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Abstract: Overactivation of the complement system has been characterized in severe COVID-19
cases. Complement components are known to trigger NETosis via the coagulation cascade and
have also been reported in human tracheobronchial epithelial cells. In this longitudinal study, we
investigated systemic and local complement activation and NETosis in COVID-19 patients that
underwent mechanical ventilation. Results confirmed significantly higher baseline levels of serum
C5a (24.5 ± 39.0 ng/mL) and TCC (11.03 ± 8.52 µg/mL) in patients compared to healthy controls
(p < 0.01 and p < 0.0001, respectively). Furthermore, systemic NETosis was significantly augmented
in patients (5.87 (±3.71) × 106 neutrophils/mL) compared to healthy controls (0.82 (±0.74) × 106

neutrophils/mL) (p < 0.0001). In tracheal fluid, baseline TCC levels but not C5a and NETosis, were
significantly higher in patients. Kinetic studies of systemic complement activation revealed markedly
higher levels of TCC and CRP in nonsurvivors compared to survivors. In contrast, kinetic studies
showed decreased local NETosis in tracheal fluid but comparable local complement activation in
nonsurvivors compared to survivors. Systemic TCC and NETosis were significantly correlated with
inflammation and coagulation markers. We propose that a ratio comprising systemic inflammation,
complement activation, and chest X-ray score could be rendered as a predictive parameter of patient
outcome in severe SARS-CoV-2 infections.

Keywords: viral infection; complement; SARS-CoV-2; infectious disease; NETosis; tracheal fluid

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the family
of Coronaviridae, a large family of single-stranded RNA viruses that are pathogenic in
humans and several animal species [1,2]. The SARS-CoV-2 infection, responsible for
COVID-19 (coronavirus disease 2019), was described by mid-December 2019. It has spread
globally ever since, and the outbreak was eventually declared a pandemic by mid-March
2020 [3]. Worldwide statistics have thus far reported 240 million confirmed infections and
around five million deaths [4]. In Austria, the reported number of infected individuals
has surpassed 775,000 cases [4,5]. Tyrol was the first Austrian federal state to be affected,
with a number of well above 70,000 confirmed cases in the summer of 2021 [5]. Although

Viruses 2021, 13, 2376. https://doi.org/10.3390/v13122376 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-7021-1845
https://orcid.org/0000-0002-7574-7868
https://orcid.org/0000-0001-6804-442X
https://doi.org/10.3390/v13122376
https://doi.org/10.3390/v13122376
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13122376
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13122376?type=check_update&version=2


Viruses 2021, 13, 2376 2 of 15

the majority of presented infections are asymptomatic or are defined by mild respiratory
symptoms, some infected individuals develop severe viral pneumonia, leading to acute
respiratory distress syndrome (ARDS), ultimately resulting in the patient’s hospitalization
and potential requirement of mechanical ventilation in the intensive care unit (ICU) [6,7].

Dysregulated complement activation appears to play an important role in the devel-
opment of acute lung diseases induced by pathogenic viruses [8,9]. SARS-CoV-2 is the
third strain of human pathogenic coronaviruses that resulted in an outbreak. Previous
coronavirus strains, SARS-CoV-1 (China, 2002) and Middle East respiratory syndrome
MERS-CoV (2012), are known to activate the complement system, consequently resulting
in acute respiratory failure [10,11]. A recent study demonstrated the activation of the lectin
pathway (LP) by SARS-CoV-2 via the binding of the LP recognition molecules MBL, FCN-2,
and CL-11 to the viral spike and nucleocapsid proteins [12].

Complement is activated via three distinct pathways, thereby leading to the forma-
tion of highly potent immuno-active molecules, such as the anaphylatoxins C3a and C5a,
as well as the terminal complement complex (TCC; sC5b-9)/membrane attack complex
(MAC). C5a is a strong chemoattractant involved in the recruitment of inflammatory im-
mune cells and the release of immuno-active molecules, which can instigate a “cytokine
storm” [13]. Most importantly, C5a seems to play a major role in viral-induced acute
lung injury [14]. Activated complement components are also known to interact with the
coagulation cascade and induce NETosis, triggering neutrophils to release neutrophil extra-
cellular traps (NETs) [15]. The contribution of complement activation to the progression
of ARDS in SARS-CoV infections has been further confirmed in complement-deficient
mice (C3−/−) [10]. This study elegantly demonstrated that the absence of complement
significantly attenuated the severity of the respiratory disease despite the presence of a
constant viral load. Furthermore, complement deposition has been reported in multiple
organs of COVID-19 patients, including the lungs. Localization of C1q, C3, C4, and C5b-9
was observed in the capillaries of the interalveolar septa and on alveolar cells, highlighting
the importance the complement system in inflammation and tissue damage [16].

Recently, SARS-CoV-2 infections, coupled with the development of acute respiratory
syndrome, have been associated with an overreaction of the innate immune response, with
complement playing a key role [17]. High levels of complement-activated products, C5a
and sC5b-9, are observed in patients suffering from severe COVID-19 [18–20] and may
serve as indicators of disease course severity [20]. A large retrospective observational
study of more than 11,000 patients with suspected SARS-CoV-2 infections highlighted
complement activation and coagulation as crucial risk factors of mortality and morbidity,
independent of other prominent risk factors [21]. Additionally, a targeted genetic associa-
tion study was deployed to identify specific single nucleotide polymorphisms (SNPs) in
components of complement and coagulation pathways that are linked with the clinical
outcome in infected individuals. The essential role that complement plays in the course of
disease after a SARS-CoV-2 infection has prompted a closer look at complement proteins
as potential therapeutic targets for COVID-19 [22]. For instance, a pilot study in severe
COVID-19 patients unraveled the role of the anti-C5a monoclonal antibody, Soliris, as a
potential therapeutic measure in COVID-related ARDS [23]. Despite the evident interest in
unraveling the effect of increased systemic complement activation in SARS-CoV-2, only
a few studies focus on complement activation in the lung and the kinetics of local and
systemic complement activation under mechanical ventilation [17,24].

Here, we investigated the course of systemic and local complement activation in
COVID-19 patients over the period of artificial respiration. Complement proteins have
been previously found in the mucus of human tracheobronchial epithelial cells [25,26].
Patients under artificial respiration must be regularly relieved from tracheal secretions due
to intubation. We therefore sought to acquire tracheal secretions from COVID-19 patients
who underwent mechanical ventilation and analyze the amount of complement proteins
and rate of complement activation over the period of artificial respiration. We intended
to capture the molecular evidence of complement involvement in severe SARS-CoV-2
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infections. In addition, we aimed herein to get insights into the kinetics of complement
activation and to identify biomarkers for early prediction of mortality.

2. Materials and Methods
2.1. Patient Cohorts and Sample Collection

In this prospective longitudinal study, COVID-19 patients were recruited at the Depart-
ment of Internal Medicine in the tertiary Hospital St. Vinzenz, Zams after PCR-confirmed
or presumed SARS-CoV-2 infection following admission to the ICU between November
2020 and January 2021. Whole blood, collected in serum vials, and tracheal fluid from
patients on mechanical ventilation were obtained every 24 h upon routine collection of
samples for laboratory evaluation. Severely anemic patients were excluded from the study.
Patients were classified as nonsurvivors upon death, during mechanical ventilation, or
within an observational period of 14 days after extubation. The control group consisted
of healthy individuals who were scheduled for surgery at the Department of Anesthesia
and Intensive Care Medicine in Hospital Reutte within the same time period. Whole blood,
collected in serum vials, and tracheal fluid from these healthy individuals was obtained
during the surgery following a written consent. Samples collected from both hospitals were
sent to our institute and processed within 24 h. Serum was obtained from whole blood
samples by centrifugation (2000× g, 15 min, 22 ◦C). Tracheal fluid was analyzed for viral
titer and secondary infections as described in Sections 2.6 and 2.7 or supplemented with a
protease inhibitor cocktail (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany). Serum
and supplemented tracheal fluid were stored in aliquots at −80 ◦C until further analysis.

2.2. Data Collection

Clinical data, including date of sampling, gender, age, mortality, and laboratory
parameters, were acquired from the electronic medical record. Laboratory parameters
included C-reactive protein (CRP; mg/L), procalcitonin (PCT; ng/mL), interleukin 6 (IL-6;
pg/mL), white blood cell count (WBC; cells/µL), neutrophil count (cell/µL), platelet count
(cell/µL), international normalized ratio (INR), and D-dimer levels (mg/L). Furthermore,
results of thorax computer radiography (CR) were collected.

2.3. Chest X-ray Score Analysis

Chest X-rays (CXR) acquired from each patient were reviewed retrospectively, for the
entire duration of the study, by experienced and board-certified radiologists. X-ray severity
scores were determined in COVID-19 patients at each sampling time point according to
a previously published scoring method [27]. In brief, each lung was divided into three
segments: above the upper margin of the aortic arch, between the aortic arch and the lower
margin of the left pulmonary artery, and below the left pulmonary artery. The extent of
COVID-19 typical alterations was assessed for each segment (0 = normal lung parenchyma,
1 = only interstitial opacity, 2 = consolidation of less than 50% of the lung parenchyma,
3 = consolidation of 50% or more). A score between 0 and 18 was assigned for each patient
after all six segments were analyzed for each patient.

2.4. Complement Assays
2.4.1. Complement Protein C5a ELISA

Serum and tracheal fluid C5a was measured using a custom sandwich enzyme-linked
immunosorbent assay (ELISA). Monoclonal anti-human C5a antibody (Hycult Biotech,
Uden, The Netherlands) was coated on 96-well, medium-binding microplates (Greiner
Bio-One, St. Gallen, Switzerland). Bound C5a was detected using a biotinylated mono-
clonal anti-human C5a antibody [28] and developed using avidin-alkaline phosphatase
(MilliporeSigma, Merck KGaA, Darmstadt, Germany). The optical density signal was ac-
quired using the Bio-Rad Model 680 Microplate Reader and quantified using the Microplate
Manager 5.2.1 software (Bio-Rad, Hercules, CA, USA). Zymosan-induced activation of
normal human serum was used as standard.
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2.4.2. Complement Protein Terminal Complement Complex (TCC) ELISA

Serum and tracheal fluid TCC was measured using a custom sandwich ELISA. Mon-
oclonal anti-human C9 neoantigen antibody (Hycult Biotech) was coated on 96-well,
medium-binding microplates (Greiner Bio-One). Bound TCC was detected using a custom
biotinylated polyclonal anti-human C7 antibody [29] and developed using avidin-alkaline
phosphatase (MilliporeSigma, Merck KGaA). The optical density signal was acquired using
the Bio-Rad Model 680 Microplate Reader and quantified using the Microplate Manager
5.2.1 software (Bio-Rad). Zymosan-induced activation of normal human serum was used
as standard.

2.5. NETosis Assay

Serum NETosis was measured using a custom sandwich ELISA. Polyclonal anti-
myeloperoxidase (MPO) antibody (Invitrogen GmbH, Lofer, Austria) was coated on 96-
well, high-binding microplates (Greiner Bio-One). Bound neutrophil-derived DNA was
detected using a horseradish peroxidase (HRP)-conjugated anti-DNA antibody (Roche
Diagnostics, Basel, Switzerland) and developed using a tetramethylbenzidine (TMB) sub-
strate solution. The enzymatic reaction was stopped by adding 1:1 (v/v) 1M H2SO4. The
optical density signal was acquired using the Bio-Rad Model 680 Microplate Reader and
quantified using the Microplate Manager 5.2.1 software (Bio-Rad). Supernatant from PMA-
stimulated and isolated granulocytes with defined concentration was used as standard.
Briefly, granulocytes were isolated from EDTA blood using histoplaque density gradient
centrifugation (350× g, 40 min, 18 ◦C). To induce NETosis, granulocytes were stimulated
by adding 10µg/mL PMA to 1 × 107 cells and incubating them for 4 h at 20 ◦C followed
by centrifugation (350× g, 10 min, 22 ◦C). Supernatant was collected and stored at −20 ◦C
until further use.

2.6. Viral Load and Secondary Viral Infections Analysis

SARS-CoV-2 viral load and secondary viral infections were determined by standard
routine protocol at our virology department according to their respective standard op-
erating procedures (SOPs). In short, total nucleic acid (TNA), including viral RNA or
DNA, was extracted from tracheal fluid and purified using the Nuclisens EasyMag 2.0
Kit (bioMérieux, Vienna, Austria). Detection and quantification of SARS-CoV-2 viral load
was achieved using the RealStar® SARS-CoV-2 RT-PCR Kit 1.0 (altona Diagnostics GmbH,
Hamburg, Germany). Secondary viral infections were detected by multiplex qPCR using
the Fast Track Diagnostics respiratory pathogens 21 assay (Siemens Healthcare GmbH,
Erlagen, Germany). PCR was performed using a CFX96 Touch real-time PCR detection
system and was analyzed both manually and using CFX Manager™ Software (both from
Bio-Rad). All kit-related experiments were performed according to the manufacturer’s
instructions.

2.7. Secondary Bacterial Infections Analysis

Secondary bacterial infections were determined by standard routine protocol at our
institute according to our SOPs. In short, tracheal fluid was cultured overnight on selective
medium agar plates (Columbia II blood agar, cooked blood agar, MacConkey agar) at
37 ◦C (MacConkey agar) or 37 ◦C under 5% CO2 atmosphere (both blood agars). Species
identification was achieved using matrix-laser desorption/ionization time of flight mass
spectrometry (MALDI-TOF MS, Bruker Daltonik, Bremen, Germany) combined with the
reference Biotyper library v4.1 (Bruker Daltonik).

2.8. Hemoglobin Assay

Quantification of blood in tracheal fluid samples was performed using a Hemoglobin
Assay Kit (Sigma-Aldrich, Merck KGaA). Samples with a value of ≥200 mg/dL were clas-
sified to be high in blood content levels and assumed that tracheal fluid was contaminated
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with blood during suction procedure. Thus, these samples were excluded from further
local infections studies.

2.9. Statistical Analysis

Continuous parameters are presented as mean ± standard deviation (SD) and nominal
data is shown as numbers with percentage. Differences between patient and control groups
were analyzed using unpaired t-test or Mann–Whitney U test for continuous parameters
based on normal distribution testing and Fisher’s exact test or chi-square test for categorical
parameters. Kinetic studies of continuous parameters comparing different subgroups was
approached by linear mixed model of log-transformed data. Correlation studies between
continuous variables were assessed using the Spearman rank correlation test. p < 0.05
(2-tailed) was considered a statistically significant difference. Bonferroni correction was
applied were multiple testing was applicable.

3. Results
3.1. Patient Characteristics

A total of 12 patients and 13 healthy controls were recruited for this study. SARS-CoV-
2 patients had a mean age of 79.2 ± 5.1 years, were predominantly males (83.3%), and
required mechanical ventilation for 14.8 ± 9.1 days. Seven patients (58.3%) died during
mechanical ventilation (n = 5) or within 10 days after the end of artificial respiration (n = 2)
(Figure 1 and Table 1).

Table 1. Characteristics as well as systemic and experimental laboratory blood parameters of patients and healthy controls.
Values represent baseline parameters acquired at first sampling time point. Data are presented as mean ± SD or n
(percentage). Differences between both groups were analyzed by unpaired t-test, Mann–Whitney U test, or Fisher’s exact
test, as appropriate.

SARS-CoV-2 Patients Healthy Controls p-Value

Epidemiological Parameters

n 12 13 n.a.

Age (years) 79.2 ± 5.1 62.4 ± 11.5 ***

Gender n f/m (%) 2/10 (16.7/83.3) 8/5 (61.5/38.5) *

Mechanical ventilation (days) 14.8 ± 9.1 n.a. n.a.

Mortality n (%) 7 (58.3) 0 (0.0) **

Laboratory Parameters

CRP (mg/L) 111.0 ± 67.1 8.2 ± 9.0 ****

PCT (ng/mL) 1.8 ± 4.1 n.a. n.a.

IL-6 (pg/mL) 3009 ± 9694 n.a. n.a.

WBC (cells/µL) 12,388 ± 3993 8838 ± 3061 *

Neutrophils (cells/µL) 10,812 ± 4026 n.a. n.a.

Platelets (cells/µL) 296,583 ± 150,973 291,658 ± 74,335 ns

INR 1.2 ± 0.3 1.1 ± 0.1 ns

D-Dimer (mg/L) 3.5 ± 3.0 n.a. n.a.

Experimental Parameters

C5a (ng/mL) 24.5 ± 39.0 0.8 ± 0.5 **

TCC (µg/mL) 11.03 ± 8.52 3.14 ± 1.89 ****

NETs (neutrophils/mL) 5.87 (±3.71) × 106 0.82 (±0.74) × 106 ****

n.a., not applicable; CRP, C-reactive protein; PCT, procalcitonin; IL-6, interleukin 6; WBC, white blood cell count; INR, international
normalized rate; TCC, terminal complement complex; NETs, neutrophilic extracellular traps; ns, not significant. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.
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release of systemic NETs was significantly higher in patient samples compared to the con-
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ingly, one patient did not show a positive PCR result despite being hospitalized for 
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ence observed in Ct values between survivors and nonsurvivors over time (Figure S1a). 

Figure 1. Sampling timeline of COVID-19 patients. Continuous sampling of serum and tracheal fluid began on the day
that mechanical ventilation was required, and n refers to the number of patients from whom samples were received per
day. Arrows indicate sampling, dotted lines represent sampling breaks, (X) marks patient extubation, and (†) the death
of patients.

The control group exhibited significant differences in age, gender and mortality. On
average, the first patient samples were available on day 2 (1–5) of mechanical ventilation
(data shown as median (IQR)). Baseline values of common systemic inflammation, but not
coagulation markers in blood, were significantly elevated in patients compared to healthy
controls (Table 1).

Complement activation markers C5a and TCC were significantly elevated in pa-
tient baseline sera compared to healthy controls with values of 24.5 ± 39.0 ng/mL and
11.03 ± 8.52 µg/mL and a significance of p = 0.0037 and p < 0.0001, respectively. In addi-
tion, the release of systemic NETs was significantly higher in patient samples compared to
the control group with levels of 5.87 (±3.71) × 106 neutrophils/mL vs. 0.82 (±0.74) × 106

neutrophils/mL (p < 0.0001; Table 1).

3.2. Viral Load and Secondary Infections

Viral load in tracheal fluid was obtained by routinely performed RT-qPCR. Strikingly,
one patient did not show a positive PCR result despite being hospitalized for COVID-19.
However, the remaining patients that survived or died after assisted ventilation showed a
mean Ct value of 27.2 ± 2.7 or 26.2 ± 3.3, respectively. There was no difference observed
in Ct values between survivors and nonsurvivors over time (Figure S1a). In total, four
(two survivors and two nonsurvivors) out of 12 COVID-19 patients with PCR confirmed
SARS-CoV-2 infections presented negative PCR results during the course of the disease.
Individuals from the control group were all negative for SARS-CoV-2.

Secondary respiratory infections were determined by our bacterial or viral routine
laboratory SOP, as described in Section 2.6 or Section 2.7. No viral infections were present
in our patients; however, secondary bacterial infections with yeast, Escherichia coli, and/or
Aspergillus fumigatus were detected (n = 7). In tracheal fluid of healthy donors, non-
pathogenic traces of Enterovirus, Influenza, Rhinovirus, Moraxella catarrhalis, and/or yeast
were detected in three individuals (Table S1).
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3.3. Elevated Systemic Inflamatory Processes and Activation of Complement but No Increased
NETs Release in Nonsurvivors

No significant difference in baseline values of serum C5a, TCC, and NETosis was
found between survivors and nonsurvivors with ranging levels of 15.06 ± 25.56 ng/mL
vs. 31.17 ± 47.13 ng/mL, 8.49 ± 3.18 µg/mL vs. 12.85 ± 10.82 µg/mL, and 6.58 (±3.81)
× 106 neutrophils/mL vs. 5.36 (±3.85) × 106 neutrophils/mL, respectively. The initial
results of the kinetic studies confirmed similar levels of serum C5a as well as comparable
concentrations of neutrophils that released NETs in the bloodstream of survivors and
nonsurvivors over the period of mechanical ventilation (Figure 2a,b). The levels of systemic
TCC in our cohort consisting of 12 patients were overall higher in nonsurvivors compared
to survivors over the course of mechanical ventilation (Figure 2c).
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Kinetic studies of single laboratory parameters revealed significantly elevated CRP lev-
els in nonsurvivors, when compared to survivors, during artificial respiration (p = 0.0354;
Figure 2d). However, other investigated inflammation and coagulation markers did not
reveal any differences between patients that survived and those that died due to severe
SARS-CoV-2 infection (Figure S2).

The correlation between complement and NETosis parameters in sera was determined
using the Spearman rank correlation test. C5a and TCC showed a strong significant positive
correlation (r = 0.5417, p < 0.0001; Figure S3a). Contrarily, correlation of NETs release with
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the complement activation products C5a and TCC merely revealed weak positive and
negative trends, respectively (Figure S3b,c).

3.4. Systemic Complement Activation and NETosis Significantly Associated with Inflammatory
and Coagulation Markers in COVID-19 Patients

Upon assessing the association of systemic complement activation and the release
of NETs with common inflammation (CRP, PCT, IL-6, WBC, and neutrophil count) and
coagulation (platelets, INR, D-dimer) markers over the period of mechanical ventilation, we
observed multiple correlations (Figures 3, S4 and S5). Whereas C5a showed no significant
correlation with any of the investigated laboratory parameters, TCC presented a significant
positive correlation with CRP, WBC count, neutrophil count, and D-dimer. The highest
number of significant correlations was observed in NETs release. This parameter showed a
significant positive correlation with CRP, PCT, WBC count, neutrophil count, and D-dimer,
whereas platelet count displayed a significant negative correlation.
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Figure 3. Correlation matrix of activation in systemic parameters. Complement activation products,
C5a and TCC, and NETs release correlated with common inflammation and coagulation markers in
mechanically ventilated patients with SARS-CoV-2 infection. Correlation coefficient was assessed
using the Spearman rank correlation test. Values indicate Spearman r. CRP, C-reactive protein; PCT,
procalcitonin; IL-6, interleukin 6; WBC, white blood cell count; INR, international normalized rate;
TCC, terminal complement complex; NETs, neutrophilic extracellular traps. * p < 0.002 (significant
after Bonferroni correction).

3.5. Detection of Local Complement Activation and NETosis in Tracheal Fluid throughout
Mechanical Ventilation

Hemoglobin assay identified 16 out of 132 tracheal fluid samples from SARS-CoV-
2 patients with high levels of hemoglobin values (≥200 mg/dL). None of the samples
from the control group had high levels of hemoglobin. Consequently, samples with high
hemoglobin content were excluded from complement and NETosis analysis. Hereby, one
survivor (patient 10) had to be excluded completely. Of the remaining patient samples
(n = 116), no significant discrepancy in hemoglobin content was observed between sur-
vivors and nonsurvivors at baseline values or over the time of mechanical ventilation
(Figure S1b).
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Initial TCC levels in tracheal fluid significantly differed between patients and healthy
controls, with concentrations detected at 0.81 ± 0.59 µg/mL and 0.26 ± 0.23 µg/mL
(p = 0.0051), respectively. Baseline values of C5a, NETs release, and hemoglobin in tracheal
fluid tended to be elevated in patients; nevertheless, they exhibited no significant difference
compared to the control group (Table 2).

Table 2. Complement, NETosis, and hemoglobin levels in tracheal fluid of patients and healthy controls. Values represent
baseline levels at first sampling time point. Data are presented as mean ± SD or n (percentage). Differences between both
groups were analyzed by unpaired t-test or Mann–Whitney U test, as appropriate.

Experimental Parameters SARS-CoV-2 Patients Healthy Controls p-Value

C5a (ng/mL) 2.7 ± 7.1 0.3 ± 0.4 ns

TCC (µg/mL) 0.81 ± 0.59 0.26 ± 0.23 **

NETs (neutrophils/mL) 9.54 (±10.2) × 106 2.45 (±1.58) × 106 ns

Hb (mg/dL) 45.0 ± 41.8 24.2 ± 17.5 ns

TCC, terminal complement complex; NETs, neutrophilic extracellular traps; Hb, hemoglobin. ns: not significant; ** p < 0.01.

In line with the results obtained from sera, no initial differences were found in C5a,
TCC, and NETosis in tracheal fluid of survivors and nonsurvivors, with levels measuring at
0.89 ± 1.07 ng/mL vs. 3.81 ± 8.98 ng/mL, 0.86 ± 0.60 µg/mL vs. 0.78 ± 0.63 µg/mL, and
14.02 (±14.20) × 106 neutrophils/mL vs. 65.50 (±63.19) × 106 neutrophils/mL, respectively.
In general, C5a was present in tracheal fluid but in very little amounts; thus, no kinetic
studies were performed for this anaphylatoxin. TCC levels in tracheal fluid revealed no
significant difference between survivors and non survivors (Figure 4a). In contrast, the
concentration of neutrophils undergoing NETosis was significantly higher in survivors
over the course of mechanical ventilation (p = 0.0082; Figure 4b).
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Correlation analysis of TCC and NETs release exhibited a weak negative trend
(p = −0.1875; Figure S6a). Moreover, there was no correlation observed between the viral
load and the levels of TCC or NETs in the tracheal fluid of COVID-19 patients (Figure S6b,c).

3.6. Evalution of LungTissue Based on Chest X-ray Severity Score and Implementation of a
Severity Ratio

CXR analysis and scoring was used to determine disease severity in the lung tissue of
our patient cohort. A general trend revealed a higher CXR score in nonsurvivors; however,
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no significant difference in CXR scores was observed between nonsurvivors and survivors
over the time of mechanical ventilation (Figure 5).

In order to pronouncedly indicate the interplay of the three specific parameters (CRP,
TCC, and CXR score), which independently displayed overall elevated levels in nonsur-
vivors during the course of mechanical ventilation, a ratio of CRP × TCC × CXR kinetics
was introduced (Figure 6). CXR scores in the two patient cohorts revealed a significant
interaction in the first week of mechanical ventilation (Figure 5); therefore, values from
days 1–6 were omitted from our analysis. Starting from the second week of mechanical
ventilation, nonsurvivors showed a significantly higher CRP × TCC × CXR ratio compared
to survivors. We further observed, in this specific cohort, that the mean values of CRP ×
TCC × CXR were consistently above 8 in nonsurvivors, while values in survivors did not
exceed 5.4.
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Figure 5. Kinetics of the chest X-ray (CXR) score during the course of mechanical ventilation in
COVID-19 patients that survived (n = 4) or died (n = 7). Data are shown as mean ± SD. Dotted
line indicates the survival threshold. p-Values were calculated by linear mixed model of clustered
log-transformed data.
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complex (TCC), and CXR score during the course of mechanical ventilation in COVID-19 patients
that survived (n = 4) or died (n = 7). Data are shown as mean ± SD. Dotted line indicates the survival
threshold. p-Values were calculated by linear mixed model of clustered log-transformed data.
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No significant correlation was observed between CXR scores and the complement
activation products C5a (Figure S7a), serum TCC (Figure S7b), and tracheal fluid TCC
(Figure S7c). Similarly, CXR scores displayed no significant correlation with NETs release
in serum (Figure S7d) or tracheal fluid (Figure S7e).

4. Discussion

The complement system triggers the production of anaphylatoxins (C3a and C5a)
and the formation of the terminal complement complex and is known to interact with the
coagulation cascade, thereby instigating neutrophil activation and NETosis. Henceforth, an
increase in complement activation, signaled by elevated levels of complement activation
products, has been heavily implicated in severe COVID-19 [17,30].

In our longitudinal study, we observed significantly higher baseline levels of C5a
and TCC in sera of COVID-19 patients compared to the control group. These results have
been reflected in a study where higher baseline levels of TCC were reported in COVID-19
patients, albeit C5a levels remained under the detection limit [24]. Several other studies
have showcased an increase in systemic TCC [17,31] and C5 or C5a [18,19] levels in COVID-
19 patients compared to healthy donors. The systemic overactivation of the complement
system may eventually indicate the outcome of disease in severe COVID-19 cases. Studies
even identified the activation of the complement system via alternative and MBL pathway
as a mortality indicator [32,33].

The unique inflammatory response exhibited by neutrophils whereby they release
NETs as an effector mechanism is associated with poor clinical outcome in COVID-19 [34].
Several studies revealed the role of neutrophils in the pathology of the disease as levels
of blood neutrophils and NETs released in COVID-19 patients were higher than those in
a healthy cohort [35,36]. We have similarly noted higher levels of NETs release in sera
of COVID-19 patients and further highlighted a strong correlation between NETs and
inflammatory and coagulation markers, mainly CRP, PCT, WBC count, neutrophil count,
and D-dimer. Indeed, NETs release has been associated with several clinical biomarkers,
including acute-phase reactants (CRP and D-dimer) and inflammatory cytokines [37,38],
in COVID-19 patients and is rendered a prognostic marker for diseases severity [39].
The activation of neutrophils and the formation of NETs could therefore be a potential
therapeutic target for critical COVID-19 cases.

Kinetic evaluation of systemic C5a, TCC, and NETosis revealed significantly higher
values of TCC in nonsurvivors, whereas C5a and NETosis levels did not differ between
survivors and nonsurvivors. TCC, a terminal product of complement activation, represents
a stable complex that remains in fluid phase, whereas the anaphylatoxin C5a is bound by
receptors upon cleavage of C5 and is thus a less stable marker of complement activation.
Significantly higher TCC levels have been previously reported in ICU patients when com-
pared to non-ICU patients [40]. In a longitudinal cohort of COVID-19 patients, TCC levels
were consistently elevated in patients under mechanical ventilation and significantly higher
compared to asymptomatic patients or those with mild symptoms [41]. The heightened
activation of complement components can evidently be rendered as critical indicators of
disease severity.

Our investigation of local kinetics in tracheal fluid yielded no significant differences
between survivors and nonsurvivors in regards to C5a and TCC activation. We detected
minute amounts of C5a in the tracheal fluid, which could be explained by the increased
local activation of neutrophils in the lungs. It may be that the crosstalk between C5a and
C5a receptor (C5aR) expressed on neutrophils drove towards the consumption of local C5a
in the lungs, making it difficult to detect C5a locally.

It is worth noting that one of the most consistent observations reported across COVID-
19 clinical studies, including our study, is patient characteristics. Patients most frequently
admitted to hospital care, especially those in need of mechanical ventilation, were generally
65+ year-old males, a demographic that has been a hallmark of critical COVID-19 [42].
Several factors have been considered as potential predictors for the requirement of mechan-
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ical ventilation, the most prominent being IL-6 and CRP [43,44]. Levels of IL-6 and CRP
have been shown to increase proportionally to disease severity [41,45]. CRP levels in our
patient cohort were elevated compared to control, and we further observed significantly
higher CRP levels in nonsurvivors compared to survivors. Interestingly, IL-6 and CRP
were assessed as predictive values for respiratory deterioration, where CRP levels above
97 mg/L indicated the need for mechanical ventilation [43]. Although the average CRP
levels in our patient cohort was 111 mg/L, we cannot infer from our small sample size
that CRP levels are correlated with our cohort’s survival or need of mechanical ventilation.
Nevertheless, the careful monitoring of these parameters could facilitate early identification
of COVID-19 patients at risk of respiratory failure.

High-resolution computed tomography (HR-CT) is deemed the gold standard for the
radiologic evaluation of pulmonary alteration severity in COVID-19 infections. HR-CT is
highly sensitive at detecting lung alterations that are typical in COVID-19-pneumonia, in-
cluding ground glass opacity, crazy paving, bronchiectasis, and consolidation. Furthermore,
HR-CT can differentiate, with high specificity, between these COVID-19-typical alterations
and other causes of lung opacity, like pleural effusion, atelectasis, or bacterial pneumonia.

CT is more specific and sensitive at detecting typical COVID-19 lung alterations
compared to conventional chest X-ray (CXR). Nevertheless, CXR remains a useful tool
for assessing the progression of infection in patients with known COVID-19-pneumonia.
Several studies comparing severity scores accuracy, based on CXR and CT analysis, revealed
low interobserver variability and positive correlation between CXR- and CT-based scores,
with a slight overestimation of CXR-scores compared to CT [46].

The assessment of several parameters revealed significantly higher values of a CRP
× TCC × CXR ratio in nonsurvivors compared to survivors. It is worth noting that the
mean values of the CRP × TCC × CXR ratio did not drastically differ from that of the
CRP × TCC ratio (Figure S8); however, the inclusion of the CXR score was significant, as it
allowed us to pinpoint a value that distinguished between survivors and nonsurvivors.
In our cohort, we specifically showcased that nonsurvivors had a mean value above 8
throughout the period of mechanical ventilation, indicating that COVID-19 patients above
this value may be at a critical, fatal state. Evidently, our sample size is too small, and a
larger cohort would provide a better intel on the actual role of CXR as a severity score in
COVID-19. Consequently, with a larger cohort, one could confirm our hypothesis that a
higher CRP × TCC × CXR ratio could serve as a predictive parameter of disease severity
and survivability.

In conclusion, our study confirms the critical role of complement activation, systemi-
cally and locally, in SARS-CoV-2 infections. Furthermore, we could demonstrate that local
NETosis in the lungs is a predictive parameter of mortality in patients under mechanical
ventilation. Our results suggest that a combination of high systemic TCC levels and de-
creased local NETosis can strengthen the prediction of infection severity. Lastly, we propose
a specific cutoff value of a ratio consisting of systemic CRP and TCC as well as CXR score
as a discriminating factor of survivability in COVID-19 patients. The proposed ratio is
uninformative at the time of admission; however, it could later serve as a measure in the
timeline of therapeutic intervention. Of course, our results herein need to be confirmed by
extended studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13122376/s1, Table S1: List of bacterial and viral secondary respiratory infections in patients
and healthy controls; Figure S1: Kinetics of Ct values and hemoglobin in tracheal fluid; Figure S2:
Kinetics of common systemic inflammation and coagulation markers; Figure S3: Correlation between
systemic complement activation products and NETosis; Figure S4: Correlation of serum complement
activation products and NETs release with common inflammation markers; Figure S5: Correlation of
serum complement activation products and NETs release with common coagulation markers; Figure
S6: Correlation between complement activation products and NETosis in tracheal fluid of COVID-
19 patients; Figure S7: Correlation between chest X-ray (CXR) scores and complement activation
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products or NETosis in COVID-19 patients; Figure S8: Kinetics of a ratio of systemic inflammation
and complement activation marker.
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