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Abstract: Tsetse flies cause major health and economic problems as they transmit trypanosomes
causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in ani-
mals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and
their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful
application of SIT, it is important to establish and maintain healthy insect colonies and produce flies
with competitive fitness. However, mass production of tsetse is threatened by covert virus infections,
such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection
can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of
an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of
other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two
single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at
the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the
RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus
and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans mor-
sitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV
genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into
structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides
and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the
largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase
domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the
presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both
viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans
by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can
be found not only in the host’s brain and fat bodies but also in their reproductive organs, and in milk
and salivary glands. These findings suggest a potential horizontal viral transmission during feeding
and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and
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GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species
show any signs of disease from these viruses.

Keywords: Iflaviridae; sterile insect technique; mass rearing; RNA viruses; FISH; stellaris probes

1. Introduction

Tsetse flies are vectors of trypanosomes, causative agents of sleeping sickness in
humans and nagana in livestock. Although only 8–10 tsetse species are of medical and/or
economic importance, there are about 31 tsetse species and sub-species distributed in
37 sub-Saharan African countries [1]. To date, the only virus known to be associated
with tsetse flies is a large, rod-shaped dsDNA virus, Glossina pallidipes salivary gland
hypertrophy virus (GpSGHV; family Hytrosaviridae) [2]. GpSGHV symptomatic infections
are known to cause reproductive dysfunctions, which can result in the collapse of the fly
colonies [3,4]. This jeopardizes the control of tsetse (vector) and trypanosomosis through
the application of the Sterile Insect Technique (SIT), a birth control technique that requires
mass release of sterile males with competitive fitness into the target insect population to
mate with wild virgin females resulting in the lack of offspring [5,6].

In addition to GpSGHV, tsetse flies also harbor symbiotic bacteria—Wigglesworthia
glossinidia, Sodalis glossinidius, Wolbachia pipientis and Spiroplasma—which may contribute
to the digestion of nutrients in the flies as well as regulate fly reproduction and immu-
nity. These findings indicate interdependence of the symbionts and GpSGHV which may
influence GpSGHV transmission and pathologies [7–12].

Using next-generation sequencing (NGS) approaches, multiple insect infecting viruses
have been characterized in other insects, like mosquitoes and sand-flies, such as those
viruses belonging to the Iflaviridae family and the newly described Negevirus taxon [13,14].
The Iflaviridae family comprises positive-sense single-stranded RNA (+ssRNA) viruses
in the order Picornavirales and contains a single genus, Iflavirus. The Iflavirus ssRNA
genome encodes a single, large polyprotein, which is post-translationally processed into
structural and non-structural viral proteins essential for its replication, packaging and
transmission [13]. The single polyprotein is flanked by a 5′ untranslated region (5′ UTR),
which includes an internal ribosome entry site (IRES) structure required for the cap-
independent translation and a 3′ UTR with a poly(A) tail to terminate translation [15,16].

Viruses in the newly described Negevirus taxon are enveloped and have a +ssRNA
genome of about 9 to 10 kb with a poly(A) tail at the 3′ end and encodes three major
open reading frames (ORFs). The largest Negevirus ORF (ORF1) is approximately 7 kb
and encodes the viral non-structural proteins: ribosomal RNA (rRNA) methyltransferase
(MTase), viral MTase, helicase and the RNA-dependent RNA polymerase (RdRp). ORFs 2
and 3 are approximately 1.5 kb and 600 base pairs (bp), and they have been hypothesized
to encode structural proteins, the glycoprotein and membrane protein, respectively [17].
Two major distinct clades or genera have been designated within the Negevirus taxon, the
Nelorpivirus and the Sandewavirus, with the former being more closely related to the plant
cileviruses and higreviruses [18]. However, further experimental studies are required to
understand the mode of transmission, pathogenicity and replication of Negeviruses [19].

In tsetse flies, further investigations are required to provide crucial information on
presence of persistent +ssRNA virus infections and how these might interact with the above-
mentioned tsetse symbionts and GpSGHV. Here, we report the nucleotide sequences, genome
organization and phylogenetic placement of two novel +ssRNA viruses belonging to Iflaviridae
family and Negevirus genus, respectively, both isolated from Glossina morsitans morsitans
reared at the Insect Pest Control Laboratory in Seibersdorf, Austria. The tissue tropism
of these viruses was analyzed to provide insights into the possible transmission mode.
RT-qPCR and Stellaris RNA in situ hybridization techniques were applied to detect the
viruses in the various organs.
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2. Materials and Methods
2.1. Sample Collection/Experimental Flies and Procedures

Tsetse flies (G. m. morsitans) used in this study were obtained from the colony main-
tained at the Joint FAO/IAEA Center, Insect Pest Control Laboratory (IPCL), Seibersdorf,
Austria. The flies were maintained in an insectary at 23 ± 1 ◦C, 75–80% relative humidity,
with a 12 h photo-phase and were fed defibrinated bovine blood for 10 to 15 min, three
times per week using an in vitro membrane feeding system.

2.2. Discovery of RNA Virus Sequences and Genome Annotation

RNA-Seq data (SRR965341) derived from a pool of 30 salivary glands of trypanosome-
infected G. m. morsitans and produced using the Illumina HiSeq 1000 was downloaded
from the NCBI database. The assembly and mapping of these data were performed on CLC
Genomic WorkBench (GWB) version 11.0.1 to generate contigs. The contigs that mapped
to other related viruses were used to design the initial primers to detect these viruses in
G. m. morsitans samples from IPCL. A series of forward and reverse primers were designed
to join the non-overlapping contigs that mapped to the same virus family. The 5′ and 3′

ends of each virus were amplified by rapid amplification of cDNA ends (RACE) using
the 5′/3′ RACE Kit, 2nd Generation (Roche Applied Science, Mannheim, Germany) in
combination with virus-specific primers. Sequences and positions of the primers for the
specific viral genomes used in this study are described in Table 1.

Table 1. Primers used for RT-PCR of GmmIV and GmmNegeV are given in 5′-3′ orientation.

Primers for GmmIV 5′ RACE

IflaTse_SP3 ATAGATGCAGGATGGTTAGGTTGCT

IflaTse_SP2 GAGCCTGATGGATGTTGTGTTTGT

IflaTse_SP1 ACACCATACTTACACACAGCCATTC

Primers for GmmIV detection

Iflav-tseCont1-1R AAATGGCTACGCGATGTAGAATGG

Iflav-tseCont1-1F TTTGCCTTTGTCCTTTAGATGTGCT

IflaTse_C1-F1 TGTTGGTGCTAGATTTAAGGAAAGGT

IflaTse_C1-F2 TTGAATTAGTTAAGCGATCTAGCCA

IflaTse_C83-R1 TCGGACATAGAATCAACAACAATACCA

IflaTse_C83-R2 AAGAACACTTCAATCTCTCTGCCAA

Primers to join the GmmIV contigs

Iflav-tseCont83-1F ATAGCCCCTAAAACAATAGCCCAAA

Iflav-tseCont83-1R CCACACATTCCTCTACCATTTACTT

Iflav-tseCont83-2F CAGGTATGGTTAGTGGTGAGAGAGG

Iflav-tseCont83-2R GGACGAACAGAGGAAAACGGAAAAC

Primers for GmmIV 3′ RACE

IflaTse_C83-F3-a GCAATGGATAAGCGTGCAATAGAAG

IflaTse_C83-F3-b TTTGGCGTAAAGAACGATTGGTG

Primers for GmmNegeV 5′ RACE

NegeTse_SP3 TATGTAGCAATTTCGTTGAGAG

NegeTse_SP2 TTTACAGCATCAGCAGAATCCA

NegeTse_SP1 TGGAACGACAAGACGAATAGG
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Table 1. Cont.

Primers for GmmNegeV detection

NegeTse_C215-1F TGTCTTGGTTTAGGAGTTTATTCGATGG

Negv-tseCont1351-1F CCATTGTACTGAATTGCGTCCTAAGT

Primers to join GmmNegeV contigs

NegeTse_C1351-1R GTACGGATGAATCGCAAATAAATGA

Negv-tseCont1351-1R CATAACGGCAGCGTCACTCATAAC

NegeTse_C1351-1F CGGTAACGCTGTTGTTAAATCTT

NegeTse_C2539-1R TTCATGTCAGCAACTCTAACAAATC

NegeTse_C2539-1F CTTGTGACGTGGTCGCTGCTTT

NegeTse_C1602-1R ACATACGCCTGTTGCGGATA

Negv-tseCont1602-1F CTTCGTGTCCTAATGTTCGTTTTGT

Negv-tseCont1602-1R GTTTTCCGTATTTTCTGTAAGCGTG

NegeTse_C1602-3F-a AGCAAGGTGGATGGGTATATCTTGT

NegeTse_C1602-3F-b TGATAAAGAACCTGTGTATGTTCCC

NegeTse_C1602-2R TCTAAAGAAGGAAAGTCAGGGTTAC

Primers for GmmNegeV 3′ RACE

NegeTse_C1602-2F-a TATCCGAAGGTTATGGTTATGGTT

NegeTse_C1602-2F-b TTTCCTCCTTCGTCTTATGTGA

NegeTse_C1602-3R TAGTCACATAAGACGAAGGAGGA

Primers for GmmIV and GmmNegeV RT-qPCR

Ifla_qPCR2_7848F AGAAATTGAAGGACAGATGTTTGGT

Ifla_qPCR2_7947R ACCTAAGAAATTACCAGTACCCTCC

Nege_qPCR1-2411F CAACATAGACTTGAACCAGAGCA

Nege_qPCR1-2529R GAAACATCAAACACACTCCCATTAG

Tsetse-tubulinF GATGGTCAAGTGCGATCCT

Tsetse-tubulinR TGAGAACTCGCCTTCTTCC

The assembled virus genome sequences were characterized based on their size, or-
ganization, and the encoded proteins. Briefly, the nucleotide sequences for both genomes
were subjected to ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/, accessed on
15 October 2018) to search for ORFs, while the amino acid sequences were used to scan for
conserved functional domains and putative proteolytic processing sites using InterProScan
(https://www.ebi.ac.uk/interpro/, accessed on 20 October 2018) and HMMER programs
(https://www.ebi.ac.uk/Tools/hmmer/, accessed on 20 October 2018). The secondary
structures of the 5′ UTR for both virus genomes were predicted using MFOLD program
and ViennaRNA software package [20,21].

2.3. RNA Extraction and cDNA Synthesis

Total RNA was extracted from 10 individual whole bodies (5 males and 5 females) of
3–4 days old flies using TRIzol reagent (Invitrogen, Paisley, UK) according to the manufac-
turer’s instructions. The extracted RNA samples were treated with DNase 1 (Invitrogen,
Paisley, UK) to remove any contaminating genomic DNA, and the RNA purity and concen-
tration were determined using a Nanodrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA). A total of 500 ng of RNA was reverse transcribed to com-
plementary DNAs (cDNAs) using the SuperScript® III Reverse Transcriptase kit (Invitrogen,

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/Tools/hmmer/
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Paisley, UK) and the oligo-dT primer included in the kit following the manufacturer’s
instructions.

2.4. Virus Detection by RT-PCR

To detect the viruses in G. m. morsitans fly samples, one primer pair (Table 1) was
designed from each of the contigs that mapped to the other viruses. The amplifications were
carried out in 25 µL final reaction volume containing 2 mM of MgCl2, 0.2 mM of dNTPs
mix, 0.2 µM of each primer, 1.0 U of Taq buffer, 0.25 µL of Go-Taq Polymerase and 1 µL of
cDNA. The cycling conditions were 95 ◦C for 5 min, followed by 35 cycles of 95 ◦C for 45 s,
58 ◦C for 45 s and 72 ◦C for 45 s, then final extension of 72 ◦C for 10 min. The PCR products
were analyzed by 1.5% agarose gel electrophoresis according to standard protocols.

2.5. Sequencing and Phylogenetic Analysis

All the PCR-amplified fragments for different contigs and the 5′/3′ RACE were pu-
rified following Illustra GFX PCR DNA and Gel Band Purification kit (GE Healthcare,
Buckinghamshire, UK) and sequenced by Sanger sequencing technology. Multiple align-
ments of the identified sequences were performed in BioEdit [22] as well as on MEGA6 [23].
Phylogenetic analysis was performed with MEGA6 using the default settings for neighbor-
joining method with bootstrap test of 1000 replicates.

2.6. Detection of Replicative RNA Strand by RT-PCR

To detect the replicative negative RNA strand of the identified viruses, cDNA was
synthesized using a forward virus-specific primer (complementary to the negative RNA
strand) from a DNase-treated total RNA. To confirm that the cDNA was generated from the
virus negative strand, a PCR was performed using a primer pair located downstream of the
forward virus-specific primer used at the reverse transcriptase (RT)-step. For each of the
analyzed samples, a negative control without RT enzyme (NRT), a positive control (cDNA
synthesized from the virus positive RNA strand) and no-template (RNase-free water as
template) samples were included in this assay. The primers used are detailed in Table 1.

2.7. Tissue Distribution of Iflavirus and Negevirus Infection in Adult Tsetse Flies

To determine the tissues infected with GmmIV and GmmNegeV in adult tsetse flies
G. m. morsitans, quantitative real time PCR (RT-qPCR) and the Stellaris RNA-Fluorescence
in situ Hybridization (FISH) techniques were applied for detection and visualization of the
viruses, respectively, in different tsetse isolated tissues. To isolate the tissues, 30-day-old
flies were starved for 2 to 3 days then chilled at 4 ◦C for 15 min prior to dissection and were
kept on ice during the dissection of different tissues. The tissues (salivary glands, hindgut,
Malpighian tubules, midgut, foregut, ovaries, spermatheca, milk glands, testes, fat bodies
and brains) were dissected in sterile phosphate-buffered saline (1X PBS) under a dissection
microscope. Tissues for RT-qPCR analysis were collected in microtubes containing RNA
later, while those for FISH were collected in fixating solution (3.7% paraformaldehyde, 1X
PBS, 0.3% Triton-X 100; nuclease-free water) and were kept on ice during the dissection
process. For the RT-qPCR analysis, the same tissues from 10 adult flies were pooled together
and considered as one replicate. Male and female tissues were separated, with a total of
three replicates for each sex.

2.7.1. Relative Expression of Iflavirus and Negevirus in Adult Tsetse Tissues Using
RT-qPCR

To detect and quantify GmmIV and GmmNegeV from the dissected tissues, total
RNA was extracted and cDNA was synthesized as described in Section 2.3, followed by
quantitative real time PCR (RT-qPCR). The RT-qPCR reactions were prepared in a 15 µL
reaction volume containing 5 µL of (2.5 times diluted) cDNA template, 200 nM of each
forward and reverse primer (Table 1), 1.5 µL ddH2O and 7.5 µL iQTM SYBER Green
Supermix (Bio-Rad laboratories, Hercules, CA, USA). Three technical replicates per virus
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target and housekeeping (β-tubulin) gene were performed. The PCR was performed in a
CFX96 PCR machine (Bio-rad laboratories, Hercules, CA, USA), with an initial denaturation
step at 95 ◦C for 2 min, followed by 39 cycles of 95 ◦C for 5 s, 62 ◦C for 30 s, ended by a
fluorescence read and 95 ◦C for 5 s, followed by a melting curve from 65 to 95 ◦C. The
real-time data were analyzed using the 2(−∆∆ct) method using the CFX Maestro software
version 2 (Bio-Rad).

2.7.2. Detection of Iflavirus and Negevirus in Adult Tsetse Tissues Using FISH

To visualize the two viruses in adult tsetse flies using FISH technique, custom probe
sets for GmmIV and GmmNegeV were designed using the Stellaris® FISH probe designer
(www.biosearchtech.com/support/tools/design-software/stellaris-probe-designer, ac-
cessed on 27 May 2020) according to a protocol previously described by Schneider et al. [24].
The endosymbiont bacteria Wolbachia were also analyzed using W1 and W2 probes tar-
geting 16S rRNA [25] of the bacterium (Table S1) as a positive control for the technique.
The isolated tissues were first fixed for 20 min at room temperature under constant gentle
shaking, then washed three times for 10 min each in PBS-T (1X PBS with 0.3% Triton-X 100).
The tissues were rinsed one time with 70% ethanol and kept in fresh 70% ethanol overnight
at 4 ◦C at constant agitation. The following day, the tissues were washed briefly in sterile
1X PBS and rehydrated for 5 min in prewarmed washing buffer (4X saline sodium citrate
[SSC], 20% deionized formamide, DEPC treated water) at room temperature. The tissues
were then hybridized overnight at 37 ◦C in a dark and humid hybridization chamber
in 50 µL hybridization mix (0.1% dextrane sulfate, 4X SSC, 20% deionized formamide,
DEPC treated water), containing 0.3 pmol of each Stellaris® RNA-probe and 3 pmol of
W1 and W2 Wolbachia probes. Following hybridization, the tissues were briefly washed
3 times with preheated washing buffer at room temperature followed by one wash for
30 min at 37 ◦C in the dark hybridization chamber. Tissues were then incubated with
Alexa Fluor® 488 phalloidin (Invitrogen, Paisley, UK) staining F-actin (1:100 in 1X PBS)
for 1 h, shaking at room temperature in the dark. Alexa Fluor® 488 phalloidin was then
replaced by 1X PBS, and the tissues were mounted in Roti-Mount© FluorCare (Carl Roth,
Karlsruhe, Germany), containing DAPI (4′,6-diamidino-2-phenylindole) on sterile slides.
Visualization of the hybridized tissues was performed on either a Nikon A1 or an Olympus
FluoView 3000 confocal microscope. G. pallidipes was used as a negative control because
the two viruses investigated here have remained undetectable in this species by RT-PCR.

2.8. Statistical Analyses

RT-qPCR data were analyzed with the general linear model (GLM) on R v 4.0.5 [26]
using RStudio V 1.4.1106 [27,28] with packages ggplot2 v3.3.2.1 [29], lattice v0.20-41 [30],
car [31], ggthems [32] and MASS v7.3-51.6 [33]. The target expression levels were normal-
ized to β-tubulin expression.

3. Results
3.1. Discovery of the RNA Viruses in G. m. morsitans

The sequences used for the discovery of the RNA viruses in tsetse originated from the
RNA-seq data of both trypanosome infected and non-infected G. m. morsitans flies. The
assembly of the RNA-seq data in CLC GWB generated 6843 contigs containing >500 reads.
Six contigs mapped to two positive single-stranded RNA (+ssRNA) viruses. Using BLASTx,
two non-overlapping contigs (#1 and 83) mapped to a non-annotated Kinkell iflavirus
sequence (AMO03216.1) with 43 and 45% sequence identity, respectively, while four other
non-overlapping contigs (#215, 1251, 2539 and 1602) mapped to Negeviruses, a newly
identified insect-infecting virus group. Contigs #1351 and 1602 showed low levels (23–61%)
of amino-acid identity with Dezidougou virus (JQ675604.1) and Tanay virus (KF425262.1),
and contigs #215 and 2539 showed 47% and 36% of amino-acid identity with Tanay virus
(KF425262.1). To confirm the presence of the two viruses, the initial RT-PCR was performed
on the G. m. morsitans samples using primer sets located in each of the identified contigs and

www.biosearchtech.com/support/tools/design-software/stellaris-probe-designer
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sequenced (Figure 1). RT-PCR using a series of forward and reverse primers successfully
joined the non-overlapping contigs of both viruses, whereas the 5′ and 3′ untranslated
regions (UTR) were obtained using 5′ and 3′ RACE technique (Figure 1). Therefore, the two
viruses are proposed to be named as Glossina morsitans morsitans iflavirus (GmmIV) and
Glossina morsitans morsitans negevirus (GmmNegeV). The genome sequences of GmmIV
and GmmNegeV were submitted to GenBank receiving the accession numbers OL353434
and OL353435, respectively.
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3.2. Viral RNA Genome Analysis and Organization

The assembled GmmIV genome sequence contains 9685 nucleotides (nts) with a single,
large ORF (9222 nts) encoding a polyprotein that is cleaved into both structural proteins
(capsid proteins located at the N terminal) and non-structural proteins. The viral genome
contains a single ORF, which is flanked by a 5′ UTR (300 nts) and a 3′ UTR (163 nts) that
ends in a poly(A) tail (Figure 2A). The encoded polyprotein contains several conserved
domains: two picornavirus-like capsid protein domains, which correspond to VP3 and
VP1, and a cricket paralysis virus capsid protein-like domain, corresponding to VP2. The
conserved domains identified for the non-structural proteins were an RNA helicase and
RdRp. The analysis of the 300 nts of the 5′ UTR demonstrated three stable secondary
structures. These included one hairpin (I) that formed branched structures, which are
similar to a hairpin (V) of the IRES structures described for Deformed wing virus (DWV)
and Varroa destructor virus 1 (VDV-1) [16] in terms of shape and distance from the ORF
(Figure 2B) which may have a similar function in translation initiation.

The GmmNegeV genome isolated from G. m. morsitans is composed of 8140 nts
encoding two overlapping ORFs flanked by 5′ UTR and 3′ UTR. The GmmNegeV ORF1
(7035 nts) encodes a polyprotein containing four typical non-structural protein domains:
a methyltransferase (MT) domain, a ribosomal RNA methyltransferase domain, a viral
RNA helicase domain and an RdRp domain (Figure 2C). The second ORF (ORF2) is located
downstream in a +1 reading frame from ORF1, and partly overlaps. However, it makes use
of another reading frame and encodes three glycosylated proteins (23NITT26, 149NSSG152
and 245NYTD248) that are associated with the viral envelope.
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3.3. Phylogenetic Analysis

Due its highly conserved nature among insect RNA viruses, the deduced amino acid
sequences for the RdRp proteins were used in phylogenetic analyses of the identified
GmmIV and 25 other viruses in the order Picornavirales in GenBank. The RdRp segregated
the viruses into taxonomic groups (Picornaviridae, Iflaviridae and Dicistroviridae families)
within the order Picornavirales and clustered GmmIV with viruses belonging to the Iflaviridae
family such as Wuhan fly virus 4 (Figure 3a). In addition, the phylogenetic analysis of
amino acid sequences of the GmmNegeV RdRp with that of other Negeviruses clustered
GmmNegeV with group II sandewaviruses, as reported in other insects such as Goutanap
virus, Dezidougou virus and Tanay virus (Figure 3b).

The phylogenetic placement of both GmmIV and GmmNegeV in their respective
virus taxon was also supported by motif patterns observed in the RdRp amino acids
alignments (Figure 4). Conserved deletions and insertions were also observed in GmmIV
and GmmNegeV RdRp amino acids sequence alignments, which were like other viruses
belonging to the Iflaviridae family and Negevirus group II sandewaviruses, respectively
(Figure 4). A comparison of RdRp amino acid identity showed that GmmIV shared 64.4%
amino acid identity with Wuhan fly virus 4, while GmmNegeV shared 55.4%, 58.6% and
56.7% with the Goutanap virus, Dezidougou virus and Tanay virus, respectively.
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3.4. Detection of Replicative RNA Forms of Iflavirus and Negevirus in G. m. morsitans

During replication of +ssRNA viruses, a complementary negative RNA strand is
normally transcribed from the positive RNA genome, which serves as the template for
multiplication of the viral genome to form new virus progeny. To provide evidence
that both GmmIV and GmmNegeV replicate in tsetse flies, a strand-specific RT-PCR was
performed using cDNA transcribed from either positive and negative RNA strands of
the two viruses (Figure 5a,b). A primer pair located downstream of the RT-step forward
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primer which is complementary to the virus negative RNA strand was used for the PCR. A
PCR product of 575 bp was amplified with GmmIV primers in combination with GmmIV
templates (Figure 5c), and a 540 bp product with GmmNegeV primers in combination
with GmmNegeV templates (Figure 5d). Both GmmIV and GmmNegeV replicate in
G. m. morsitans as seen by RT-PCR amplification of the specific negative strands (Figure 5c,d
lanes ii). In addition, both female and male G. m. morsitans were infected with both viruses
as confirmed by the detection of GmmIV and GmmNegeV positive RNA strand genomes
(Figure 5c,d lanes i). No PCR products were observed when the RT step was omitted
(NRT) or when RNase free water (H2O) was used as template. The RT-PCR products from
both positive and negative RNA templates were sequenced to confirm the sequences of
both viruses.
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Figure 5. Detection of positive and negative RNA strands of Glossina morsitans morsitans iflavirus (GmmIV) and negevirus
(GmmNegeV). (a) cDNA synthesis approach from the positive RNA strand using oligo-dT primer. (b) cDNA synthesis from
the replicative negative RNA strand using a virus-specific forward primer. The gel image shows the amplified fragments
of (c) GmmIV and (d) GmmNegeV using specific primer pairs for each virus in addition to cDNA originating from the
positive RNA strand (i) or negative RNA strand (ii) as the template from both male (♂) and female (♀) flies. NRT, non-RT
enzyme control.

3.5. Tissue Distribution of Iflavirus and Negevirus Infection
3.5.1. Assessment of Iflavirus and Negevirus Density in Different Tsetse Tissues by
RT-qPCR

The RT-qPCR results indicated that in general, all tested tissues were infected with
GmmIV and GmmNegeV. The densities of both GmmIV and GmmNegeV varied signifi-
cantly in different tissues regardless of the fly sex (GmmIV: X2 = 28.65, df = 9, p = 0.0007;
GmmNegeV: X2 = 29.21, df = 9, p < 0.01). In particular, GmmIV density varied in male fly
tissues (X2 = 14.19, df = 7, p = 0.0479) with the highest density in testes and midguts and the
lowest detected in the hind gut, while in female fly tissues (X2 = 102.5, df = 8, p < 0.001), the
highest GmmIV density was observed in fat bodies and the lowest in the ovaries (Figure 6).
The GmmNegeV density varied in both male (X2 = 23.392, df = 7, p < 0.001) and female
(X2 = 18.43, df = 8, p = 0.018) tissues, with the highest density in the fat bodies and salivary
glands and the lowest in hind gut and Malpighian tubes in both sexes (Figure 6).
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3.5.2. Stellaris FISH

To localize the distribution of GmmIV and GmmNegeV in different G. m. morsitans
tissues, we applied the Stellaris RNA Fluorescence in situ hybridization technique. The
reproductive organs of G. m. morsitans in both females and males showed a presence of
GmmIV and GmmNegeV (Figure 7a,c). In the ovaries, a double infection of GmmIV and
GmmNegeV was observed in the oviduct together with high Wolbachia infection of the
oocyte (Figure 7a). Only a few cells of the ovaries were infected with the viruses, which
coincides with the overall low virus density detected with RT-qPCR (Figure 6). The testes
exhibited a much stronger infection with GmmIV and GmmNegeV (Figure 7c) with the
former having the highest abundance. This finding supports the results of the RT-qPCR
data that demonstrated high density of GmmNegeV and a significantly higher presence of
GmmIV compared to the other organs (Figure 6).
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Figure 7. Iflavirus and Negevirus double staining in the gonads and milk glands of 30-day-old
G. m. morsitans female and male flies: GmmIV—red, GmmNegeV—cyan, Wolbachia and Phalloidin
(F-actin) —green, nucleus—blue. (a) Ovaries, oocyte border is depicted with the dashed line, (b) milk
glands, (c) testes, (b’) is a higher magnification of (b) milk glands. Scale bar: 20 µm.

The milk glands showed high prevalence of both GmmIV and GmmNegeV in the
secretory cells (Figure 7b). Some cells were single-infected with either GmmIV or Gmm-
NegeV and others were double-infected, with each virus mostly confined in a separate cell
niche (Figure 7b’).

Additionally, we analyzed the viruses’ infection in other somatic tissues besides the
milk glands. For all tissues analyzed, we did not detect any sex specific differences in
infection patterns. Salivary glands exhibited only low GmmIV infection found exclusively
in epithelial cells and not in the lumen of the organ (Figure 8a). The absence of GmmNegeV
infection in salivary glands contradicts the RT-qPCR results where we observed a high
density of the virus, particularly in females (Figures 6 and S1). In the midgut, we could
mainly observe the presence of GmmIV and a lower prevalence of GmmNegeV. The viruses
were mainly restricted to a few cells in the tissue with most of the cells being free of infection
(Figure 8b). A similar infection pattern was observed for the fat body where viruses inhabit
separate adipocytes (Figure 8c). In brains, both viruses were stochastically distributed
all over the organ with GmmNegeV forming clusters and rarely sharing the same niche
with GmmIV, which had a more systemic localization (Figure 8d). The negative control
tissues from G. pallidipes did not show any positive fluorescence signal for either GmmIV
or GmmNegeV, which excludes any possible cross hybridization (Figure S2).
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In summary, we observed both viruses in reproductive tissues of the G. m. morsitans
flies with much higher titer in the testes. Most of the somatic tissues were double-infected
with both viruses, often occupying separate cells and rarely sharing the same environment.
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4. Discussion

In this study, we report the discovery of two novel viruses from G. m. morsitans which
belong to the Iflavirus and Negevirus taxa [13,14], respectively. The newly identified Iflavirus
is proposed to be named as Glossina morsitans morsitans iflavirus (GmmIV). The GmmIV
has an ssRNA genome of 9685 nts in length, including the poly(A) tail, and contains a
single, large ORF encoding a 3074 aa polyprotein which contains both structural and
non-structural proteins essential for virus replication and polyprotein processing. Based on
the GmmIV genome organization and amino acid sequence similarity with other viruses
belonging to the genus Iflavirus, we propose GmmIV as a novel member of this genus [13].
The analysis of the GmmIV 5′ UTR showed it to be longer (300 nts) than that of Wuhan fly
virus 4 strain (101 nts) [34], which was phylogenetically grouped together but distinctly
shorter compared to more distantly related Iflaviruses such as DWV (1144 nts) or VDV-1
(1108 nts), which are distantly related to GmmIV [16]. However, these length differences
at 5′ UTR could be due to incomplete sequencing of the 5′ ends for some of the reported
viruses, or they may represent differences in their functional significance. Compared to the
viruses belonging to Dicistroviridae or Picornaviridae families, Iflavirus genomes lack a 5′ cap
structure for the initiation of protein synthesis; instead, they use an IRES for translation
initiation [35]. So far, functional IRES elements have only been predicted for Iflaviruses
with long 5′ UTR sequences such as DWV, VDV-1 and Perina nuda virus (PnV) [16,36].
However, due to the similarities found of the GmmIV 5′ UTR secondary structures to
the above-mentioned Iflaviruses, it is likely that it may contain functional IRES elements,
whose interactions with host translation initiation factors require further studies.

We also showed that tsetse flies are infected by a new Negevirus, here proposed to be
named as Glossina morsitans morsitans negevirus (GmmNegeV). To date, Negeviruses
have only been associated with mosquitoes and sandflies isolated in a number of geo-
graphic locations, including Europe, United States, Indonesia and Africa [14,19]. Like other
characterized Negeviruses, the newly identified GmmNegeV has a (+) ssRNA genome of
about 8500 nts in length flanked by 5′- and 3′ UTRs. Based on the genome organization,
the GmmNegeV genome contained only two overlapping ORFs as opposed to most of
the Negevirus genomes that encode three ORFs [17]. A genome comparative study of
insect-specific negeviruses reported that this group of viruses may encode between one to
three ORFs in their genomes, which may be overlapping or separated by intergenic regions,
but they all possess at least one large ORF which encodes the four conserved domains of
the virus non-structural proteins [17]. Reported Negeviruses encoding less than three ORFs
in their genomes are the Cordoba virus strains (encoding one ORF) and the Buckhurst
virus (encoding two ORFs).

Phylogenetic analysis of the insect-specific negeviruses classify them into two clades;
nelorpiviruses and sandewaviruses, which suggests two separate origins of the viruses be-
longing to these two groups, with nelorpiviruses being more closely related to plant viruses
(cileviruses and higreviruses) [17]. In this study, based on the amino acid sequences of the
Negeviruses ORF1, GmmNegeV not only showed a high degree of similarity (54.5–58.6%)
to the sandewaviruses, but was also phylogenetically placed in this group based on the
RdRp aa alignment. Other examples of viruses belonging to the Sandewavirus group are
Tanay virus, Santana virus, Bustos virus, Dezidougou virus and Goutanap virus while
those belonging to the nelorpiviruses are Negewotan virus, Brejeira virus, Piura virus and
Loreto virus [18,19]. Due to this close relationship of insects infecting negeviruses to plant
viruses (cilevirus, higrevirus), they are therefore thought to be acquired from plants by
insects feeding on plant juices such as nectar [37,38]. This is also likely for the strictly
hematophagous tsetse flies that have recently been reported to feed on other sources of
food other than blood in the field [39].

Our study has provided compelling evidence that GmmIV and GmmNegeV replicate
in G. m. morsitans, as clearly confirmed by detection of the replicative negative strand RNA
of GmmIV and GmmNegeV. Furthermore, we investigated tissue tropism of these viruses
in G. m. morsitans as a model. Until now, Iflaviruses and Negeviruses were only known
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to be present in mosquitoes, sandflies and beet armyworm [14,40]. Nothing was known
about the presence of these viruses in teste flies, nor about the impact of their infections on
the tsetse colony performance. We hypothesize that some of the tsetse species may carry
Iflavirus and Negevirus in a covert asymptomatic state and that the transmission of these
viruses must occur vertically from parent to offspring. In line with this hypothesis, it is also
likely that if the virus titers are detectable in the salivary glands by RT-PCR or RNA-FISH,
horizontal transmission between adult flies would be also possible. We demonstrated
that both GmmIV and GmmNegeV can be found in the reproductive organs, as well as in
milk and salivary glands, suggesting a horizontal transmission of the virus during feeding
and/or a vertical viral transmission from parents to offspring.

A vertical transmission has already been demonstrated in the case of GpSGHV in
G. pallidipes [7], which might be associated with the presence of the tsetse symbiont
Sodalis [41]. In our study, we confirmed the presence of tsetse symbionts in the milk
glands, but further investigations are needed to understand their role in the transmission of
GmmIV and GmmNegeV. Horizontal viral transmission between adult tsetse flies has also
been demonstrated previously by Kariithi et al. [4], who showed that GpSGHV horizontal
transmission occurs when infected flies feed on the same blood pool. The flies inject the
virus in the blood via their salivary glands [4]. In our study, the salivary glands did not
show high densities of GmmIV and GmmNegeV using the in situ technique, but both
viruses were detected by RT-qPCR. As such, the viruses may only be present in the saliva
itself but remain undetectable in the epithelial cells by the in situ technique. Another
reason for the low presence of the viruses in the salivary glands might be that during low
rearing densities of tsetse flies, vertical transmission might be favored. However, further
experiments are needed to understand the impact of different tsetse rearing densities on
these viruses’ horizontal transmission. In addition, all the experiments in this study were
performed on colony flies and therefore, data on the possible presence of these two newly
described viruses in natural glossinidae fly populations would be crucial as the virus
dynamics in the wild may be different as the environment changes drastically.

In tsetse rearing facilities, it is unclear if the presence of GmmIV and GmmNegeV
has a beneficial or a detrimental effect on the flies. As reported for most Iflaviruses and
all Negeviruses [42], none of the GmmIV and GmmNegeV infected G. m. morsitans flies
analyzed in this study showed any overt virus infections. Notably, G. pallidipes was the
only species at the IPCL that both GmmIV and GmmNegeV were undetectable, and it is the
most susceptible species for GpSGHV overt infections [43]. This may imply that GmmIV
and GmmNegeV could be beneficial to the tsetse immune system, thereby protecting some
tsetse species from overt virus infections such as GpSGHV. This has been demonstrated to
be a result of competition for host intracellular molecules [44]. It is tempting to speculate
that these small RNA viruses permanently alert the RNAi defense response. Alternatively,
it may be possible that GmmIV and GmmNegeV are opportunistic pathogens and may
become virulent under certain environmental factors. These questions will be addressed in
upcoming experiments.

5. Conclusions

In conclusion, this study expands the list of viruses infecting tsetse flies in addition
to GpSGHV as well the symbiotic bacteria harbored by tsetse flies. However, the host
range and better understanding of these virus−symbionts−host interactions as well as
their effects on tsetse vector competence to trypanosome require further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122472/s1, Figure S1: Double staining GmmIV and GmmNegeV in different tissues of
30-day-old G. m. morsitans female flies; Figure S2: Negative control of G. pallidipes FISH with stellaris
probes for GmmIV and GmmNegeV demonstrating the absence of Iflavirus and Negevirus infection;
Table S1: Stellaris RNA-FISH probes for GmmIV and GmmNegeV.
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