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Abstract: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a novel coronavirus in humans, has expanded globally over the past
year. COVID-19 remains an important subject of intensive research owing to its huge impact on
economic and public health globally. Based on historical archives, the first coronavirus-related
disease recorded was possibly animal-related, a case of feline infectious peritonitis described as
early as 1912. Despite over a century of documented coronaviruses in animals, the global animal
industry still suffers from outbreaks. Knowledge and experience handling animal coronaviruses
provide a valuable tool to complement our understanding of the ongoing COVID-19 pandemic. In
this review, we present an overview of coronaviruses, clinical signs, COVID-19 in animals, genome
organization and recombination, immunopathogenesis, transmission, viral shedding, diagnosis,
treatment, and prevention. By drawing parallels between COVID-19 in animals and humans, we
provide perspectives on the pathophysiological mechanisms by which coronaviruses cause diseases
in both animals and humans, providing a critical basis for the development of effective vaccines and
therapeutics against these deadly viruses.
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1. Overview of Coronaviruses

Coronaviruses are enveloped viruses with a large, capped, and polyadenylated RNA
genome of approximately 24,500-31,800 nucleotides [1], belonging to the genus Coronavirus,
family Coronaviridae, order Nidovirales. The genus Coronavirus can be subdivided into
four clusters based on genetic and serologic properties (i.e., Alphacoronavirus, Betacoron-
avirus, Gammacoronavirus, and Deltacoronavirus) [1]. Alphacoronavirus includes transmissible
gastroenteritis virus (TGEV) in swine, porcine respiratory coronavirus (PRCV), porcine
epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome-coronavirus (SADS-CoV),
canine coronavirus (CCoV), feline coronavirus, ferret and mink coronaviruses, human
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coronavirus (HCoV) 229E, HCoV NL63, and bat coronaviruses (Bat CoVs). Betacoronavirus
includes murine hepatitis virus (MHV), bovine coronavirus, equine coronavirus, canine
respiratory coronavirus (CRCoV), HCoV OC43, HCoV HKU1, Human enteric CoV-4408
(HECoV-4408), porcine hemagglutinating encephalomyelitis virus, rat coronavirus, severe
acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-
related coronavirus (MERS-CoV), SARS-CoV-2, and Bat CoVs. Gammacoronavirus includes
avian coronaviruses, such as avian infectious bronchitis virus (IBV), turkey coronavirus
(TCoV), goose coronavirus, duck coronavirus, and Asian leopard cat coronavirus. Inter-
estingly, beluga whale coronavirus belongs to Gammacoronavirus. Finally, Deltacoronavirus
includes wigeon coronavirus, bulbul coronavirus, moorhen coronavirus, munia coron-
avirus, thrush coronavirus, and porcine deltacoronavirus (PDCoV) [2].

Tracing the history of coronaviruses, the first coronavirus-related disease recorded may
have been a case of feline infectious peritonitis (FIP), discovered as early as 1912 [3]. Dis-
eases associated with avian IBV, TGEV, and MHV were well-known before 1950. However,
the first human coronavirus was not identified until the late 1960s [4] and was responsible
for causing the common cold. In late 2002, a novel human coronavirus, SARS-CoV, emerged
in southern China. The disease spread rapidly, with over 8000 cases and about 800 deaths
reported in 29 countries. The global SARS-CoV outbreak ended in July 2003 [5]. The global
epidemic of SARS-CoV brought coronaviruses to the attention of public health officials
and academic virologists. In 2012, a novel zoonotic coronavirus, MERS-CoV, was identified
in humans. The disease was transferred to humans from infected dromedary camels.
Approximately 35% of MERS-CoV-infected patients died from the disease, although there
is no evidence for sustained human-to-human community transmission [6]. To date, only a
few outbreaks have occurred in Saudi Arabia, United Arab Emirates, and Korea [6]. In late
2019, we witnessed a global pandemic of the newly discovered coronavirus disease 2019
(COVID-19) [7]. The causative agent is SARS-CoV-2, which is highly similar to SARS-CoV
with a sequence identity of approximately 80% [7]. COVID-19 has spread to more than
200 countries worldwide, with over 183 million reported cases and 3.9 million cumulative
deaths as of 4 July 2021 [8].

2. Clinical Signs

Animal coronavirus diseases involve multiple body systems, such as gastrointesti-
nal, respiratory, and central nervous systems, with clinical symptoms varying from en-
cephalomyelitis, hepatitis, and nephritis to peritonitis (Table 1). FIP was the first recorded
coronavirus-related disease, observed as early as 1912 [3]. It is a common progressive, fatal
disease in domestic and non-domestic felids caused by FCoV [9]. Most FCoV infections
are associated with mild to subclinical enteric infections, and only 5-12% of seropositive
cats develop FIP [10,11]. Ocular and/or neurological manifestations often occur in the
dry or non-effusive form of FIP. However, in the wet or effusive form of FIP, progressive
abdominal distention and pleural effusion are caused by the accumulation of a highly
viscous and protein-rich fluid in the peritoneal and pleural cavity [9]. The wet form of FIP
in cats usually results in death within weeks to months.

TGEYV, PEDV, and PDCoV cause diarrheal diseases in piglets and sows. The main
clinical signs are mild to severe watery diarrhea, vomiting, and anorexia. Mortality can
be extremely high (up to 100%) in neonatal piglets, as disease severity and the age of
infected pigs are negatively correlated [12,13]. Most recently, a highly pathogenic enteric
coronavirus, SADS-CoV, emerged in Southern China in 2016 with high mortality in suckling
piglets [14]. In addition, another porcine coronavirus known as porcine hemagglutinating
encephalitis virus causes vomiting and wasting disease in piglets. However, the disease is
relatively infrequent worldwide [15].

Among rodents, MHV can induce hepatitis as well as neurological diseases and
enteritis depending on the strain [16]. BCoV infections are associated with three distinct
clinical signs in cattle, including calf diarrhea, hemorrhagic diarrhea in adult cattle, and
respiratory diseases [17]. In canines, gastroenteritis and respiratory symptoms usually
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arise from CCoV (Alphacoronavirus) and CRCoV (Betacoronavirus), respectively [1]. The
clinical manifestations of avian infectious bronchitis depend on the genetic background,
age, route of infection, nutritional factors, virulence, and environmental stresses, such as
low temperature or bacterial pathogen coinfections. Clinical presentations of IBV include
respiratory diseases (gasping, coughing, tracheal rales, sneezing, nasal discharge, wet eyes,
and swollen sinuses) and permanent hypoplasia of the oviduct in young female chicks [18].
TCoV can induce various enteric disease syndromes [19]. The taxonomy of coronaviruses,
hosts, and clinical presentation in farm animals, rodents, and humans are summarized in
Table 1.

Table 1. Coronavirus taxonomy, hosts, and clinical presentation in farm animals, rodents, bats, and humans.

Clinical Presentation

Subgenus Virus Host
Respiratory Enteric Hepatitis Neurologic
Feline coronavirus (FCoV) Cat V! v v v
Transmissible gastroenteritis virus (TGEV) Pig 2 v
Porcine respiratory coronavirus (PRCV) Pig v
Canine coronavirus (CCoV) Dog V4
Alpha Human coronavirus229E (HCoV-229E) Human v
Human coronavirus NL63 (HCoV-NL63) Human v
Porcine epidemic diarrhea virus (PEDV) Pig v
Swine acute diarrhea syndrome-coronavirus Pi v
(SADS-CoV) &
Bat coronaviruses (Bat CoV) Bat
Human coronavirus OC43 (HCoV-OC43) Human v/
Human coronavirus HKU-1 (HCoV-HKU1) Human v
Human enteric coronavirus-4408 (HECoV-4408) Human v
Bovine coronavirus (BCoV) Cow v
Canine respiratory coronavirus (CRCoV) Dog v
Equine coronavirus (ECoV) Horse v/ v
Beta . . T
Porcine hemagglutinating encephalomyelitis virus Pi v v
(PHEV) &
murine hepatitis virus (MHV) Murine v v v v
Middle East respiratory syndrome-related
coronavirus (MERS-CoV) Camel v v
Severe acute respiratory syndrome coronavirus
(SARS-CoV) Bat % v
Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) Bat % %
Bat coronaviruses (Bat CoV) Bat
G Infectious bronchitis virus (IBV) Avian v v v
amma Turkey coronavirus (TCoV) Turkey v
Delta Porcine deltacoronavirus (PDCoV) Pig v/

1 Common clinical manifestation. 2 Empty cells indicate few clinical manifestations or asymptomatic.

3. COVID-19 in Animals

COVID-19 is a zoonotic disease believed to have originated in animals [7]. However,

emerging studies have shown that the disease can also be transferred from infected humans
to animals, such as domestic and nondomestic animals [20]. Bats are reservoirs for SARS-
CoV [21] and other CoVs related to MERS-CoV and SARS-CoV [22]. Therefore, bats are
the most likely potential reservoir with a possible intermediate transmission event in
pangolins for SARS-CoV-2 [23]. Among companion animals, dogs and cats have also been
reported to be permissive for COVID-19 infection [24,25]. Dogs can shed low amounts of
SARS-CoV-2 from nasal and/or oral swabs without clinical symptoms. In contrast, cats
are more susceptible to SARS-CoV-2 than dogs in clinical cases [24]. All reported cases
have an owner with COVID-19 or live in an area with a high incidence of COVID-19 [20].
The first feline case was reported in mid-March 2020 in Belgium, when a cat showed
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mild clinical signs, such as a loss of appetite, diarrhea, vomiting, cough, and shallow
breathing. These signs appeared a week after the cat owner self-quarantined at home due
to COVID-19 [20]. Subsequently, consecutive cases of SARS-COV-2 in cats were reported
in several countries [22]. Cats with COVID-19 are usually asymptomatic or have mild to
moderate respiratory and gastrointestinal symptoms [24]. Therefore, despite evidence for
the human-to-cat transmission of SARS-CoV-2, cat-to-cat transmission has been successful
only under experimental inoculation, and cat-to-human transmission remains unclear [24].

In early April 2020, nondomestic felids, such as tigers and lions, infected with SARS-
CoV-2 were reported [20]. The zoo animals appeared to have mild respiratory symptoms
and gradually recovered after receiving supportive treatment [20]. In addition, respiratory
disease and increased mortality occurred in mink farms in the Netherlands [26]. Notably,
several human cases of COVID-19 have been identified in Denmark with SARS-CoV-2
variants believed to have originated from farmed minks [27]. Previous studies have sug-
gested that other farm animals, such as pigs, chickens, and ducks, have low susceptibility
to COVID-19 [24]. However, ferrets and cats are highly susceptible to SARS-CoV-2 under
experimental inoculation [24,28-30]. To date, there is evidence for SARS-CoV-2 trans-
mission from humans to various animal species within the families Caninae, Felinae, and
Mustelidae [20]. Therefore, it is necessary to implement preventive measures, including the
use of personal protective equipment by veterinarians and related-animal workers, and to
list these workers as priority groups for vaccination against COVID-19 around the world
as the risk of indirect infection remains high.

4. Genome Organization and Recombination

Positive-sense single-stranded RNA viruses have approximately 10~2 to 10~° nu-
cleotide substitutions per site per year [31]. Similar to other RNA viruses, coronaviruses
show a high mutation frequency due to high rates of RNA polymerase errors [32]. The
genome organization of coronaviruses contains non-structural proteins (NSPs), four struc-
tural proteins (spike (S), envelope (E), membrane (M), and nucleocapsid (N) and several
accessory genes [1]. Based on structural studies, bioinformatic analyses, and biochemical
experiments, SARS-CoV-2 appears to be optimized for binding to ACE2, possessing a
receptor-binding domain (RBD) of the spike protein, which has a high affinity to ACE2.
This is in contrast to animal coronaviruses, which bind to human ACE2 with lower affin-
ity [33]. Another notable feature that distinguishes SARS-CoV-2 from the other animal
coronaviruses is the presence of a polybasic cleavage site (RRAR), which allows more
effective cleavage by furin and other proteases, thereby increasing viral infectivity and
influencing host tropism [33].

Non-structural genes encoding polyproteins 1ab are subdivided into approximately
16 NSPs involved in proteolytic processing, genome replication, and subgenomic mRNA
synthesis [1]. The S protein of coronavirus plays key roles in binding to host cell surface
receptors for viral entry and eliciting neutralizing antibodies that contribute to protective
immunity [1]. Unsurprisingly, several SARS-CoV-2 variants have been reported, such as
Alpha, Beta, Gamma, and Delta variants, with mutations in the S gene [34]. Similar charac-
teristics have been reported in a porcine coronavirus, PEDV, which was neglected until an
outbreak of a new variant in China in 2010. To date, several PEDV variants have been noted
in the swine industry worldwide [35,36]. A mutation in the S gene is associated with the
FCoV biotype [37-39]. Virulent FCoV can efficiently replicate in monocytes/macrophages,
which can subsequently spread and circulate within the body, whereas avirulent FCoV
replicates only in the gut epithelium [38]. In addition to non-structural and structural
proteins, the genomes encode several accessory proteins in FCoV [4,40-49]. Accessory
genes, which encode proteins that are non-structural and not essential for viral replication
in vitro, although they are believed to play roles in host immune response [40]. The specific
roles of the accessory proteins of different coronaviruses are still poorly understood and
warrant further investigation.
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A unique feature of coronaviruses is the high frequency of genome recombination
events during the evolution of the lineage [32]. Recombination among coronaviruses is
thought to contribute to the emergence of new pathotypes, such as SARS-CoV [50,51],
HCoV NL63 [52], HCoV HKU1 [53], IBV [54], CRCoV [55], TGEV [56,57], and FCoV [48,58].
FCoVs are further classified into two serotypes [59]. Type I viruses are believed to be
the ancestral FCoV, and type II FCoVs may be derived from an individual and double
recombination event between type I FCoV and CCoV [48,58]. The progeny viruses con-
tain one-third of the CCoV genome [48]. Both types of FCoV can cause FIP and enteric
infection [59]. The recombination of coronaviruses is significantly correlated with fatal
FIP and increased transmission between cats in clinical settings [49,60]. In addition, the
common replication signaling elements among Betacoronavirus suggest a high potential for
recombination within group members [61]. Cross-species transmission is thus worthy of
further investigation. For example, a Betacoronavirus HECoV4408 isolated from a child with
diarrhea is thought to have originated from the bovine species [62]. Additionally, avian
deltacoronavirus shows avian-to-swine transmission, as proven by molecular analyses [2].
Therefore, continuous and intensive surveillance of SARS-CoV is needed, especially in
areas with MERS-CoV cases.

5. Inmunopathogenesis

HCoV and avirulent FCoV, observed prior to the SARS-CoV outbreak, are non-
pathogenic and induce mild inflammation. In contrast, SARS-CoV, SARS-CoV-2, and
virulent FCoV are highly pathogenic coronaviruses in humans and cats, respectively. They
cause diseases with similar immunopathogenic features; both are characterized by an
intense inflammatory/cytokine storm that compromises normal physiological function
and contributes to progressive, debilitating manifestations, such as fever and systemic dis-
ease [63-65]. Genetic factors associated with FIP have been identified [66-68]. Experimental
FIP is a disease model for studies of coronavirus-related immunopathogenesis [69]. It can
be classified into five groups based on the survival period, including rapid, intermediate,
and delayed progression and prolonged or long-term survival. All cats present charac-
teristic signs of acute viral infection within 7 days post-infection, in which neutralizing
antibodies appeared and increased with identical kinetics in survivors and non-survivors.
However, stronger cell-mediated immunity (CMI) was found in survivors than in non-
survivals. These findings implied that the humoral response against virulent FCoV is
insufficient to confer protection and that CMI is critical for controlling the infection and
FCoV clearance [69]. Indeed, similar findings have been reported in patients with severe
and moderate COVID-19 [70]. The early induction of strong T-cell responses is associated
with an asymptomatic presentation or mild symptoms, whereas strong antibody titers
are more closely linked to severe COVID-19 [71]. Moreover, the COVID-19 RNA vaccine
efficacy is correlated with early T-cell responses rather than receptor-blocking antibodies,
reinforcing the importance of CMI for protection against COVID-19 [72].

Similar to FIP caused by virulent FCoV, severe COVID-19 is associated with the sub-
stantial suppression of natural killer (NK) cells and regulatory T (Treg) cells, as reflected by
lower cell counts and reduced NK cell functionality [70,73,74]. As Treg cells can counter-
regulate immune responses and control undesired immune responses, the reduced quantity
of Treg cells may contribute to the inflammatory/cytokine storm, attributed to the dysregu-
lation of the host immune system [75]. The over-production of tumor necrosis factor-alpha
(TNF-alpha) is associated with a poor prognosis in patients with SARS-CoV and MERS-CoV
infections [76]. Interestingly, similar immunological features have also been reported in
FIP cases, in which TNF-alpha production contributed to the aggravation of FIP [77,78]. In-
creased TNF-alpha production is associated with viral replication in virulent FCoV-infected
macrophages and under antibody-dependent enhancement (ADE) [78], supporting the link
between the viral load and TNF-alpha production. Increased TNF-alpha levels can then act
on macrophages and promote FCoV receptor expression [78] and are responsible for the
induction of apoptosis in CD8" T cells [77].
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Antibodies that bind to S proteins might contribute to immunopathogenesis, especially
if they are weakly neutralizing or present at sub-neutralizing levels. Antigen—-antibody
complexes that are deposited in the blood vessel walls and induce complement activa-
tion can lead to vasculitis and edema, contributing to the development of the effusive
form of FIP [9]. The opsonized virion might also lead to enhanced infection in Fc-gamma
receptor-bearing cells, including monocytes, macrophages, and dendritic cells, via Fc-
gamma receptor-mediated uptake, a phenomenon known as ADE [79]. Increased uptake
of virus—antibody complexes by Fc-gamma receptor-bearing cells can consequently pro-
mote virus propagation, thereby increasing disease severity in infected individuals or
animals [80]. ADE is not unique to FCoV and has been widely documented in viral taxa,
such as dengue viruses, Zika virus, Ebola virus, and human immunodeficiency virus
(HIV) [79].

The evasive mechanisms associated with ADE have yet to be thoroughly investigated.
However, recent studies have suggested that interactions between antibody-opsonized
virions and other surface receptors, such as leukocyte Ig-like receptor-B1 suppress antiviral
responses [81]. In addition, virus—antibody complexes may induce the early expression
of host dependency factors involved in various pathways, such as RNA splicing, mito-
chondrial respiratory chain complexes, and vesicle trafficking, thereby promoting viral
replication [82]. Importantly, Lee et al. described two plausible mechanisms underlying
ADE in COVID-19: (1) ADE via enhanced infection and (2) ADE via enhanced immune
activation [83]. Although the effect is yet to be established, anti-SARS-CoV-2 antibodies
could exacerbate COVID-19 [83]. However, ADE has not been reported after more than
1000 million vaccinations against COVID-19 in humans, likely due to the ability of the
vaccines to induce sufficient neutralizing antibodies. However, due to the high SARS-CoV-2
mutation rate, the antibody affinity and neutralizing antibody levels against SARS-CoV-2
might change over time. Therefore, given that ADE can exacerbate the pathogenesis of
FCoV infection, its contribution to COVID-19 outcomes still needs to be closely monitored.

6. Transmission and Viral Shedding

Enterotropic coronaviruses, such as TGEV, PEDV, PDCoV, SADS-CoV, CCoV, BCoV,
TCoV, and enterotropic MHYV, can be transmitted by direct fecal-oral or indirect routes.
Several coronaviruses are spread by aerosol droplets and the ingestion of contaminated
food or water. Therefore, research on the viral shedding period is important. In a natural
PEDV outbreak, high levels of PEDV shed by feces can be seen for a few days post-infection,
and the viral titer gradually decreases after one week. However, intermittent viral shedding
can be detected up to 2 months post-infection [84]. In a 7-year longitudinal monitoring
study, under a multi-cat environment, cats that recovered after transient infection were
subsequently re-infected with either the same or a different FCoV strain [85]. Adult
cats shed FCoV in their feces intermittently at least once during the year, whereas the
median age at which FCoV was first detected in kitten feces was 67 days old (range, 33 to
78 days) [86]. A recent study has indicated that FCoV antibody titers are correlated with
the likelihood and frequency of FCoV shedding and fecal viral load [87]. Chronic shedders
have higher antibody titers and shed more FCoV in their feces. In general, cats infected
with FCoV usually begin fecal viral shedding after one week, followed by three possible
outcomes in which cats (i) become chronic FCoV carriers, persistently shedding the virus
for various durations or lifelong; (ii) eliminate the infection and stop shedding FCoV but
can become re-infected; or (iii) continuously or intermittently shed FCoV (observed in the
majority of cats) [88]. This information highlights the importance of COVID-19 monitoring;
however, examinations of viral shedding by rectal swab might not be feasible in humans.
Host information, genome sequences, immunopathogenesis, and transmission features of
animal coronaviruses (PEDV and FCoV) and SARS-CoV-2 are presented in Figure 1.
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Figure 1. General summary of hosts, genome sequences, immunopathogenesis, and transmission features of animal

coronaviruses that lead to clinical disease.

7. Diagnosis

Serological and molecular tests are often utilized for the detection of specific antibodies
and antigens in veterinary and human infectious diseases. However, several issues are of
concern with respect to the clinical diagnosis of coronaviruses.

(i) Is the presence of the virus and antibodies an indicator of disease status? The
answer is sometimes not straightforward. For instance, when PEDV infects naive pigs,
especially young pigs, the disease manifestation can be very severe. However, during
the recovery phase after PEDV infection, the lack of long-term persistent infection would
indicate that the risk of virus transmission is reduced [84]. In contrast, FCoV is a ubiquitous
virus in the feline population with a seroprevalence of 0-87% and much higher rates in
multi-cat environments than in single cat households and in stray cats [88]. As the infection
rates of FCoV are high in cats, the presence of the virus may not predict the development
of FIP. Indeed, several reports have indicated that 5-12% of seropositive cats eventually
develop FIP [10,11], depending on several factors, including host-related factors [66-68],
environment-related factors [88], and virus-related factors [37,38,44,60]. Therefore, early
diagnosis of FIP remains one of the biggest challenges for veterinarians. Although quan-
titative reverse-transcription polymerase chain reaction (QRT-PCR) is a powerful tool for
molecular diagnosis, it cannot distinguish virulent from avirulent FCoVs [68]. Taken to-
gether, current data suggest that the presence of PEDV may be linked to disease status,
whereas this may not be the case for FCoV infection. COVID-19 is an ongoing global
pandemic; however, it might become seasonal with global vaccination against SARS-CoV-
2 [89]. At present, methods for the detection of novel virulent SARS-CoV-2 variants are
needed.

(i) Is differentiating infected from vaccinated animals (DIVA) possible? The principle
of DIVA is to test the possibility of serological surveillance for the presence of wild-type in-
fection. The DIVA strategy is available for some important transboundary animal diseases,
such as foot-and-mouth disease, classical swine fever, and avian influenza [90]. However,
this strategy does not appear to be effective for animal coronavirus vaccination, which may
be a limitation of immunity passports for SARS-CoV-2 [91]. Nonetheless, the DIVA strategy
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for COVID-19 might still be a useful means to measure the presence of breakthrough
infections, even in individuals who have previously been vaccinated. Figure 2 describes the
DIVA strategy for the detection of anti-N antibodies, which are only elicited in individuals
exposed to the whole SARS-CoV-2 virus, whereas anti-S antibodies can be detected in indi-
viduals who were previously vaccinated [92] (inactivated, mRNA, replication-incompetent
vectors, or recombinant S protein vaccines) or exposed to SARS-CoV-2 infection. Impor-
tantly, DIVA can be applied for antibody detection in oral fluids, which is convenient and
feasible for specimen collection and can show high sensitivity and specificity if properly
optimized [93].

Data interpretation:
Control Naive: only one dot in control well
& N protein Vaccinated: two flow dots in control well and S well
S protein Infected: three flow dots in control, S, and N well
| 1
Oral fluid - ~ - ~ - ~ - ~ p \ y N
° & &> &
"
Whole blood ]
Buffer -y
loading
\ ), § J § J L J \ J \& ~, - &
L J
Naive Vaccinated Infected Invalid

Figure 2. DIVA strategy for SARS-CoV-2 serological testing. The usage of a DIVA assay kit to differential naive, vaccinated,

and/or infected, with invalid results included.

(iii) Can the specificity and sensitivity of diagnostic tools, especially novel diagnostic
methods and strategies, be improved? At present, viral nucleic acid detection by molecular
tests remains the gold standard for COVID-19 [94]. However, to survey a larger population,
a more cost-effective pooling strategy will be essential, although the sensitivity for pooled
samples remains to be evaluated. Nonetheless, pooled testing systems have been developed
for large-scale epidemiological surveys, as well as for active surveillance and monitoring
for PEDV control [95]. Based on lessons from animal coronaviruses, a pooled testing system
could provide a road map for COVID-19 diagnosis.

8. Treatment

Supportive care is usually required in animal coronavirus cases. For FIP, treatment is fo-
cused on reducing the inflammatory and hyperimmune response, with several anti-FCoV agents
and immunosuppressants also considered. Drugs that target FCoVs include carbohydrate-
binding agents (Galanthus nivalis agglutinin) [96-98], HIV protease inhibitors (nelfinavir) [96],
interferons [99-105], nucleoside analogues (ribavirin and GS-441524) [106,107], anti-malaria
drugs (chloroquine) [108], anti-fungal drugs (itraconazole) [109], immunosuppressants (cy-
closporin A) [110,111], 3C-like proteases (GC376) [112,113], and peptides of heptad repeats of S
protein of FCoV [114]. However, side effects should be considered, as many of these drugs have
not been systematically tested in animals. For example, ribavirin is toxic in cats [99,115]. As men-
tioned above, TNF-alpha is a critical factor for FIP development in cats [77,78], and TNF-alpha
inhibitors or TNF-alpha antibodies show clinical efficacy in the treatment of FIP [116,117].

The immunopathogenesis of FIP and COVID-19 are similar, and disease treatments
aimed at the inhibition of coronavirus replication alone will not be sufficient. Indeed,
the molecular pathways modulated by viruses and disease severity are temporally dis-
tinct [118]. Possible treatment strategies for immunopathogenic diseases caused by FCoV
or SARS-CoV-2 are presented in Figure 3. Successful treatment approaches may include
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1. Protease inhibitors Immunomodulators

2. Carbohydrate-
binding agents

3. Nucleoside
analogues

4. Anti-malaria drug

(i) antiviral agents, not limited to new antiviral agents, but including available drugs identi-
fied by screening [119]; (ii) cytokine antagonists, such as TNF-alpha inhibitors, TNF-alpha
antibodies, or TNF-alpha receptor blockers to inhibit TNF-alpha-induced neutrophilia [120],
apoptosis of T-lymphocytes [77], and viral receptor expression in target cells [78], and IL-6
antagonists to induce an increase in Treg cells [121]; and (iii) immunomodulators, i.e.,
interferons to induce host antiviral responses and immunomodulatory activity, which
are widely used to treat human hepatitis [122]. Treg cells are significantly suppressed
in both cats with FIP and patients with COVID-19 [70,73,74]. Therefore, Treg cells are
potential immunotherapeutic agents due to their ability to counteract inflammatory re-
sponses [75]. In addition, prednisone or dexamethasone at immunosuppressive doses is
the treatment of choice; however, such treatments are not curative and may only slow
disease progression [88]. Therapeutic strategies that are focused on reducing both viral
loads and inflammatory responses are most promising for pathologies associated with FIP
and COVID-19.

1. Interferons
2. Treg cells
3. Steroids

4. Etc.

Cytokine

antagonists
I. TNF-alpha antagonists

2. IL-6 antagonists

5. Anti-fungal drug 3. Etc.

6. Peptides

7. Etc.

Figure 3. Potential treatment approaches for immunopathogenic diseases, such as FIP or COVID-19, including anti-

coronavirus agents, cytokine antagonists, and immunomodulators.

9. Prevention

High-level biosecurity measures and vaccines are still the best strategies to prevent
coronavirus diseases in animals and humans. Unfortunately, these diseases continue to
spread worldwide due to the convenience of global trade [35,123]. For example, PEDV
originated in Europe in the late 1970s [35] and became a problematic disease in China in
2010 [12], which subsequently spread to the United States (US) in 2013 [124]. Finally, the
US-related PEDV strain expanded worldwide, reaching Taiwan [125], Japan [126], South
Korea [127], Vietnam [128], Canada [13], and Mexico [35] and re-emerged in European
countries in 2014 [84,129]. Therefore, high levels of biosecurity, such as changing protective
equipment, washing exposed skin, or taking a shower, are recommended in pig farms
and appear to be effective for reducing the risk of PEDV transmission [130]. In addition,
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strict quarantine is necessary to block the virus from entry into a country. Among highly
devastating diseases, African swine fever (ASF), which is a highly contagious disease with
clinical symptoms of hemorrhagic fever and leads to almost 100% mortality in domestic
pigs [131], an extremely high level of biosecurity includes swab sampling from all areas
and surfaces and testing by ASF qPCR assays [132]. A previous study has shown that
FCoV can survive for 7 weeks in a dry environment [88]; accordingly, proper cleaning and
disinfection are essential for the prevention and management of infections.

A recent review has shown that the neutralization levels of each type of vaccine (seven
current vaccines) are highly predictive of immune protection [133]. As SARS-CoV-2 accu-
mulates mutations [34], the efficacy of current vaccines might decrease. This may represent
a leaky vaccine situation, and although an imperfect vaccine reduces pathogen virulence
and disease severity, it does not completely protect against infection and transmission [134].
Therefore, it is likely that current COVID-19 vaccines may attenuate SARS-CoV-2 replica-
tion without completely eliminating the virus. A similar phenomenon has been reported in
porcine circovirus type 2 (PCV2) and Marek disease virus in pigs [135] and chickens [136],
respectively. PCV2 vaccination is one of the biggest success stories in veterinary medicine,
with significant improvements in the average daily weight gain and mortality rate since
vaccination worldwide [137]. In this case, the control of PCV?2 is still effective, although the
virus may continue to mutate and not completely eliminated from pigs [138,139].

10. Conclusions

Animal coronavirus diseases are emerging or reemerging worldwide. Veterinarians
and animal coronavirus researchers are gaining experience and a better understanding
of prevention and control strategies. Therapeutic strategies aimed at reducing viral loads
and attenuating inflammatory/cytokine storms are the most promising against both FIP as
well as COVID-19. Although COVID-19 was initially transmitted from animals to humans,
we still cannot discount the potential for transfer from infected animals to humans and
vice versa. Therefore, high-level biosecurity (personal protective equipment, physical
distancing, and good hygiene), effective vaccines, and herd immunity are still the best
strategies to prevent and control the spread of COVID-19. Finally, due to the similar
features and characteristics of animal and human coronavirus, detailed insights from
animal coronaviruses, especially porcine and feline coronaviruses, might provide a basis
for understanding COVID-19.
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