tumors develop less frequently than in wild-type
control EBV [168]. Knockout of BZL1 results in restriction of BZLF1 and other downstream
lytic genes; thus, these lytic genes likely contribute to tumor development. By contrast,
mutation of two repressive cis-acting elements, ZIIR and ZV, results in increased expression
of BZLF1 and other lytic genes without viral DNA synthesis, and increased lymphoma
formation [169].

Clinically oriented approaches have also been adopted. Two independent sequence
analyses identified a nucleotide variation in the BZLF1 promoter region of EBV in NPC
and lymphoma specimens [170,171], and this variant accumulated in BL and gastric car-
cinoma [172]. Introduction of this variation increased lytic gene expression [172]. The
EBV genome in lymphoma specimens frequently bears an intragenic deletion in the BART
region [167,173,174], the deletion of which upregulated lytic gene expression and promoted
tumor formation in a humanized mouse model [175]. Essential lytic genes, such as vi-
ral DNA polymerase BALF5, are deleted in EBV-positive lymphomas, promoting a lytic
phenotype and lymphomagenesis in mice [167].

Although the molecular mechanism by which the EBV lytic cycle contributes to
oncogenesis is unknown, some lytic genes likely promote cancer formation. BCL2 ho-
molog genes of EBV (BALF1 and BHRF1) protect infected cells from death [15]. BNLF2A,
BGLF5, BILF1, and BDLF3 downregulate HLA and thereby protect infected cells from
immunity [16]. BRLF1, BNRF1, BALF3, BGLF4, and BGLF5 have been implicated in
genome instability [164]. These factors can confer advantages for infected cells. In ad-
dition, the proliferation of cells surrounding EBV-infected cells may be promoted. For
example, production of the EBV homolog of IL-10, BCRF1, increases surrounding B-cell
proliferation [176]. The lytic switch transcription factor BZLF1 enhances the production of
cytokines, such as IL-6, IL-8, IL-10, IL-13, and VEGF [111], and increases the proliferation
of surrounding cells.

9. Conclusions

Here, the life cycle of EBV and molecular basis thereof were summarized. EBV has
established a complex life cycle that maximizes survival potential. Despite our immune
system, humans cannot eliminate EBV from the body. To prevent EBV-associated disorders,
which are not particularly rare, preventative and therapeutic measures are needed. Using
its delicate life cycle of EBV against itself, disturbing viral gene expressions may provide
possibility to interrupt EBV persistence and repress formation and maintenance of tumors.
For example, our group has tried to suppress expression of viral oncogene LMP1 by HSP90
inhibitors to decrease CAEBV and NKTCL tumor growth [177,178]. Effects of epigenetic
modifiers, such as HDAC inhibitors [179,180] and DNMT inhibitors [181,182], are also
expected, especially for lytic induction therapy [183–185]. Further studies are needed,
however, for such practical use.
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