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Abstract: Coinfection caused by various genotypes of porcine epidemic diarrhea virus (PEDV) is a
new disease situation. We previously reported the coexistence of PEDV strains containing different
ORF3 genotypes in China. In this study, the PEDV strains 17GXCZ-1ORF3d and 17GXCZ-1ORF3c
were isolated and plaque-purified from the same piglet, which had a natural large deletion at the
172–554 bp position of the ORF3 gene or possessed a complete ORF3 gene, respectively. Meanwhile,
17GXCZ-1ORF3d had >99% nt identity with 17GXCZ-1ORF3c in the 5′UTR, ORF1a/1b, S, E, M,
N and 3′UTR regions but only demonstrated low nucleotide identities (80.5%) in the ORF3 gene.
To elucidate the pathogenicity, 7-day-old piglets were infected. Piglets infected with these two
PEDV strains exhibited severe clinical signs and shed the virus at the highest level within 96 hpi.
Compared with the piglets inoculated with the 17GXCZ-1ORF3c strain, the piglets inoculated with
the 17GXCZ-1ORF3d strain had higher mortality rates (75% vs. 50%), an earlier onset of clinical
signs with a significantly higher diarrhea score, lower VH:CD ratios and a higher percentage of
PEDV-positive enterocytes. This study is the first to report PEDV coinfections with different ORF3
genotypes, and a PEDV strain with a large deletion in the ORF3 gene might have the advantage of a
potential genetic marker, which would be useful during vaccine development.

Keywords: porcine epidemic diarrhea virus; coinfection; ORF3; molecular characteristics; pathogenic-
ity; virulence

1. Introduction

Porcine epidemic diarrhea (PED), characterized by severe acute watery diarrhea,
vomiting, dehydration and growth retardation in pigs of all ages, especially newborn
piglets, causes tremendous economic losses to the swine industry worldwide [1–3]. PED
virus (PEDV) was first reported in Europe in the late 1970s, and the virus subsequently
appeared in China in the 1980s [4]. At the end of 2010, a highly virulent PEDV variant was
observed in China and resulted in a massive mortality rate in piglets [5]. Subsequently, the
outbreak of a newly emerged US strain occurred in the United States in 2013 [6], and there
has been a spread of PEDV strains to other swine producing regions and countries such as
Taiwan, Japan and Italy [7,8].

PEDV is an enveloped, single-stranded, positive-sense RNA virus belonging to the
family Coronaviridae [9]. The viral genome is about 28 kb in length and includes seven open
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reading frames (ORFs), encoding two nonstructural proteins (ORF1a and ORF1b), a spike(S)
protein, an accessory protein (ORF3), an envelope(E) protein as well as membrane (M) and
nucleocapsid (N) proteins. The S glycoprotein plays a pivotal role in viral entry [10,11] and
is significant for its genetic relatedness and epidemiological status of PEDV [12].

The PEDVs are comprised of genotypes 1 (G1) and 2 (G2) based on the S gene, and
G2 has been further classified into G2a and G2b subtypes [13]. Apart from the S gene, the
ORF3 protein exhibits a genetic variation among PEDVs [14] and is a valuable tool for the
molecular epidemiologic studies of PEDV infections. The PEDV ORF3 is a single accessory
protein gene that is genus-specific for coronaviruses [15]. It is located between the S and
E genes, encodes an ion channel protein of 224 amino acids (aa) [16] and interacts with
the S protein, which correlates with the ability of the protein to regulate or interfere with
virus replication [14]. The truncated ORF3 is mostly found in cell adapted or attenuated
PEDV [17,18].

Different enteric viruses commonly cause coinfections with PEDVs [19], but in recent
years, coinfection caused by the various genotypes of PEDV has appeared as a new disease
situation. The coinfections caused by the two S gene genotypes of PEDV were first reported
in Japan in 2017 with a frequency rate of 32.7% [20]. New tropisms of PEDV in piglets
naturally coinfected by S1 NTD-del PEDV variants and S-intact PEDVs were identified [21].
Viral replication is normally enhanced during the coinfection of the two S genotypes of
PEDV in piglets, and the clinical symptoms caused by the co-infection were as severe as
those of the highly virulent PEDV alone [22,23]. However, coinfections caused by different
ORF3 genotypes of PEDV have not been reported.

PEDV ORF3 deletion strains have been reported in China [24]. In our previous work,
we found that two ORF3 genotypes were present in the same piglet, one of which had a
naturally truncated ORF3 gene that contained a continuous 382 nucleotides deletion from
172–554 bp, and the other of which had an intact ORF3 gene of 675 nucleotides [25]. Thus,
we suspected that a co-infection with two different PEDV strains occurred in the piglet.
Nevertheless, the comparative pathogenesis of PEDV with different ORF3 genotypes has
not been investigated yet. In this study, two purified PEDV strains with different ORF3
genotypes were obtained from the same piglet, and the biological and genetic characteristics
as well as the pathogenicity in 7-day-old piglets were investigated.

2. Materials and Methods
2.1. Sample Collection

In January 2017, a farm in Guangxi, China had a serious outbreak of PED, with
acute watery diarrhea and vomiting seen in newborn piglets. Small intestine samples
were collected from the piglets and were homogenized with 20% glycerin in a PBS stock
preservation solution (GPSs). The suspensions were vortexed and centrifuged for 5 min
at 3000× g at 4 ◦C. The supernatants were collected and stored at −80 ◦C until they
were utilized.

2.2. PEDV Diagnosis and ORF3 Amplification

Total RNA was extracted using a viral DNA/RNA kit (Axygen Scientific, Union City,
CA, USA) and transcribed into cDNA using an Oligo dTs primer, dNTP mix and an M-MLV
reverse transcriptase reagent (TaKaRa, Dalian, China). For PEDV detection and ORF3 ampli-
fication, the primers against N gene (NF, 5′-GAAATAACCAGGGTCGTGGA-3′ and NR, 5′-
GCTCACGAACAGCCACATTA-3′) and ORF3 gene (ORF3F, 5′-GTCCTAGACTTCAACCTT
ACGAAG-3′ and ORF3R, 5′-AACTACTAGACCATTATCATTCAC-3′) were used [20], re-
spectively. The products were purified and cloned into a pMD-18T vector (TaKaRa,
Dalian, China), and the sequences were determined by the Beijing Genomics Institute
(Guangzhou, China).
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2.3. PEDV Isolation and Purification

Vero cells were used for PEDV isolation and purification. Vero cells were maintained in
high glucose DMEM (Life Technologies, Carlsbad, CA, USA) supplemented with antibiotics
and 10% fetal bovine serum (Biological Industries, Kibbutz Beit Haemek, Israel) at 37 ◦C in
a 5% CO2 incubator. The supernatants were filtered through a 0.22-µm-pore-size syringe
filter. After 1 h of incubation, the cells were maintained in DMEM containing 15 µg/mL
trypsin at 37 ◦C in a 5% CO2 atmosphere until a cytopathic effect became visible. The
infected cells were lysed using a freeze-thaw method and subsequently centrifuged at
3000× g for 5 min at 4 ◦C.

Vero cells in six-well plates were inoculated with 200 µL of 10-fold serially-diluted
PEDV. After 1 h of adsorption at 37 ◦C, the cell monolayers were washed with phosphate-
buffered saline (PBS) and overlaid with 1% low melting point agarose with 15 µg/mL
trypsin. After the gel overlay solidified, the plates were inverted and placed in an incubator
at 37 ◦C with 5% CO2. At 3–4 days post-infection (dpi), plaques were selected for cell
infections or were visualized using crystal violet staining. Two PEDV isolates—one variant
bearing a naturally occurring truncated ORF3 gene named 17GXCZ-1ORF3d and another
strain possessing a complete ORF3 gene named 17GXCZ-1ORF3c—were plaque-purified
serially three times. Ten plaques were randomly selected, and the diameter was measured
using a ruler in ImageJ 1.8.0 software. The purified viruses were propagated and the
RNA was extracted for the amplification of the ORF3 in order to verify the size of the
purified virus.

2.4. Indirect Immunofluorescence Assay

Vero cells were grown to 70–80% confluence on 96-well plates and inoculated with the
PEDV strains 17GXCZ-1ORF3c and 17GXCZ-1ORF3d, respectively. Medium alone was
used as control. At 72 h post-infection (hpi), the cells were fixed with cold formaldehyde
and blocked with PBS containing 1% bovine serum albumin (BSA). After blocking, the
cells were incubated with an anti-PEDV spike protein monoclonal antibody (Median,
Chuncheon, Korea; diluted 1:500) for 2 h at 37 ◦C. The cells were washed with PBS three
times and then incubated with an Alexa FluorTM 488 conjugated goat anti-mouse IgG
(H+L) antibody (Invitrogen, CA, MSA; diluted 1:4000) for 1h. Finally, the cells were washed
and then visualized using a fluorescent microscopy.

2.5. Multi-Step Growth Curves of Viruses

For the growth curve analysis, Vero cells in 12-well plates were inoculated with the
PEDV strains 17GXCZ-1ORF3d and 17GXCZ-1ORF3c, respectively, at a multiplicity of
infection (MOI) of 0.001. After adsorption at 37 ◦C for 1 h, followed by three washes with
PBS, the supernatants and the infected cells were collected at 6, 12, 24, 36, 48, 60 and 72 hpi
and stored at −80 ◦C for virus titration. The virus titers in Vero cells at each time point
were determined in triplicate by using plaque assays.

2.6. Whole Genome Sequencing of PEDV

To further characterize the PEDV detected by the ORF3 sequencing, both strains
of the plaque-purified viruses were subjected to next-generation sequencing. Libraries
were constructed using the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San
Diego, CA, USA), and these were sequenced on an Illumina HiSeq X Ten platform and
150 bp paired-end reads were generated. The libraries and sequencing were conducted
by OE Biotech Co., Ltd. (Shanghai, China). In order to verify the sequences, a total of
27 overlapping fragments of PEDV were amplified using 2 × Taq Plus Master Mix II (Dye
Plus) (Vazyme, Nanjing, China) as previously described [26], with a few modifications. The
PCR products were gel purified and cloned into a pMD-18T vector (TaKaRa, Dalian, China)
and the sequences were determined by the Beijing Genomics Institute (Guangzhou, China).
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2.7. Multiple Alignments and Phylogenetic Analyses

Seventy-seven reference PEDV strains containing full-length genomes were selected
and used for sequence alignments and phylogenetic analyses (Supplementary Table S1).
Multiple sequence alignments were generated by applying the MegAlign program. Phy-
logenetic trees were constructed from the aligned nucleotide or amino acid sequences by
using the neighbor-joining method in MEGA5.2 software and subsequently subjected to a
bootstrap analysis with 1000 replicates to determine the percentage reliability values of
each internal node of the tree. The resulting tree was visualized using iTOLv.5 (Interactive
Tree of Life, http://itol.embl.de/, accessed on 6 September 2020).

2.8. Experimental Design of Infection

Twelve 7-day-old conventional piglets were purchased from a commercial pig farm
with no PEDV vaccination program and no history of PED. All animals were diagnosed as
negative for PEDV, transmissible gastroenteritis virus (TGEV), rotavirus (PoRV), porcine
deltacoronavirus (PDCoV), classical swine fever virus (CSFV), porcine reproductive and
respiratory syndrome virus (PRRSV) and pseudorabies virus (PRV) by a virus-specific
RT-PCR analysis of rectal swabs and determined to be free of antibodies to PEDV by a
commercial PEDV antibody ELISA kit (Biovet Inc., St-Hyacinthe, QC, Canada). The piglets
were randomly assigned into three experimental groups: the 17GXCZ-1ORF3d-inoculated
group (n = 4), the 17GXCZ-1ORF3c-inoculated group (n = 4) and the control group (n = 4).
The piglets were housed in separate rooms and were artificially fed milk replacer every
4–6 h. The piglets in the infected groups were inoculated orally with 6 log10 PFU/mL
(2 mL/piglet) of the PEDV strains 17GXCZ-1ORF3d or 17GXCZ-1ORF3c, respectively,
while the uninfected group were treated with the same amount of cell culture media and
used as controls. During the experiment, the piglets had their body temperatures and
weights measured regularly and were monitored for clinical signs of disease including
diarrhea and vomiting. Rectal swabs were collected at different timepoints after PEDV
infection for scoring fecal denseness (scores: 0, normal; 1, pasty stool; 2, semiliquid
diarrhea; and 3, liquid diarrhea) and placed in EP tubes containing 4 mL of GPSs for
the enumeration of fecal viral RNA shedding by RT-quantitative PCR (RT-qPCR). The
sequences of primers used were as follows: qMF, 5′-GGAATTTCACATGGAATATCA-3′;
and qMR, 5′-CCATAGAATAGCCATCTTGAC-3′. RNA copies were calculated using a
generated standard curve.

The animal care and procedures used in this study were handled strictly according to
the Animal Care & Welfare of Guangxi University (No: GXU2020-022). Veterinary person-
nel were involved throughout the study and all necessary safeguards were followed so as to
ensure the minimal suffering of animals. In addition, the piglets that approached humane
endpoints were euthanized under deep anesthesia with a xylazine combo (0.1–0.2 mL/kg
body weight) when necessary. The humane endpoints in this study were a combination of
lethargy, anorexia (weight loss > 15% of body weight at infection) and/or if malaise and
dehydration resulted in the piglet being unable to stand unaided. However, all surviving
piglets from the challenged and control groups were euthanized at 5 dpi for post-mortem
examinations. At necropsy, tissue samples including duodenum, jejunum, ileum, cecum,
mesenteric lymph nodes (MLN) and stomach were collected and homogenized with GPSs
to a final concentration of 0.1 g/mL using a high-throughput tissue grinder (Ningbo
Techtronic Biotechnology Co., Ningbo, China). In addition, 3–4 cm each of duodenum,
jejunum, ileum, cecum, MLNs and stomach were taken and processed for hematoxylin
and eosin (H&E) staining and immunohistochemistry (IHC), respectively. The ORF3 genes
from the small intestines of piglets were amplified and sequenced in order to verify which
virus they were inoculated with.

2.9. H&E and IHC Staining

Tissues of duodenum, jejunum, ileum, cecum, MLNs and stomach were fixed in 4%
paraformaldehyde for H&E staining. For each small intestinal section, five villi and crypts

http://itol.embl.de/
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were measured using Image-pro plus 6.0 software (Media Cybernetics, Rockville, MD,
USA). The villus height versus crypt depth (VH:CD) ratios were calculated as previously
described [6]. A monoclonal antibody for the PEDV spike protein (Median, Chuncheon,
Korea; diluted 1:500) and HRP conjugated goat anti-mouse IgG (H+L) (Servicebio, Wuhan,
China; diluted 1:200) were used for IHC staining, and the results were observed by mi-
croscopy (NIKON Eclipse Ci, Japan) and photographed by an imaging system (NIKON
digital sight DS-FI2, Japan). The presence of the PEDV antigen was assessed by using
a semi-quantitative analysis of tissue sections (−, no cells showed staining; +, ++, +++
represent 1–30%, 30–60% and 60–100% of epithelial cells that showed staining, respectively).

2.10. Statistical Analysis

All the values are expressed as the means ± standard error of the means (SEMs). The
statistical analysis was performed by a Student’s t-test using GraphPad Prism 8 (GraphPad,
La Jolla, CA, USA) and a one-way or two-way ANOVA test using SPSS version 25.0 (IBM,
Chicago, IL, USA). A value of p < 0.05 was considered statistically significant and a value
of p < 0.01 was considered extremely significant.

3. Results
3.1. Virus Isolation and Biological Characteristics of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c
Strains In Vitro

The results of RT-PCR revealed that the sample was positive for PEDV, and two ORF3
genotypes were present in the same piglet. Since the deletion could have occurred in the
cell culture as was described before [27], direct sequencing was conducted to confirm the
presence of both variants in the same sample of piglet.

The 17GXCZ-1ORF3d strain bearing a naturally occurring truncated ORF3 gene and
the 17GXCZ-1ORF3c strain possessing a complete ORF3 gene were serially plaque-purified
three times, respectively. Vero cells infected with the PEDV strains of 17GXCZ-1ORF3d
and 17GXCZ-1ORF3c both produced obvious classical cytopathic effects (CPE) including
cell fusion, multinucleated giant cell formation and cell detachment (Figure 1a,b). The
17GXCZ-1ORF3d and 17GXCZ-1ORF3c strains were titrated to titers of 7 log10 and 6.26
log10 PFU/mL, respectively. The ORF3 genes of the isolated and purified strains were
identified using RT-PCR (Figure 1d). Virus propagation was confirmed by the detection of
PEDV antigens with IFA using an anti-PEDV S protein monoclonal antibody. The results
revealed that the attached fluorophores could be detected in infected Vero cells, whereas
none were detected in the control group.
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We compared the plaque sizes and morphology between the 17GXCZ-1ORF3d and
17GXCZ-1ORF3c PEDV strains. The mean diameter of the plaques formed by 17GXCZ-
1ORF3d (1.18 mm) was significantly smaller than that observed for 17GXCZ-1ORF3c
(1.70 mm) (Figure 2c). The growth properties of the two plaque-purified PEDV isolates were
investigated by the multi-step growth assay with an MOI of 0.001. As shown in Figure 2d,
the 17GXCZ-1ORF3d strain exhibited growth kinetics that were not exactly similar to
17GXCZ-1ORF3c. 17GXCZ-1ORF3d reached a peak with a mean titer of 7.4 log10 PFU/mL
at 48 hpi, while 17GXCZ-1ORF3c reached a peak mean titer of 7.16 log10 PFU/mL at 36 hpi.
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strains at MOI = 0.001, respectively. The infected cells were collected at 6, 12, 24, 48, 60 and 72 hpi for virus titrations. The
virus titers at each time point were determined in triplicate using plaque assays.

3.2. Full-Length Genome Sequence Analysis and Phylogenetic Characterization of PEDV
17GXCZ-1ORF3d and 17GXCZ-1ORF3c Strains

We determined the full-length genomes of 17GXCZ-1ORF3d (GenBank accession no.
MT547179) and 17GXCZ-1ORF3c (GenBank accession no. MT547180) to be 27662 and
28,044 nucleotides (nt), respectively. We compared these genomes with 77 representative
strains listed in the GenBank and performed further analysis using the Clustal W method
with the MegAlign program and MEGA5.2 software. 17GXCZ-1ORF3c had a complete
ORF3 gene sequence, with a length of 675 bp, and encoded a protein of 224 amino acids (aa),
whereas the ORF3 gene of 17GXCZ-1ORF3d was 293 bp in length, containing a continuous
deletion from 172–554 bp, and encoded a truncated protein of 89aa. 17GXCZ-1ORF3d had
>99% nt identity with 17GXCZ-1ORF3c in the 5′UTR, ORF1a/1b, S, E, M, N and 3′UTR
regions but demonstrated much lower nt identities (80.5%) in the ORF3 gene (Table 1). The
whole genomes of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c shared 98.3% nucleotide identity
with the group G2 prototype strain, AJ1102, but had 96.7% identity with the subgroup
G1 prototype strain, CV777. Compared to the ORF3 gene of all the representative strains,
17GXCZ-1ORF3c showed 90.9–99.3% nt and 91.3–100% aa identities, whereas the nt and aa
identities of 17GXCZ-1ORF3d were lower at 76.7–84.8% and 73.0–83.3%, respectively.

To investigate the evolution of PEDV, we further constructed phylogenetic trees based
on the S and ORF3 proteins as well as on the whole genome sequences (Figure 3). Both
17GXCZ-1ORF3d and 17GXCZ-1ORF3c had evolved into subgroup G2b based on their
whole genome and S protein sequences. The strains of 17GXCZ-1ORF3d and 17GXCZ-
1ORF3c formed an independent clade within the same subgroup, which clustered closely
around the Chinese isolates such as the AJ1102 strain, but were distant from the North
America epidemic strains. The phylogenetic analysis based on the ORF3 proteins of the
17GXCZ-1ORF3c strain was divided into subgroup G2b, but 17GXCZ-1ORF3d clustered
into a new G3 group. The ORF3 gene-based phylogenetic tree suggested that 17GXCZ-
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1ORF3d was a novel strain with a naturally occurring large deletion at the 172–554 bp
position in the ORF3 gene.

Table 1. Comparisons of the nucleotide sequences of the genome organization of the 2017 Guangxi isolates and their
genogroup representative PEDV strains.

Gene

17GXCZ-1ORF3d
(MT547179)

17GXCZ-1ORF3c
(MT547180)

CV777
(AF353511)

AJ1102
(JX188454)

Size (nt) Size (aa) Size (nt) Identity (%) Size (nt) Identity (%) Size (nt) Identity (%)

5′UTR 292 / 292 100 296 97.3 292 98.6
ORF1a/1b 20,345 6781 20,345 100 20,345 97.2 20,344 98.4

S 4158 1386 4158 99.9 4152 94.1 4158 97.9
ORF3 293 89 675 80.5 675 78.1 675 79.5

E 231 76 231 99.1 231 97.4 231 99.6
M 681 226 681 99.7 681 98.4 681 99.4
N 1326 441 1326 100 1326 95.9 1326 97.7

3′UTR 334 / 334 100 334 95.8 343 98.2
Total 27,662 / 28,044 99.9 28,033 96.7 28,044 98.3
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Figure 3. Genotyping and origin of the PEDV strains 17GXCZ-1ORF3d and 17GXCZ-1ORF3c based on different genes.
Phylogenetic trees were constructed based on the aligned full-length genomes (a) S protein and (b) ORF3 protein (c) by
using the neighbor-joining method from MEGA 5.2, with 1000 bootstrap replicates. Scale bars represent the branch lengths
measured by the number of substitutions per site. Each PEDV strain is indicated in the following format: country of origin
(three letter code: CHN, China; JPN, Japan; KOR, Korea; MEX, Mexico; SUI, Switzerland; and USA, the United States)/strain
name/year of sample collection (Genbank accession number). Group 1, G2a subgroup, G2b subgroup and Group 3 are
coded in red, green, pink and yellow, respectively. The triangle symbols represent the strains obtained in this study.
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3.3. Pathogenicity of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c Strains in Piglets

The pathogenicity characteristics of the PEDV strains of 17GXCZ-1ORF3d and 17GXCZ-
1ORF3c were compared. Twelve 7-day-old piglets were randomly divided into three
groups and were orally inoculated with 17GXCZ-1ORF3c and 17GXCZ-1ORF3d at a dose
of 6 log10 PFU/mL (2 mL/piglet) and DMEM (2 mL/piglet), respectively. During the
challenge period, the piglets in the infected groups exhibited severe diarrhea, vomiting
and weight loss (Figure 4a). The piglets in the 17GXCZ-1ORF3c group began to show
diarrhea at 36 hpi, while piglets in the 17GXCZ-1ORF3d group developed diarrhea at
24 hpi, which was 12 h earlier than the piglets in the former group. Notably, the fecal scores
of the 17GXCZ-1ORF3d group were significantly higher than those of the 17GXCZ-1ORF3c
group throughout most of the duration of the experiment (Figure 4b).
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Figure 4. Pathogenicity analysis of the PEDV strains 17GXCZ-1ORF3d and 17GXCZ-1ORF3c. (a) The average body weight
changes in each group. (b) Fecal scores of piglets in different groups. Rectal swabs were collected at different timepoints
after PEDV infection, scores standard: 0, normal; 1, pasty stool; 2, semiliquid diarrhea; and 3, liquid diarrhea. (c) The
survival rate of piglets in each group. After oral inoculation with PEDV, one piglet died at 96 hpi and one at 108 hpi in the
17GXCZ-1ORF3c group, while two piglets died at 96 hpi and one piglet died at 108 hpi in the 17GXCZ-1ORF3d group. Each
data point in the graph represents the average value from four or all of the surviving animals ± SEM. The asterisks indicate
significant differences between the groups of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c (* p < 0.05; ** p < 0. 01; *** p < 0 .001).
Gross lesions found in piglets of (d) 17GXCZ-1ORF3d, (e) 17GXCZ-1ORF3c and (f) mock groups at necropsy. The piglets
were necropsied upon death, whereas all surviving piglets from the challenged and mock groups were euthanized at 5 dpi
for post-mortem examinations.

In this study, the mortalities of the 17GXCZ-1ORF3d and 17GXCZ-1ORF3c strains
reached 75% (3/4) and 50% (2/4), respectively (Table 2). After the oral inoculation with
PEDV, one piglet died at 96 hpi and one at 108 hpi in the 17GXCZ-1ORF3c group, while
two piglets died at 96 hpi and one piglet died at 108 hpi in the 17GXCZ-1ORF3d group.
(Figure 4c). The results of the pathological examination revealed that the intestinal walls of
the piglets in both the 17GXCZ-1ORF3d and 17GXCZ-1ORF3c groups were thin or even
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transparent, with a large amount of yellowish fluid in the intestinal cavities (Figure 4d,e).
No piglets died or exhibited any clinical signs in the control group (Figure 4f).

Table 2. Pathogenicity analysis of the PEDV strains 17GXCZ-1 ORF3d and 17GXCZ-1 ORF3c found in China, 2017 †.

Groups
Inoculum

Dose
(2 mL)

Mortality

Fecal Shedding,
Log10 Copies/mL, by PIH,

Mean

Onset of
Clinical Signs
as Judged by

PIH

Quantification of
Viral Load, Log10
Copies/mL, Mean

VH: CD, Mean
PEDV Antigen

Detection in
Frozen Tissues ‡

0 24 48 72 96 120 D J I D J I D J I

Mock Cell culture
media 0%, 4/4 - - - - - - - - - - 3.32 2.44 2.86 - - -

17GXCZ-1
ORF3d

6 log10
PFU/mL 75%, 1/4 - 1.72 5.89 6.43 6.68 4.66 24-48 6.32 7.12 6.90 2.38 * 1.94 * 1.96 ** ++ +++ +

17GXCZ-1
ORF3c

6 log10
PFU/mL 50%, 2/4 - - 4.94 5.76 6.43 3.46 36-48 6.18 6.42 6.87 2.32 * 2.00 2.42 * + + ++

† PEDV, porcine epidemic diarrhea virus; PIH, post inoculation hour; VH:CD, ratio of villous height to crypt depth; D-duodenum, J-jejunum,
I-ileum; PFU, plaque formation unit; -, no result. ‡ PEDV antigen detection in frozen tissues. +, ++, and +++ denotes less than 30%, 30–60%
and more than 60% of villous enterocytes showing a PEDV antigen positive signal, respectively. Viral load in the fecal wastes and in the
tissues of the small intestine was detected by RT-quantitative PCR (RT-qPCR). * and ** represent significant differences when compared to
the mock group, with p values of <0.05 and <0.01, respectively.

The viral shedding of feces was investigated by RT-qPCR. The fecal shedding occurred
at 36 hpi from the piglets in the 17GXCZ-1ORF3c group, whereas the earliest detection
of fecal virus shedding from the piglets in the 17GXCZ-1ORF3d group was at 24 hpi,
which was 12 h earlier than in the 17GXCZ-1ORF3c group. It coincided with the onset of
clinical signs. Piglets in the groups of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c shed the
virus at the highest level within 96 hpi, with the mean titers of 6.68 log10 copies/mL and
6.43 log10 copies/mL, respectively (Table 2).

The viral loads in different tissues including the duodenum, jejunum, ileum, cecum,
MLNs and stomach were determined. As shown in Table 2, the segments of duodenum,
jejunum and ileum exhibited high viral loads in both the 17GXCZ-1ORF3d and 17GXCZ-
1ORF3c groups ranging from 6.18 to 7.12 log10 copies/g. The viral load in the duodenum
and jejunum from the 17GXCZ-1ORF3d group was higher than that of the 17GXCZ-1ORF3c
group, but this was not significant. Neither virus shedding in the feces nor the viral load in
the tissues of the control group was detected.

Using H&E staining, the infected piglets were characterized by the shortening, atrophy
or even the shedding of intestinal villi (Figure 5). To investigate the severity of atrophic
enteritis in infected piglets, the VH:CD ratios of different intestinal segments from the
infected piglets were compared with those of the piglets in the mock group (Table 2). Piglets
in the 17GXCZ-1ORF3c group had significantly decreased VH:CD ratios in duodenum
(2.32 ± 0.08) and ileum (2.42 ± 0.12) compared with the piglets in the control group. In
addition, in the 17GXCZ-1ORF3d group, the VH:CD ratios in the duodenum (2.38 ± 0.15)
and jejunal (1.94 ± 0.17) were significantly lower than those in the mock group (p < 0.05),
and the VH:CD ratios in the ileum (1.96 ± 0.16) were markedly lower than those in the
mock group (p < 0.01).

After the euthanasia of piglets, PEDV-specific IHC staining was performed on serial
sections of the duodenum, jejunum, ileum, cecum, MLNs and stomach of all groups
(Figure 5d,f). The cecum and stomach had almost no PEDV antigen signal, and MLNs in
the infected piglets were slightly enlarged and contained a few of PEDV antigen signals
(data not shown). PEDV antigen positive signals were observed in the duodenum (30–60%),
jejunum (60–100%) and ileum (1–30%) in the 17GXCZ-1ORF3d group (Table 2). The PEDV
antigen signal in the villous enterocytes of the duodenum and jejunum from the 17GXCZ-
1ORF3d group was higher than that in those from the 17GXCZ-1ORF3c group. None of the
four piglets in the control group was IHC positive.
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Figure 5. H&E and IHC staining of the jejunum from the PEDV-infected and mock piglets. Different tissue samples
including the duodenum, jejunum, ileum, cecum, MLNs and stomach from each group were taken and then processed for
H&E and IHC staining, and representative images of the jejunum are shown (200×). H&E staining of the jejunum in piglets
from the (a) 17GXCZ-1ORF3d, (b) 17GXCZ-1ORF3c and (c) mock groups. The jejunum from the PEDV-infected piglets was
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(d) 17GXCZ-1ORF3d, (e) 17GXCZ-1ORF3c and (f) mock groups. PEDV antigen appears as a brown stain and was detected
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were stained with an anti-PEDV spike protein monoclonal antibody followed by the incubation with an HRP conjugated
goat anti-mouse antibody and then visualized using a fluorescent microscope.

4. Discussion

Coronaviruses infect humans and various animal species, causing respiratory, gas-
trointestinal and neurological diseases. PEDV belongs to a group of enteropathogenic
swine coronaviruses of the genus alphacoronavirus, causing large economic losses to the
global swine industry [2]. Novel PEDV strains with large deletions in the S gene have
been found in different countries [20]. Based on the S gene, PEDVs can naturally coexist
with multiple genotypes and can cause new tropisms [21]. There were three ORF3 geno-
types reported in China as early as 2010 [18]. The ORF3 protein of the HLJBY strain only
consists of 91 aa, with 133 aa deletions at the C’ end [24]. Recently, we discovered a new
ORF3 genotype that encoded a truncated protein of 89 aa, with continuous deletions from
172–554 bp [25]. However, no co-infection of multiple ORF3 genotypes has been reported.

Based on the complete genome sequences, PEDV evolved into two distinct groups,
G1 (classical) and G2 (variant), and most of the prevailing strains since 2010 have been
grouped into the G2 group. Geno-group G2 was further subdivided into G2a and G2b
subgroups in this study, and multiple recombinants and the S-INDEL strains worldwide
could be clustered into a new G2c subgroup by the other proposed systems [13,28]. The
S protein, which was expected to be the primary determinant of attenuation, contains
two subunits, S1 and S2, responsible for receptor binding and membrane fusion, respec-
tively [29]. In addition, there are at least four neutralizing epitopes of PEDV that have
been identified in the S protein, including COE (499–638), SS2 (748–755), SS6 (764–771) and
2C10 (1368–1374) [1]. In this study, there are four amino acid differences (G888R, O1009N,
S1064C and G1068D) in the S protein between the PEDV strains 17GXCZ-1ORF3d and
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17GXCZ-1ORF3c. Previous studies have shown that the amino acid position 888 is in close
proximity to the S2′ cleavage site, and it may play an important role for the viability and
the cell fusion capacity of the virus [30,31]. However, whether these mutations will affect
the plaque size, growth kinetics or virulence of the virus warrants further investigation.

The ORF3 gene of coronaviruses carry accessory genes known to be associated with
viral virulence [16], replication [32] and adaptation [14,17]. The ORF3 is the only accessory
gene in PEDV, and it influences virus production and virulence [16,33]. The PEDV ORF3
can delay the S phase in dividing cells and suppress cell cycle progression, and it causes
endoplasmic reticulum stress in order to facilitate autophagy [34]. PEDV ORF3 protein
promotes virus proliferation by inhibiting cell apoptosis caused by viral infections [15].
Moreover, PEDV ORF3 is involved in the innate host immune response, where it has
been found to inhibit the IFN-β and IRF3 promoter activities [35] as well as significantly
inhibit the production of pro-inflammatory cytokines such as interleukin-6 (IL-6) and
IL-8 [36]. 17GXCZ-1ORF3d is a novel strain with a naturally occurring large deletion at the
172–554 bp position in the ORF3 gene, and the functional effects of this truncated ORF3
gene in the activity of the virus need to be further investigated.

The 17GXCZ-1ORF3d strain generated significantly smaller plaques and had slightly
lower growth kinetics when compared to the 17GXCZ-1ORF3c strain in the present study.
It was previously demonstrated that a recombinant infectious clone derived PEDV, in
which the ORF3 was replaced with a red fluorescent protein, produced a reduced plaque
size compared to the parental strain [37]. These results indicated that the ORF3 might
be important for plaque formation and viral growth in vitro. Recent studies revealed
that a highly pathogenic PEDV rBJ2011C strain made smaller plaques and had slower
growth kinetics than a low virulent rCHM2013 strain [26]. The pathogenicity of PEDV was
associated with the virus strain, but the impact of other factors, such as plaque formation
and virus growth kinetics in vitro, requires further investigation.

Nursing piglets (<10-day-old) infected with PEDV began to show diarrhea at 24 hpi or
several hours later, and this mostly coincided with the first detection of viral shedding in
the feces [38,39]. In agreement with the above results, the onset of diarrhea was 12 h earlier
and the first detection of fecal virus shedding was 24 h earlier in the piglets inoculated with
the 17GXCZ-1ORF3d strain compared to those in the 17GXCZ-1ORF3c group, indicating
a shorter incubation time for the former strain. The fecal shedding of the viruses in both
groups peaked at 96 hpi and the titers decreased markedly during the recovery stage of
the infection by 120 hpi, and this may be possibly due to PED re-infection of regenerating
enterocytes. The piglets died with severe diarrhea [40].

The VH:CD ratios were reduced along with a marked shortening of the villi following
the PEDV infection [2], and the jejunum and ileum may be the primary sites during acute
PEDV infection in nursing pigs [41]. In our study, the VH:CD ratios in all the small
intestinal segments from the 17GXCZ-1ORF3d group were significantly lower than those
in the control group. Moreover, compared with the 17GXCZ-1ORF3c group, the animals in
the 17GXCZ-1ORF3d group had higher but not significant VH:CD ratios in the jejunum
and ileum, viral load in all small intestinal segments and PEDV antigen signals in the
villous enterocytes of the duodenum and jejunum. These observations indicated that the
PEDV 17GXCZ-1ORF3d strain causes serious damage to the villous epithelial cells and
may have a similar viral replication ability in vivo.

Generally, the naturally truncated form of ORF3 might cause the attenuation of PEDV
in a natural host [18,24], but not all ORF3 truncations have been associated with reduced
pathogenicity [42]. The virulence of the PEDV P55 strain with a truncated ORF3 did not
differ from that of the other field isolates with full-length ORF3 [43]. The cell-adapted PEDV
YN15 strain gained an early termination of the ORF3 gene at 145 aa, and the results of
clinical symptom analyses, necropsies and IHC from pig infection experiments showed that
this is a virulent PEDV strain [44]. Here we report a PEDV strain, 17GXCZ-1ORF3d, which
has a naturally truncated ORF3 gene containing a continuous 382 nucleotides deletion
from 172–554 bp and has been verified as a virulent strain causing severe diarrhea and high
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mortality in suckling piglets. So far, there is conflicting data regarding the role of ORF3 and
its importance for viral pathogenicity. The striking sequence differences between the PEDV
strains 17GXCZ-1ORF3d and 17GXCZ-1ORF3c are located in the ORF3 gene, particularly
at the 172–554 bp position of the ORF3 gene. Previous studies have demonstrated that
the naturally-occurring amino acid deletion could abolish the suppressive effect of some
ORF3 variants on virus replication in vitro [45]. The naturally truncated ORF3 protein
displayed a more apparent association with the S protein, and it may work in concert to
regulate PEDV replication in vivo [14]. The sequence difference in the ORF3 gene may be
responsible for the pathogenicity differences between these two PEDV strains, but this
remains to be confirmed in further studies.

Currently, the distribution of PEDV with a naturally truncated ORF3 gene in China or
globally is unknown. Apart from coinfection with the intact ORF3 gene strain, whether
the naturally truncated ORF3 strain will infect the piglets alone in the field or even cause a
larger outbreak has to be carefully monitored. In this study, the piglets infected with the
PEDV strains of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c exhibited severe clinical signs.
However, there is a need to increase the animal number to strengthen statistical power
when comparing the pathogenicity between these two strains, and the correlation be-
tween the naturally truncated ORF3 gene and pathogenicity needs to be confirmed by
reverse genetics.

5. Conclusions

In conclusion, we identified two PEDV strains with different ORF3 variants from the
same pig, which illustrates the complexity involved in the clinical prevention and control
of PED. PEDV strains with a large deletion in the ORF3 gene might have the advantage of
acting as a genetic marker for potential vaccine development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13081562/s1, Table S1: Information regarding the reference strains of PEDV.

Author Contributions: Conceptualization, K.O.; methodology, Y.L., W.H., L.Z., Y.Q., X.L., C.Y., R.W.,
X.S., C.D., X.M., H.W., Y.H., W.Z., Y.C. and Z.W.; software, Y.L., X.S. and C.D.; validation, K.O., W.H.,
Y.C. and Z.W.; formal analysis, Y.L., W.H. and L.Z.; investigation, Y.L., W.H. and L.Z.; resources, K.O.,
W.H. and Y.H.; data curation, K.O., Y.L. and W.H.; writing—original draft preparation, Y.L., W.H. and
K.O.; writing—review and editing, K.O.; visualization, K.O. and Y.L.; supervision, K.O. and W.H.;
project administration, W.H. and K.O.; funding acquisition, K.O. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Scientific Research Foundation of Guangxi University
[grant number XGZ170239] and the One-Hundred Talent Program of Guangxi.

Institutional Review Board Statement: The animal study was reviewed and approved by the Animal
Care & Welfare Committee of Guangxi University (No: GXU2020-022, approved on 26 March 2020).

Data Availability Statement: The complete genome sequences of the PEDV strains 17GXCZ-1ORF3d
and 17GXCZ-1ORF3c obtained in this study have been deposited in the GenBank under the accession
number MT547179 and MT547180, respectively.

Acknowledgments: We are grateful to Dev Sooranna, Imperial College London, for the English
language editing of the manuscript. We thank Tingting Yuan, Yaxin Qu, Zhenkong Cheng, Lianjing
Sun, Yanlin Zou and Yuhang Luo for their excellent technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, P.; Wang, K.; Hou, Y.; Li, H.; Li, X.; Yu, L.; Jiang, Y.; Gao, F.; Tong, W.; Yu, H.; et al. Genetic evolution analysis and

pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011–2017. Infect. Genet.
Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 69, 153–165. [CrossRef]

2. Lin, C.M.; Saif, L.J.; Marthaler, D.; Wang, Q. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus
strains. Virus Res. 2016, 226, 20–39. [CrossRef]

https://www.mdpi.com/article/10.3390/v13081562/s1
https://www.mdpi.com/article/10.3390/v13081562/s1
http://doi.org/10.1016/j.meegid.2019.01.022
http://doi.org/10.1016/j.virusres.2016.05.023


Viruses 2021, 13, 1562 14 of 15

3. Jung, K.; Saif, L.J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet.
J. 2015, 204, 134–143. [CrossRef]

4. Li, W.; Li, H.; Liu, Y.; Pan, Y.; Deng, F.; Song, Y.; Tang, X.; He, Q. New variants of porcine epidemic diarrhea virus, China, 2011.
Emerg. Infect. Dis. 2012, 18, 1350–1353. [CrossRef] [PubMed]

5. Sun, R.Q.; Cai, R.J.; Chen, Y.Q.; Liang, P.S.; Chen, D.K.; Song, C.X. Outbreak of porcine epidemic diarrhea in suckling piglets,
China. Emerg. Infect. Dis. 2012, 18, 161–163. [CrossRef]

6. Jung, K.; Wang, Q.; Scheuer, K.A.; Lu, Z.; Zhang, Y.; Saif, L.J. Pathology of US porcine epidemic diarrhea virus strain PC21A in
gnotobiotic pigs. Emerg. Infect. Dis. 2014, 20, 662–665. [CrossRef]

7. Boniotti, M.B.; Papetti, A.; Lavazza, A.; Alborali, G.; Sozzi, E.; Chiapponi, C.; Faccini, S.; Bonilauri, P.; Cordioli, P.; Marthaler, D.
Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy. Emerg. Infect. Dis. 2016, 22,
83–87. [CrossRef] [PubMed]

8. Suzuki, T.; Murakami, S.; Takahashi, O.; Kodera, A.; Masuda, T.; Itoh, S.; Miyazaki, A.; Ohashi, S.; Tsutsui, T. Molecular
characterization of pig epidemic diarrhoea viruses isolated in Japan from 2013 to 2014. Infect. Genet. Evol. J. Mol. Epidemiol. Evol.
Genet. Infect. Dis. 2015, 36, 363–368. [CrossRef] [PubMed]

9. Lin, C.M.; Ghimire, S.; Hou, Y.; Boley, P.; Langel, S.N.; Vlasova, A.N.; Saif, L.J.; Wang, Q. Pathogenicity and immunogenicity of
attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Vet. Res. 2019, 15, 26. [CrossRef]
[PubMed]

10. Deng, F.; Ye, G.; Liu, Q.; Navid, M.T.; Zhong, X.; Li, Y.; Wan, C.; Xiao, S.; He, Q.; Fu, Z.F.; et al. Identification and Comparison
of Receptor Binding Characteristics of the Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains. Viruses 2016, 8, 55.
[CrossRef]

11. Li, W.; van Kuppeveld, F.J.M.; He, Q.; Rottier, P.J.M.; Bosch, B.J. Cellular entry of the porcine epidemic diarrhea virus. Virus Res.
2016, 226, 117–127. [CrossRef] [PubMed]

12. Chen, J.; Liu, X.; Shi, D.; Shi, H.; Zhang, X.; Li, C.; Chi, Y.; Feng, L. Detection and molecular diversity of spike gene of porcine
epidemic diarrhea virus in China. Viruses 2013, 5, 2601–2613. [CrossRef]

13. Guo, J.; Fang, L.; Ye, X.; Chen, J.; Xu, S.; Zhu, X.; Miao, Y.; Wang, D.; Xiao, S. Evolutionary and genotypic analyses of global
porcine epidemic diarrhea virus strains. Transbound. Emerg. Dis. 2019, 66, 111–118. [CrossRef] [PubMed]

14. Kaewborisuth, C.; He, Q.; Jongkaewwattana, A. The Accessory Protein ORF3 Contributes to Porcine Epidemic Diarrhea Virus
Replication by Direct Binding to the Spike Protein. Viruses 2018, 10, 399. [CrossRef] [PubMed]

15. Si, F.; Hu, X.; Wang, C.; Chen, B.; Wang, R.; Dong, S.; Yu, R.; Li, Z. Porcine Epidemic Diarrhea Virus (PEDV) ORF3 Enhances Viral
Proliferation by Inhibiting Apoptosis of Infected Cells. Viruses 2020, 12, 214. [CrossRef]

16. Wang, K.; Lu, W.; Chen, J.; Xie, S.; Shi, H.; Hsu, H.; Yu, W.; Xu, K.; Bian, C.; Fischer, W.B.; et al. PEDV ORF3 encodes an ion
channel protein and regulates virus production. FEBS Lett. 2012, 586, 384–391. [CrossRef]

17. Park, S.J.; Moon, H.J.; Luo, Y.; Kim, H.K.; Kim, E.M.; Yang, J.S.; Song, D.S.; Kang, B.K.; Lee, C.S.; Park, B.K. Cloning and further
sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses. Virus Genes 2008, 36, 95–104.
[CrossRef]

18. Chen, J.; Wang, C.; Shi, H.; Qiu, H.; Liu, S.; Chen, X.; Zhang, Z.; Feng, L. Molecular epidemiology of porcine epidemic diarrhea
virus in China. Arch. Virol. 2010, 155, 1471–1476. [CrossRef]

19. Su, M.; Li, C.; Qi, S.; Yang, D.; Jiang, N.; Yin, B.; Guo, D.; Kong, F.; Yuan, D.; Feng, L.; et al. A molecular epidemiological
investigation of PEDV in China: Characterization of co-infection and genetic diversity of S1-based genes. Transbound. Emerg. Dis.
2020, 67, 1129–1140. [CrossRef]

20. Van Diep, N.; Norimine, J.; Sueyoshi, M.; Lan, N.T.; Yamaguchi, R. Novel Porcine Epidemic Diarrhea Virus (PEDV) Variants with
Large Deletions in the Spike (S) Gene Coexist with PEDV Strains Possessing an Intact S Gene in Domestic Pigs in Japan: A New
Disease Situation. PLoS ONE 2017, 12, e0170126.

21. Van Diep, N.; Choijookhuu, N.; Fuke, N.; Myint, O.; Izzati, U.Z.; Suwanruengsri, M.; Hishikawa, Y.; Yamaguchi, R. New tropisms
of porcine epidemic diarrhoea virus (PEDV) in pigs naturally coinfected by variants bearing large deletions in the spike (S)
protein and PEDVs possessing an intact S protein. Transbound. Emerg. Dis. 2020, 67, 2589–2601. [CrossRef] [PubMed]

22. Su, Y.; Hou, Y.; Wang, Q. The enhanced replication of an S-intact PEDV during coinfection with an S1 NTD-del PEDV in piglets.
Vet. Microbiol. 2019, 228, 202–212. [CrossRef]

23. Su, Y.; Hou, Y.; Prarat, M.; Zhang, Y.; Wang, Q. New variants of porcine epidemic diarrhea virus with large deletions in the spike
protein, identified in the United States, 2016–2017. Arch. Virol. 2018, 163, 2485–2489. [CrossRef] [PubMed]

24. Huan, C.; Pan, H.; Fu, S.; Xu, W.; Gao, Q.; Wang, X.; Gao, S.; Chen, C.; Liu, X. Characterization and evolution of the coronavirus
porcine epidemic diarrhoea virus HLJBY isolated in China. Transbound. Emerg. Dis. 2020, 67, 65–79. [CrossRef] [PubMed]

25. Lu, Y.; Su, X.; Du, C.; Mo, L.; Ke, P.; Wang, R.; Zhong, L.; Yang, C.; Chen, Y.; Wei, Z.; et al. Genetic Diversity of Porcine Epidemic
Diarrhea Virus With a Naturally Occurring Truncated ORF3 Gene Found in Guangxi, China. Front. Vet. Sci. 2020, 7, 435.
[CrossRef] [PubMed]

26. Li, J.; Jin, Z.; Gao, Y.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. Development of the full-length cDNA clones of two porcine
epidemic diarrhea disease virus isolates with different virulence. PLoS ONE 2017, 12, e0173998. [CrossRef]

http://doi.org/10.1016/j.tvjl.2015.02.017
http://doi.org/10.3201/eid1803.120002
http://www.ncbi.nlm.nih.gov/pubmed/22840964
http://doi.org/10.3201/eid1801.111259
http://doi.org/10.3201/eid2004.131685
http://doi.org/10.3201/eid2201.150544
http://www.ncbi.nlm.nih.gov/pubmed/26689738
http://doi.org/10.1016/j.meegid.2015.10.017
http://www.ncbi.nlm.nih.gov/pubmed/26477934
http://doi.org/10.1186/s12917-018-1756-x
http://www.ncbi.nlm.nih.gov/pubmed/30634958
http://doi.org/10.3390/v8030055
http://doi.org/10.1016/j.virusres.2016.05.031
http://www.ncbi.nlm.nih.gov/pubmed/27317167
http://doi.org/10.3390/v5102601
http://doi.org/10.1111/tbed.12991
http://www.ncbi.nlm.nih.gov/pubmed/30102851
http://doi.org/10.3390/v10080399
http://www.ncbi.nlm.nih.gov/pubmed/30060558
http://doi.org/10.3390/v12020214
http://doi.org/10.1016/j.febslet.2012.01.005
http://doi.org/10.1007/s11262-007-0164-2
http://doi.org/10.1007/s00705-010-0720-2
http://doi.org/10.1111/tbed.13439
http://doi.org/10.1111/tbed.13607
http://www.ncbi.nlm.nih.gov/pubmed/32356614
http://doi.org/10.1016/j.vetmic.2018.11.025
http://doi.org/10.1007/s00705-018-3874-y
http://www.ncbi.nlm.nih.gov/pubmed/29789941
http://doi.org/10.1111/tbed.13321
http://www.ncbi.nlm.nih.gov/pubmed/31381232
http://doi.org/10.3389/fvets.2020.00435
http://www.ncbi.nlm.nih.gov/pubmed/32793651
http://doi.org/10.1371/journal.pone.0173998


Viruses 2021, 13, 1562 15 of 15

27. Oka, T.; Saif, L.J.; Marthaler, D.; Esseili, M.A.; Meulia, T.; Lin, C.M.; Vlasova, A.N.; Jung, K.; Zhang, Y.; Wang, Q. Cell culture
isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a
large deletion in the spike gene. Vet. Microbiol. 2014, 173, 258–269. [CrossRef]

28. Tian, Y.; Yang, X.; Li, H.; Ma, B.; Guan, R.; Yang, J.; Chen, D.; Han, X.; Zhou, L.; Song, Z.; et al. Molecular characterization of
porcine epidemic diarrhea virus associated with outbreaks in southwest China during 2014-2018. Transbound. Emerg. Dis. 2020.
[CrossRef]

29. Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016, 3, 237–261. [CrossRef] [PubMed]
30. Li, W.; Wicht, O.; van Kuppeveld, F.J.; He, Q.; Rottier, P.J.; Bosch, B.J. A Single Point Mutation Creating a Furin Cleavage Site in

the Spike Protein Renders Porcine Epidemic Diarrhea Coronavirus Trypsin Independent for Cell Entry and Fusion. J. Virol. 2015,
89, 8077–8081. [CrossRef] [PubMed]

31. Tan, Y.; Sun, L.; Wang, G.; Shi, Y.; Dong, W.; Fu, Y.; Fu, Z.; Chen, H.; Peng, G. The trypsin-enhanced infection of porcine epidemic
diarrhea virus is determined by the S2 subunit of the spike glycoprotein. J. Virol. 2021, 95, e02453-20. [CrossRef] [PubMed]

32. Kaewborisuth, C.; Yingchutrakul, Y.; Roytrakul, S.; Jongkaewwattana, A. Porcine Epidemic Diarrhea Virus (PEDV) ORF3
Interactome Reveals Inhibition of Virus Replication by Cellular VPS36 Protein. Viruses 2019, 11, 382. [CrossRef]

33. Song, D.S.; Yang, J.S.; Oh, J.S.; Han, J.H.; Park, B.K. Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from
Korean field strains by restriction fragment length polymorphism analysis of ORF 3. Vaccine 2003, 21, 1833–1842. [CrossRef]

34. Zou, D.; Xu, J.; Duan, X.; Xu, X.; Li, P.; Cheng, L.; Zheng, L.; Li, X.; Zhang, Y.; Wang, X.; et al. Porcine epidemic diarrhea virus
ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy. Vet. Microbiol. 2019, 235, 209–219. [CrossRef] [PubMed]

35. Zhang, Q.; Shi, K.; Yoo, D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of
CREB-binding protein by nsp1. Virology 2016, 489, 252–268. [CrossRef] [PubMed]

36. Wu, Z.; Cheng, L.; Xu, J.; Li, P.; Li, X.; Zou, D.; Zhang, Y.; Wang, X.; Wu, X.; Shen, Y.; et al. The accessory protein ORF3 of porcine
epidemic diarrhea virus inhibits cellular interleukin-6 and interleukin-8 productions by blocking the nuclear factor-kappaB p65
activation. Vet. Microbiol. 2020, 251, 108892. [CrossRef]

37. Beall, A.; Yount, B.; Lin, C.M.; Hou, Y.; Wang, Q.; Saif, L.; Baric, R. Characterization of a Pathogenic Full-Length cDNA Clone and
Transmission Model for Porcine Epidemic Diarrhea Virus Strain PC22A. mBio 2016, 7, e01451-15. [CrossRef]

38. Jung, K.; Saif, L.J.; Wang, Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and
prevention and control. Virus Res. 2020, 286, 198045. [CrossRef]

39. Chen, Q.; Gauger, P.C.; Stafne, M.R.; Thomas, J.T.; Madson, D.M.; Huang, H.; Zheng, Y.; Li, G.; Zhang, J. Pathogenesis comparison
between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal
piglets. J. Gen. Virol. 2016, 97, 1107–1121. [CrossRef]

40. Lin, C.M.; Annamalai, T.; Liu, X.; Gao, X.; Lu, Z.; El-Tholoth, M.; Hu, H.; Saif, L.J.; Wang, Q. Experimental infection of a US
spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US
PEDV infection. Vet. Res. 2015, 46, 134. [CrossRef] [PubMed]

41. Jung, K.; Miyazaki, A.; Saif, L.J. Immunohistochemical detection of the vomiting-inducing monoamine neurotransmitter serotonin
and enterochromaffin cells in the intestines of conventional or gnotobiotic (Gn) pigs infected with porcine epidemic diarrhea
virus (PEDV) and serum cytokine responses of Gn pigs to acute PEDV infection. Res. Vet. Sci. 2018, 119, 99–108. [PubMed]

42. Teeravechyan, S.; Frantz, P.N.; Wongthida, P.; Chailangkarn, T.; Jaru-Ampornpan, P.; Koonpaew, S.; Jongkaewwattana, A.
Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res. 2016, 226, 152–171. [CrossRef]

43. Chen, X.; Zeng, L.; Yang, J.; Yu, F.; Ge, J.; Guo, Q.; Gao, X.; Song, T. Sequence heterogeneity of the ORF3 gene of porcine epidemic
diarrhea viruses field samples in Fujian, China, 2010–2012. Viruses 2013, 5, 2375–2383. [CrossRef] [PubMed]

44. Chen, F.; Zhu, Y.; Wu, M.; Ku, X.; Ye, S.; Li, Z.; Guo, X.; He, Q. Comparative Genomic Analysis of Classical and Variant Virulent
Parental/Attenuated Strains of Porcine Epidemic Diarrhea Virus. Viruses 2015, 7, 5525–5538. [CrossRef] [PubMed]

45. Wongthida, P.; Liwnaree, B.; Wanasen, N.; Narkpuk, J.; Jongkaewwattana, A. The role of ORF3 accessory protein in replication of
cell-adapted porcine epidemic diarrhea virus (PEDV). Arch. Virol. 2017, 162, 2553–2563. [CrossRef] [PubMed]

http://doi.org/10.1016/j.vetmic.2014.08.012
http://doi.org/10.1111/tbed.13953
http://doi.org/10.1146/annurev-virology-110615-042301
http://www.ncbi.nlm.nih.gov/pubmed/27578435
http://doi.org/10.1128/JVI.00356-15
http://www.ncbi.nlm.nih.gov/pubmed/25972540
http://doi.org/10.1128/JVI.02453-20
http://www.ncbi.nlm.nih.gov/pubmed/33692210
http://doi.org/10.3390/v11040382
http://doi.org/10.1016/S0264-410X(03)00027-6
http://doi.org/10.1016/j.vetmic.2019.07.005
http://www.ncbi.nlm.nih.gov/pubmed/31383304
http://doi.org/10.1016/j.virol.2015.12.010
http://www.ncbi.nlm.nih.gov/pubmed/26773386
http://doi.org/10.1016/j.vetmic.2020.108892
http://doi.org/10.1128/mBio.01451-15
http://doi.org/10.1016/j.virusres.2020.198045
http://doi.org/10.1099/jgv.0.000419
http://doi.org/10.1186/s13567-015-0278-9
http://www.ncbi.nlm.nih.gov/pubmed/26589292
http://www.ncbi.nlm.nih.gov/pubmed/29909130
http://doi.org/10.1016/j.virusres.2016.05.003
http://doi.org/10.3390/v5102375
http://www.ncbi.nlm.nih.gov/pubmed/24084234
http://doi.org/10.3390/v7102891
http://www.ncbi.nlm.nih.gov/pubmed/26512689
http://doi.org/10.1007/s00705-017-3390-5
http://www.ncbi.nlm.nih.gov/pubmed/28474223

	Introduction 
	Materials and Methods 
	Sample Collection 
	PEDV Diagnosis and ORF3 Amplification 
	PEDV Isolation and Purification 
	Indirect Immunofluorescence Assay 
	Multi-Step Growth Curves of Viruses 
	Whole Genome Sequencing of PEDV 
	Multiple Alignments and Phylogenetic Analyses 
	Experimental Design of Infection 
	H&E and IHC Staining 
	Statistical Analysis 

	Results 
	Virus Isolation and Biological Characteristics of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c Strains In Vitro 
	Full-Length Genome Sequence Analysis and Phylogenetic Characterization of PEDV 17GXCZ-1ORF3d and 17GXCZ-1ORF3c Strains 
	Pathogenicity of 17GXCZ-1ORF3d and 17GXCZ-1ORF3c Strains in Piglets 

	Discussion 
	Conclusions 
	References

