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Abstract: Congenital Zika virus (ZIKV) infection may present with a broad spectrum of clinical
manifestations. Some sequelae, particularly neurodevelopmental problems, may have a later onset.
We conducted a prospective cohort study of 799 high-risk pregnant women who were followed
up until delivery. Eighty-three women and/or newborns were considered ZIKV exposed and/or
infected. Laboratory diagnosis was made by polymerase chain reaction in the pregnant mothers and
their respective newborns, as well as Dengue virus, Chikungunya virus, and ZIKV serology. Serology
for toxoplasmosis, rubella, cytomegalovirus, herpes simplex virus, and syphilis infections were also
performed in microcephalic newborns. The newborns included in the study were followed up until
their third birthday. Developmental delay was observed in nine patients (13.2%): mild cognitive
delay in three patients, speech delay in three patients, autism spectrum disorder in two patients,
and severe neurological abnormalities in one microcephalic patient; sensorineural hearing loss, three
patients and dysphagia, six patients. Microcephaly due to ZIKV occurred in three patients (3.6%).
Clinical manifestations can appear after the first year of life in children infected/exposed to ZIKV,
emphasizing the need for long-term follow-up.
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1. Introduction

Since Gregg uncovered the correlation between rubella infection during pregnancy
and newborn congenital defects [1] innumerable studies have been conducted to establish
the mechanisms behind feto–maternal transmission of congenital infections [2]. Although
careful follow-up of these affected children is crucial, more studies to explore the longer-
term manifestations of these congenital infections are needed. The same phenomenon
occurred with Zika virus (ZIKV). The correlation between ZIKV pregnancy infection and
microcephaly in the newborn made the Brazilian Ministry of Health (BMH) declare, in 2015,
a Public Health Emergency of National Concern, and later on, a Public Health Emergency
of International Concern was declared by the World Health Organization (WHO) [3].

In March 2016, Brazilian researchers made the association between vertical ZIKV
transmission and fetal abnormalities, such as microcephaly, cerebral calcifications, agenesis
or abnormalities of the corpus callosum, ocular abnormalities, and arthrogriposis, among
others [4,5]. In December 2016 many South, Central and North American countries de-
scribed congenital Zika syndrome (CZS) cases, with a total of 2525 confirmed cases, from
which 2289 (90%) were in Brazil [6].

According to BMH, from November 2015 to October 2019, there were 18,282 probable
CZS cases, and from January to June 2020, there were 2054 probable CZS cases (incidence
rate of 1.0 case/100,000 inhabitants). Although the numbers are decreasing, the risk of a
new emergence of the ZIKV must be taken into account [7].

Clinical manifestations of CZS have a broad spectrum and a variable intensity. The
congenital infection during the first trimester often causes severe fetal abnormalities, par-
ticularly in the central nervous and cardiovascular systems, in addition to ocular, auditory,
and osteoarticular impairments [8,9]. The real extent of the neurological impairment still
remains to be determined. Studies performed in regions of high incidence of ZIKV show
that even the newborn head circumference (HC) is normal at birth; yet, these newborns can
present long-term developmental cognitive, adaptive, and behavioral abnormalities [10,11].
These data suggest that the extension of these sequelae may be greater than it was thought
at the beginning of the ZIKV epidemic [12].

The need for a multiprofessional team to follow-up these affected children generates
a high economic and social burden to the countries in which ZIKV is endemic, requiring
more studies on this disease [10]. The longitudinal follow-up is important to understand
the spectrum of ZIKV infection and its repercussions on childhood. Considering this fact,
the objective of the present study was to identify the clinical abnormalities that present in a
group of children exposed to ZIKV during pregnancy, from birth up to three years of age.

2. Materials and Methods

The present study is a nested-cohort study, part of the Zika Project Jundiaí previously
published [13]. This study was performed at the University Hospital of Jundiaí (UHJ),
in Brazil, from 1st March 2016 to 30th June 2019. UHJ is a public hospital that receives
patients from Jundiai and six neighboring cities. During this period of time, 799 children
were followed-up and divided into two different groups.

Maternal cohort: Comprised by the high-risk pregnant mothers, which were invited
to participate in the cohort and were followed-up on a monthly basis. Their follow-up
consisted of clinical examination, gestational ultrasound, and biologic material sampling
(blood, saliva, and urine) to perform Zika virus RT-qPCR and serology (blood). The
prenatal follow-up was considered optimal according to the Kotelchuch index [14]. From
this maternal cohort, 694 newborns were evaluable for our study.

Nested-cohort: During the period of the study, 105 children with suspected micro-
cephaly were included in the project, and this cohort was denominated the nested-cohort.
The mothers of those children were not included in the study.

Incomplete data and microcephaly due to infectious causes other than Zika virus
were excluded from the study. The control group was composed of RT-PCR children with
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negative serologies for ZIKV and other congenital infections, while their mothers presented
negative tests for ZIKAV, dengue virus, and chikungunya (Image 1).

At birth, the anthropometric measures (weight, length, and head circumference) (W,
L, HC) of the newborns were taken by members of the research team previously trained.
Clinical follow-up was carried out according to WHO guidelines [15]. Gestational age
was calculated according to obstetric ultrasound up to the 20th week of pregnancy and
when this was not available, the last menstrual period (LMP) was used. Gestational age
by the Capurro method [16] was used only in cases where the others parameters were not
adequate. Microcephaly was considered when the newborn HC was equal or less than 2
standard deviations (SD) under the mean measurement expected for sex and gestational
age considering the standard curve INTERGROWTH-21st for both term and preterm
babies [17]. Physical examination of the newborn was carried out during the first 24 h,
according to a specific protocol (attachment 1).

According to the BMH, CZS is every newborn who presents, at any gestational age,
a positive result for ZIKV up to the 8th day of postnatal life, TORCHS (toxoplasmosis,
rubella, cytomegalovirus, herpes simplex virus, and syphilis) negative or inconclusive, and
one or more signs or symptoms compatible with ZIKV infection (clinical or image) [18].

All included children were followed-up on a monthly basis during the first year of life,
and then at 14, 16, 24, 30, and 36 months of age, following protocols stratified by age, with
expected vaccination status, clinical, anthropometric, and developmental data (attachment 2).

The subgroup of ZIKV exposed children and/or microcephalic were followed clinically
by the same protocol, and were additionally examined by a group of neurologists, physical
therapists, speech therapists, psychologists, and ophthalmologists.

Visual acuity was evaluated by the theTeller AcuityCards II (TAC II; Stereo Optical
Co, Chicago, IL, in collaboration with Vistech Consultants Inc, Dayton, OH), with distance
adapted for each age [19], as well as indirect binocular ophthalmoscopy (ID-5 BIO, Topcon,
Tokyo, Japan) at 2, 6, and 12 months of age.

The auditory acuity was evaluated by optoacoustic emissions (OAE) in all the new-
borns, and for those ZIKV exposed, brain evoked response audiometry (BERA) and imitan-
ciometry were performed at birth, 6, 12, and 24 months of age.

Cognitive and motor developmental evaluation were performed in the microcephalic
and ZIKV-exposed children, as well as in the children with detected developmental delay,
through the Bayley scale, third edition (BSIDIII, Pearson Assessments, Brazil) [20], validated
for the Brazilian population, at 2, 4, 6, 12, 24, and 36 months of age. For preterm newborns,
the postnatal age was corrected according to the gestational age at birth [21].

Dyphagia was evaluated in the ZIKV exposed patients and in patients in which sugges-
tive symptoms were present, using the Montreal Children’s Hospital Feeding Scale [22,23].
Genetic evaluation was performed in all microcephalic children, ZIKV exposed or not.

Data of the children lost to follow-up were actively searched in the outpatient public
services of Jundiaí and its region. In some cases, these data could not be retrieved.

As a result of a considerable number of losses of follow-ups, the analysis of the
variable was made by using the last available evaluation of the patient. Microcephaly
and osteoarticular abnormalities data used were those obtained at birth, independently
of follow-up, according to the study protocol. The data used to write this article can be
found at https://coortejundiai.lightning.force.com/lightning/page/home (accessed on 5
February 2021).

Figure 1 shows the cohort composition, children groups, and losses to follow up.

https://coortejundiai.lightning.force.com/lightning/page/home
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Figure 1. Cohorts’ composition, children groups, and losses of the study.

2.1. Laboratory Diagnosis

Blood, urine, and saliva samples were collected from the pregnant mothers monthly,
during prenatal follow-up, and ZIKV quantitative real-time polymerase chain reaction
(RT-qPCR), was made according to Lanciotti et al. [24], using Creative Biogene Zika Virus
(ZIKV) Real Time RT-PCR Kit. The blood samples were also analyzed by enzyme-linked
immunosorbent assay (ELISA) to detect IgM and IgG antibodies for dengue, Chikungunya,
and ZIKV, using Euroimmune commercial kit.

In the newborn group, blood, saliva and urine were collected to perform RT-qPCR
for ZIKV. The newborn was considered “infected” when RT-qPCR was positive within the
first eight days of postnatal life.



Viruses 2021, 13, 523 5 of 15

Cerebrospinal fluid and blood of the exposed newborns were also collected to exclude
possible TORCHS infection.

2.2. Statistical Analysis

All collected data were registered in a duplicate manner and were analyzed using
Statistical Package of Social Sciences (IBM SPSS Statistics 22, IBM Corporation, Armonk, NY,
USA). Qualitative variables were expressed in simple and relative frequencies. Quantitative
variables were presented in means, standard deviations, and medians (first and third
quartiles, and minimal and maximum values). To compare clinical characteristics between
exposed and/or positive children with the control group, we used Pearson chi-squared
test, Fisher, and/or Mann–Whitney tests. The adopted significance level was 0.05 (α = 5%).
In order to identify risk factors, we calculated the odds ratio, with a confidence interval of
95% (95% CI) and performed multivariate and univariate logistic regression.

2.3. Ethical Procedures

All pregnant women included in the study signed the informed consent form (ICF)
after explanation, reading, and clarification of the study, its objectives, and procedures. The
underage patients (under 18 years old) signed an agreement term and a legal responsible
signed an ICF.

The study was approved in the Ethical Committee of the Jundiaí Medical School,
approval number 1446577, and it was executed according to ethical stablished standards
(2013 Helsinki Declaration and Brazilian National Health Resolution of 12 December 2012).

3. Results
Cohort General Characteristics

Table 1 describes the sociodemographic, clinical, and epidemiological data of the
cohort high-risk pregnant women.

Table 1. Sociodemographic, clinical, and epidemiological data of the cohort high-risk pregnant
women, 2016–2019.

Sociodemographic Characteristics Pregnant Women (n = 764)

Age (years) (n = 763)
Mean (±standard deviation) 27.4 (±7.3)

Median (IIQ 25–75%) 27 (21–33)
Minimum–maximum 13–46

Age (years) n (%)
13 to 19 123 (16.1)
20 to 34 497 (65.1)
35 to 46 143 (18.7)

Not informed 1 (0.1)
Ethnicity

White 398 (52.1)
Brown 267 (34.9)
Black 79 (10.3)

Indigenous 2 (0.3)
Not informed 18 (2.4)

Paid work
Yes 346 (45.3)
No 401 (52.5)

Not informed 17 (2.2)
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Table 1. Cont.

Sociodemographic Characteristics Pregnant Women (n = 764)

Risk factors
Gestational or type I diabetes mellitus 199 (26)

Chronic or gestational arterial hypertension 78 (10.2)
Early Pregnancy 71 (9.3)

Microcephaly (suspected or confirmed) 50 (6.5)
Twinning 25 (3.3)

Suggestive symptoms Zika1 11 (1.4)
Others 274 (35.8)

No information 14 (2.6)
Changes in obstetric ultrasound compatible with Zika

Yes 41 (5.4)
No 713 (93.3)

Not informed 10 (1.3)
Type of delivery

Vaginal 358 (46.9)
Cesarean 371 (48.6)
Forceps 18 (2.4)

No information 16 (2.1)
Zika symptoms

Yes 40 (5.2)
No 723 (94.7)

Not informed 1 (0.1)
Zika Virus PCR

Detectable 57 (7.5)
Not detectable 691 (90.4)
No information 16 (2.1)
Dengue (IgM)

Detectable 31 (4.0)
Not detectable 624 (8.,7)
No information 109 (14.3)

Chikungunya (IgM)
Detectable 4 (0.5)

Not detectable 731 (95.7)
No information 29 (3.8)

Viral co-infection
Zika and dengue 4 (0.5)

Regarding ZIKV infection, 57 (7.5%) pregnant women were positive by the RT-
qPCR method.

In this group, 31 (4%) positive cases for dengue IgM and 4 cases (0.5%) of dengue
and ZIKV co-infection were observed. From these co-infected women, one of them pre-
sented acute infection symptoms during the gestational period and the respective newborn
presented clinical findings compatible with ZIKV infection. The attachment 3 describes
these data.

According to WHO criteria, 40 (5.3%) pregnant women were considered positive for
acute ZIKV infection. In this study, the presence of symptoms in the pregnant mother did
not correspond to ZIKV congenital infection in the newborn (p value > 0.05).

From these 57 pregnant mothers, we had a sample of 59 newborns (2 cases of twins),
which were considered “exposed”. From these children, three were excluded due to
missing data. Another group, comprising 28 supplementary newborns whose mothers
were Zikv negative, presented as Zikv RT-qPCR positive at birth. This group of children
were considered “positive”. From this group, one child was excluded due to missing data.

The clinical and laboratorial findings of these groups can be observed in the attach-
ments 3 and 4.

The birth anthropometric data are described in Table 2.
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Table 2. Anthropometric characteristics of the exposed, positive, and control newborns at birth, Jundiaí Medical School, 2016–2019.

Clinical Characteristics Total Children with Zika or Exposed
(Mothers Confirmed with Zika) Control (Non-Reactive) p-Value OR (95% CI)

Gestational age (weeks) [n (%)] n = 797 n = 83 n = 672
≤31 21 (2.6) 1 (1.2) 20 (3.0) 0.496 1 0.38 (0.05–2.88)

32 to 36 114 (14.3) 10 (12.1) 104 (15.5) 0.376 2 0.73 (0.37–1.47)
≥37 620 (77.8) 72 (86.7) 548 (81.5) - 1

Weight (grams) n = 777 n = 82 n = 695
Mean (±standard deviation) 2970.9 (±636.3) 3147.4 (±549.3) 2950.1 (±643.0) - -

Median (IIQ 25–75%) 3015 (2618–3398) 3222 (2790–3526) 2980 (2595–3375) 0.006 3 -
Minimum–maximum 560–4525 1270–4285 560–4525 - -
Low weight at birth n = 83 n = 672

Yes (<2.500 g) 151 (19.4) 7 (8.5) 144 (20.7) 0.008 2 0.35 (0.16–0.79)
No (≥2.500 g) 626 (80.6) 75 (91.5) 551 (79.3) - 1
Length (cm) n = 82 n = 692

Mean (± standard deviation) 47.4 (±3.3) 48.3 (±2.7) 47.3 (±3.3) - -
Median (IIQ 25–75%) 48 (46–50) 48 (47–50) 48 (46–50) 0.004 3 -
Minimum–maximum 28.5–54.5 38.0–53.0 28.5–54.5 - -

APGAR 5 min n = 695 n = 78 n = 617
Mean (±standard deviation) 9.3 (±0.8) 9.3 (±0.8) 9.3 (±0.8) 0.692 3 -

Median (IIQ 25–75%) 9 (9–10) 9 (9–10) 9 (9–10) - -
Minimum–maximum 4–10 5–10 4–10 - -

APGAR 5 min n = 695 n = 83 n = 672
1 a 6 8 (1.2) 1 (1.3) 7 (1.1) 1.000 1 1.13 (0.14–9.32)

7 a 10 (normal) 687 (98.8) 77 (98.7) 610 (98.9) - 1
Head circumference (cm) n = 768 n = 82 n = 686

Mean (±standard deviation) 33.6 (±2.3) 34.1 (±1.9) 33.6 (±2.3) - -
Median (IIQ 25–75%) 34 (33–35) 34 (33–35) 34 (32–35) 0.163 3 -
Minimum–maximum 21–38.5 27–38 21–38.5 - -
Microcephaly [n (%)] n = 797 n = 83 n = 694

Yes 48 (6.0) 3 (3.6) 45 (6.5) 0.295 2 0.53 (0.16–1.76)
No 730 (91.6) 81 (96.4) 649 (93.5) 1

1 Fisher’s exact test (p < 0.05). 2 Chi-square test (p < 0.05). 3 Mann-Whitney U test (p < 0.05).
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When we compare the three different groups, we can observe that the exposed and the
positive newborns presented a significatly higher birth weight (OR = 0.35; CI 95%0.16–0.79;
p = 0008). Due to a significant number of pregnant women with diabetes mellitus I and II
and gestational diabetes, the comparison of the birth weight among the three groups of
newborns was made in a separate way (newborns of diabetic and non-diabetic mothers).
Still, there was a significant difference between the control group and the two other groups
(OR = 0.44; CI 95% 0.18–0.97; p = 0046) (Table 3).

Table 3. Association of birth weight between positive/exposed newborns and control newborns according to maternal
diabetes, Junidaí Medical School, 2016–2019.

Clinical Characteristics Total
Children with Zika or

Exposed (Mothers
Confirmed with Zika)

Control (Non-Reactive) p-Value OR (95% CI)

Pregnant women with diabetes mellitus 1

Weight (grams) n = 206 n = 28 n = 178
Mean (±standard deviation) 3206.1 (±532.1) 3280.0 (±403.7) 3194.5 (±549.6) - -

Median (IIQ 25–75%) 3250 (2890–3555) 3250 (2950–3599) 3250 (2960–3598) 0.582 2 -
Minimum–maximum 720–4330 2560–4090 720–4330 - -
Low weight at birth

Yes (<2.500 g) 14 (6.8) - 14 (100.0) 0.224 3 0.20 (0.11–3.43)
No (≥2.500 g) 192 (93.2) 28 (14.6) 164 (85.4) - 1

Pregnant women without diabetes mellitus

Weight (grams) n = 553 n = 53 n = 500
Mean (±standard deviation) 2877.9 (±642.7) 3074.1 (±608.2) 2857.1 (±654.4) - -

Median (IIQ 25–75%) 2930 (2515–3330) 3115 (2680–3495) 2920 (2486–3281) 0.020 2 -
Minimum–maximum 560–4525 1270–4285 560–4525 - -
Low weight at birth

Yes (<2.500 g) 135 (24.4) 7 (5.2) 128 (94.8) 0.046 4 0.44 (0.18–0.97)
No (≥2.500 g) 418 (75.6) 46 (11.0) 372 (89.0) - 1

1 Type I, type II and gestational diabetes mellitus; 2 Mann-Whitney U test (p < 0.05); 3 Fisher’s exact test (p < 0.05); 4 Chi-square test
(p < 0.05); Values in bold indicate statistically significant differences.

Using the same approach, birth weight was compared between the exposed/positive
group and control group according to gestational age (term and preterm). The frequency
of low-birth weight was significantly higher in the group control when compared to the
exposed/positive newborn groups, independent of the gestational age (Table 4).

Table 4. Comparison of low birth weight and gestational age in the newborn groups (exposed/positive) versus control,
Jundiaí Medical School, 2016–2019.

Clinical Characteristics Total
Children with Zika or

Exposed (Mothers
Confirmed with Zika)

Control
(Non-Reactive) p-Value OR (IC95%)

Preterm birth 1

Weight (grams) n = 11 n = 120
Mean (±standard deviation) 2293.4 (±712.1) 2337.3 (±551.4) 2289.4 (±726.8) - -

Median (IIQ 25–75%) 2320 (1840–2865) 2370 (2200–2695) 2305 (1825–2876) 0.845 3 -
Minimum–maximum 560–3573 1270–3055 560–3573 - -
Low weight at birth

Yes (<2.500 g) 76 (58.0) 6 (7.9) 70 (92.1) >0.999 4 0.86 (0.25–2.97)
No (≥2.500 g) 55 (42.0) 5 (9.1) 50 (90.9) - 1

Term birth 2

Weight (grams) n = 615 n = 70 n = 545
Mean (±standard deviation) 3119.0 (±513.7) 3269.2 (±434.0) 3099.7 (±520.2) - -

Median (IIQ 25−75%) 3120 (2780–3475) 3272 (2924–3555) 3090 (2760–3455) 0.009 3 -
Minimum–maximum 1320–4525 2340–4285 1320–4525 - -
Low weight at birth

Yes (<2.500 g) 69 (11.2) 1 (1.4) 68 (98.6) 0.006 5 0.10 (0.01–0.74)
No (≥2.500 g) 546 (88.8) 69 (12.6) 477 (87.4) - 1

1 Preterm birth: less than 37 weeks; 2 term birth: 37 weeks or more; 3 Mann-Whitney U test (p < 0.05); 4 Fisher’s exact test (p < 0.05);
5 Chi-square test (p < 0.05).

When we consider the microcephaly cases, we can observe that ZIKV infection was
detected by RT-qPCR in three cases and one case (1.7%) in an exposed newborn. The
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characteristics of these newborns can be observed in attachments 3 and 4. The other cases
of microcephaly were: 22 (45.8%) newborns diagnosed with intrauterine growth restriction
(IUGR), 15 (31.2%) preterm and with IUGR, three (6.2%) with genetic syndromes, and three
(6.2%) with cytomegalovirus infection.

Clinical and radiographic findings compatible with congenital ZIKV were separately
analyzed and are described in Table 5. Other findings of maternal dengue and Chikungunya
are also explained in this table. In the cohort, we did not find arthrogriposis or muscle
contractures suggestive of ZIKV infection.

Table 5. Clinical and laboratory findings of the ZIKV-exposed children, Jundiaí Medical School, 2016–2019.

Variables Total Children with Zika or Exposed
(Mothers Confirmed with Zika)

Control
(Non-Reactive) p-Value OR (IC95%)

Result of dengue in pregnant women (exposure)
Positive 34 (4.3) 8 (10.5) 26 (4.3) 0.043 1 2.62 (1.14–6.03)

Negative 648 (81.3) 68 (89.5) 580 (95.7) - 1
No information 115 (14.4) - - - -

Result of chikungunya in pregnant women (exposure)
Positive (IgM) 4 (0.5) 1 (1.2) 3 (0.4) 0.369 1 2.76 (0.28–26.84)

Negative 761 (95.5) 82 (98.8) 679 (99.6) - 1
No information 32 (4.0) - - - -

Vision impairment
Yes 8(1) 1 7 (3.0) 0.353 1 0.27 (0.01–4835.00) 2

No 281 (35.3) 55 (100.0) 226 (97.0) - 1
No information 509 (63.8) - - - -

Arthrogryposis
Yes - - - - -
No 572 (71.8) 65 (100.0) 507 (100.0) - 1

No information 225 (28.2) - - - -
Hearing Loss

Yes 8 (1.0) 3 (4.9) 4 (1.5) 0.123 1 3.40 (0.74–15.61)
No 312 (39.1) 58 (95.1) 263 (98.5) - 1

No information 479 (59.9) - - - -
Abnormalities in post-natal imaging

Yes 17 (2.1) 5 (11.1) 12 (13.0) 0.747 2 0.83 (0.28–2.53)
No 120 (15.1) 40 (88.9) 80 (87.0) - 1

No information 660 (82.8) - - - -
Abnormalities of neuropsychomotor development
Yes 27 (3.4) 9 (13.2) 18 (3.8) 0.003 1 3.85 (1.65–8.96)
No 513 (64.4) 59 (86.8) 454 (96.2) - 1

No information 257 (32.2) - - - -
Dysphagia

Yes 15 (1.9) 6 (10.0) 9 (2.9) 0.022 1 3.68 (1.26–10.76)
No 352 (44.2) 54 (90.0) 298 (97.1) - 1

No information 429 (53.9) - - - -

1 Fischer’s Exact Test (p < 0.05). Added 0.5 to each cell to make the OR calculation possible (Openepi). 2 Chi-square test (p < 0.05).

Among the exposed children, the risk of developmental abnormalities was 3.85 times
greater than among the children of the control group (OR = 3.85; 95% CI1.65–8.96; p = 0003).
Dysphagia was also more frequent among the ZIKV-exposed group (OR = 3.68; 95% CI
1.26–10.76; p = 0.022).

Five children presented radiological findings consistent with ZIKV congenital infec-
tion; three out of five also presented clinical manifestations (attachments 3 and 4).

If we consider the BMH definition for CZS during the period of 2016 to 2020, only
one patient (0.1%) of the study could be diagnosed. Changing to the CDC criteria, four
children (0.5%) presented with CZS. When we analyzed the exposed/positive children
with developmental abnormalities, we found a mild cognitive delay in three cases, speech
delay in three cases, autism spectrum disorder (ASD) in two cases, and one case of severe
development impairment (CZS) (attachments 4 and 5).

Table 6 presents factors associated with ZIKV infection. After multivariate analysis,
the most important factors were dengue positivity in the pregnant mother (OR = 4.13;
95% IC 1.04–16.42) and developmental abnormalities in the children (OR = 10.33; 95% IC
1.96–54.50).

It is important to address that there were a considerable number of children lost to
follow-up, especially in the first months of the study, as demonstrated in Figure 1. We had
only 31 exposed/positive children with complete data at 36 months of age.
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Table 6. Multivariate analysis of the factors associated with ZIKV infection in the newborns of the cohort, Jundiaí medical
School, 2016–2019.

Variables Univariate Analysis OR (95% CI) Multivariate Analysis OR (95% CI)

Positive dengue result in pregnant women 2.62 (1.14–6.03) 4.13 (1.04–16.42)
Hearing Loss 3.40 (0.74–15.61) 1.29 (0.12–13.57)

Abnormalities of neuropsychomotor development 3.85 (1.65–8.96) 10.33 (1.96–54.50)
Dysphagia 3.68 (1.26–10.76) 1.99 (0.38–10.45)

Low weight at birth 0.35 (0.16–0.79) 0.54 (0.15–2.01)
Microcephaly 0.46 (0.18–1.17) 0.28 (0.06–1.22)

Bold values indicate an association with a diagnosis of Zika in children who are confirmed or exposed to the virus during pregnancy.

4. Discussion

Microcephaly has been the most important alert sign associated with CZS since the
beginning of the epidemic in 2015 [7,18] and its report has been mandatory in Brazil since
then. Apart from microcephaly, severe brain abnormalities may be present after ZIKV
infection, especially in the first weeks of pregnancy [25]. The incidence of microcephaly
related to intrauterine ZIKV infection was very different depending on the region of study
and the population studied. In Latin American countries, it varied from 0.3 to 14.3% [26]
whereas, in the Brazilian states most affected by ZIKV, this incidence varied between 5.6
and 45% in the period between 2015 and 2017 [27,28]. Of the 48 cases of microcephaly
diagnosed in the cohort, only 3 (3.6%) cases were related to ZIKV infection (one of them
in a child with CZS), a percentage that is similar to those of other regions with a low
incidence of congenital infections by ZIKV Brady. The reasons for the different rates of
microcephaly related to ZIKV are not yet clear and some hypotheses will be discussed
later on in this paper. The other microcephaly cases found in the cohort were related
to Cytomegalovirus infection, genetic syndromes, and most of them to prematurity and
IUGR. The last factor can be explained as most of the pregnant mothers had chronic or
pregnancy-related diseases [21].

When we analyzed the birth weight, exposed/positive newborns presented a signifi-
cantly higher weight in comparison to the control group. Low birth weight is a common
finding in congenital infections, despite the etiology, and it is often associated with the
gestational age and the severity of the infection [27]. In CZS, IUGR is also important and
the weight gain in postnatal life can be markedly low for months, and even years [29]. In
our cohort, both facts may have occurred, and we need more studies to better address
this result.

Hearing impairment can occur in ZIKV-exposed children, but it is not a frequent
manifestation. In a study made in Pernambuco in 2015, from 104 microcephalic children
positive for ZIKV infection, hearing impairment was detected only in the two (12%) with
the most severe microcephaly case [30]. Sensorineural hearing loss was described in another
study, with 5 out 70 ZIKV-exposed children detected [31]. The data are conflicting. A study
conducted in Recife involving 78 ZIKV-exposed children (symptomatic and asymptomatic)
demonstrated sensorineural hearing loss of 5.1% (four cases, one asymptomatic) [32].
On the other hand, Barbosa et al., in a study with 29 ZIKV-exposed children, did not
find hearing impairments [33]. In our cohort, hearing impairments were observed in
asymptomatic or mild symptomatic cases.

Language disorders are frequently described in children with CZS and are a conse-
quence of severe CNS impairment, craniofacial changes, and sensorineural hearing loss,
among other factors [34]. There are, however, few reports in the literature on children
exposed to intrauterine ZIKV infection without microcephaly. In a Puerto Rico case-
control study with a group of 29 ZIKV-exposed children without microcephaly or CZS and
36 controls, a significant higher delay in receptive language was observed in the exposed
group [35]. Speech delay is a common event of multifactorial cause, affecting up to 15% of
normal children over 2 years of age. In about half of the cases it can have a spontaneous
resolution, but for a significant number of children, speech therapy intervention may be
necessary. Untreated cases may evolve to a restricted vocabulary at the end of speech
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acquisition, causing future disorders in learning and communication [36]. Nevertheless,
further studies are needed to clarify whether there is a relationship between speech delay
and intrauterine exposure to the Zika virus.

Autistic spectrum disorder has a complex pathophysiological basis and is related to the
interaction of genetic, environmental, and infectious factors, among which are congenital
infections, such as congenital rubella syndrome [37]. Higher rates of autism occur in
children with hearing, visual, and intellectual disabilities. Congenital ZIKV infections
have a high probability of presenting ASD due to the cerebral inflammatory process that is
established, influencing the process of neurogenesis and neurodevelopment [38]. There are
few reports of autism and ZIKV infection. A study in Rio de Janeiro involving 216 children
exposed to intrauterine ZIKV detected, among other neurological changes, three cases of
ASD in children with normal development until the second year of life [32]. The data found
in our cohort need more detailed investigations so that we can relate them to congenital
Zika virus infection.

Dysphagia can be present in CZS and, in some cases, alternative ways of feeding are
necessary due to aspiration and malnutrition in the first months of life [38,39]. Never-
theless, dysphagia has already been described in ZIKV-exposed patients without severe
neurological manifestations. In a cohort study made in 2017, 58 children exposed to ZIKV
without microcephaly or other neurological manifestations and 58 with CZS were analyzed.
Of the 58 children without microcephaly, 53 (91.4%) did not have dysphagia, 3 (5.2%) had
mild oropharyngeal dysphagia, and 2 (3.4%) had moderate to severe DOF. In contrast,
the group of children with microcephaly had 12 cases (20.7%) without dysphagia, and 12
(20.7%) and 34 (58.4%) cases with mild and moderate to severe dysphagia, respectively [39].
We still need more studies to confirm the causal association between OFD and ZIKV
infection/exposition in these children.

In this work, we verified the occurrence of few cases with early clinical manifestations,
such as microcephaly and CZS, with the late manifestations prevailing, normally related
to sensorineural hearing loss and neuropsychomotor development. The incidence and
severity of the impairment of children exposed to gestational ZIKV varies significantly
according to the study location and the selection criteria of the studied population [40–42].
In general, the most serious cases occurred in poor areas with fewer health resources, which
usually present a great proliferation of Aedes aegypti, thus increasing the risk of exposure to
ZIKV and, consequently, to other arboviruses, especially dengue [43]. There is a high risk
of viral co-infection in such areas, whose consequences are not yet fully elucidated, but
which can have serious outcomes. The clinical manifestations in viral coinfection can vary
from asymptomatic forms due to the inhibition of action among the pathogens involved, to
severe forms due to the potentiation of the action of these agents [44–47]. Additionally, in
low-income regions, there is a high risk of chronic malnutrition in pregnant women and
poor nutritional status can increase the adverse effects of ZIKV infection [47]. Nevertheless,
Jundiaí has the seventh greater gross domestic product (GDP) of the Sate of São Paulo,
in Brazil.

Finally, it is important to emphasize the losses of follow-up in the present study. This
is a frequent issue that can compromise the final results of many cohort studies. We had a
loss of 65.6% of the exposed/positive patients, mostly in the first six months of life. Some
studies indicate losses of follow-ups varying from 56 to 64%, with low socioeconomic
income, low level of education, difficulty in access to health services, and low familiar
support being the main causes to these losses [48–50]. In this cohort, all of these factors
could have contributed to our losses. Although we cannot prove this, we strongly suspect
that one of the reasons for this losses in our cohort may have been the fact that, once
the newborn did not present suggestive abnormalities associated with CZS at birth, the
mothers abandoned the study. Despite the losses of follow-up, we were able to follow the
cases of exposed and/or infected children by comparing them to the control group, which
brought relevant findings.
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5. Conclusions

ZIKV congenital infection still presents many aspects that must be studied, especially
the spectrum of clinical manifestations. Most of the exposed children were asymptomatic
and, among the symptomatic group, late neurological manifestations were the most com-
mon finding, which may have a greater dimension than expected at the beginning of
this epidemic.

Microcephaly was not significant in our study, and this finding shows the need for a
broader clinical investigation, in order to find other clinical signs of ZIKV infection. This
is the reason why these exposed children must be clinically followed for a longer period,
with special attention to developmental and neurological evaluation.

In our study, the fact that we included high-risk pregnant women may be a limitation
factor that may have possibly interfered in the final result. The loss of follow-up of a great
number of children may also have some implications in the comprehension of the true
dimension of the clinical spectrum of these ZIKV-exposed children.
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