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Marek Bodnar

Received: 30 November 2021

Accepted: 12 January 2022

Published: 15 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Bayesian Inference of State-Level COVID-19 Basic
Reproduction Numbers across the United States
Abhishek Mallela 1 , Jacob Neumann 2,†, Ely F. Miller 2, Ye Chen 3, Richard G. Posner 2, Yen Ting Lin 4

and William S. Hlavacek 5,*

1 Department of Mathematics, University of California, Davis, CA 95616, USA; amallela@ucdavis.edu
2 Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA;

jn382@cornell.edu (J.N.); efm46@nau.edu (E.F.M.); richard.posner@nau.edu (R.G.P.)
3 Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA;

ye.chen@nau.edu
4 Los Alamos National Laboratory, Information Sciences Group, Computer, Computational and Statistical

Sciences Division, Los Alamos, NM 87545, USA; yentingl@lanl.gov
5 Los Alamos National Laboratory, Theoretical Biology and Biophysics Group, Theoretical Division,

Los Alamos, NM 87545, USA
* Correspondence: wish@lanl.gov
† Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

Abstract: Although many persons in the United States have acquired immunity to COVID-19, either
through vaccination or infection with SARS-CoV-2, COVID-19 will pose an ongoing threat to non-
immune persons so long as disease transmission continues. We can estimate when sustained disease
transmission will end in a population by calculating the population-specific basic reproduction
numberR0, the expected number of secondary cases generated by an infected person in the absence
of any interventions. The value of R0 relates to a herd immunity threshold (HIT), which is given
by 1− 1/R0. When the immune fraction of a population exceeds this threshold, sustained disease
transmission becomes exponentially unlikely (barring mutations allowing SARS-CoV-2 to escape
immunity). Here, we report state-levelR0 estimates obtained using Bayesian inference. Maximum
a posteriori estimates range from 7.1 for New Jersey to 2.3 for Wyoming, indicating that disease
transmission varies considerably across states and that reaching herd immunity will be more difficult
in some states than others. R0 estimates were obtained from compartmental models via the next-
generation matrix approach after each model was parameterized using regional daily confirmed
case reports of COVID-19 from 21 January 2020 to 21 June 2020. OurR0 estimates characterize the
infectiousness of ancestral strains, but they can be used to determine HITs for a distinct, currently
dominant circulating strain, such as SARS-CoV-2 variant Delta (lineage B.1.617.2), if the relative
infectiousness of the strain can be ascertained. On the basis of Delta-adjusted HITs, vaccination
data, and seroprevalence survey data, we found that no state had achieved herd immunity as of 20
September 2021.

Keywords: mathematical model; coronavirus disease 2019 (COVID-19); basic reproduction number;
herd immunity; Bayesian inference

1. Introduction

Vaccines to protect against coronavirus disease 2019 (COVID-19) became available
in the United States (US) in December 2020 [1]. In the US, as of 20 September 2021,
181,728,072 persons have been fully vaccinated (55% of the total population), an additional
30,307,256 persons have been partially vaccinated, and an uncertain number of persons
have acquired immunity through infection [2]. The entire US population does not need
to be vaccinated to end sustained COVID-19 transmission because of the phenomenon of
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herd immunity [3], which is reached when a critical fraction of the population becomes
immune. This fraction is called the herd immunity threshold (HIT).

The HIT for a population relates to the basic reproduction number,R0, as follows [3]:
HIT = 1− 1/R0. R0 is defined as the expected number of secondary infections arising
from a primary case in the absence of any immunity or intervention. As is well known,R0
and HIT are population-specific [4,5], which means that the effort required to control the
local COVID-19 epidemic may vary from community to community. However, knowledge
of the HIT for a given region is insufficient to determine when disease transmission within
the region will end. One also needs to know the fraction of the population that has
immunity. Estimating the immune fraction is difficult, because we cannot simply count
the number of persons who have been vaccinated or the number of persons detected to be
infected. Immunity is acquired not only through vaccination but also through infection [6],
and case detection is imperfect. Insight into the immune fraction can be obtained from
seroprevalence surveys, which use blood tests to identify persons who have antibodies
against the SARS-CoV-2 virus (acquired through vaccination or infection).

Various estimates of R0 for transmission of COVID-19 have been provided in the
literature [7]. The estimates that have received the most attention are those given for
China and Italy [8–12], which were among the first regions to be impacted by COVID-19.
However, the relevance of these estimates for populations within the US (or elsewhere
outside of China and Italy) is unclear. Several studies have estimatedR0 for the US at the
national level [13–15], the state level [16–18], and the county level [19,20]. The usefulness
of a national estimate is unclear given the heterogeneity of the US, and none of the county-
level estimates are comprehensive. Some state-level estimates are also incomplete [16,18].
Because responses to COVID-19 within the US have been and continue to be driven mainly
by governors of US states [21], we undertook a study to generate comprehensive state-level
R0 estimates through Bayesian inference. With this approach, we were able to quantify
uncertainty in each estimate through a parameter posterior distribution.

In earlier work, we developed a compartmental model for COVID-19 transmission
dynamics that reproduces surveillance data and generates accurate forecasts for the 15 most
populous metropolitan statistical areas (MSAs) in the US [22]. Here, for each of the 50 states,
we found a state-specific parameter posterior conditioned on this model from state-level
COVID-19 surveillance data available from 21 January to 21 June 2020 [23]. From these
parameter posteriors, we then obtained region-specific R0 and HIT posteriors and max-
imum a posteriori (MAP) estimates. The MAP estimates for HITs together with other
data—vaccination tracking data [24], serological survey data [25,26], and quantitative es-
timates of the increased transmissibility of the recently introduced SARS-CoV-2 variant
Delta (lineage B.1.617.2) [27,28]—provide insight into the progress of each state toward
herd immunity.

2. Materials and Methods
2.1. Model

To obtain regionalR0 and HIT estimates, we used a compartmental model developed
previously for the purpose of forecasting COVID-19 disease incidence [22]. This model,
which is capable of making accurate forecasts [22], is a COVID-19-specific elaboration of
the classic SEIR model [29] that accounts for effects of nonpharmaceutical interventions,
including social distancing. Consideration of nonpharmaceutical interventions is important
because the widespread adoption of such interventions began in the US around 13 March
2020 [30], a time roughly coincident with the start of sustained community transmission of
COVID-19 in many parts of the US (see below). We found region-specific parameterizations
that allow the model to reproduce surveillance data (daily reports of new confirmed
COVID-19 cases) available for each region of interest over a defined period (e.g., 21 January
to 21 June 2020). The model is able to account for a variable number of social-distancing
periods. We considered versions of the model accounting for one, two, and three social-
distancing periods. The number of social-distancing periods deemed best (i.e., to provide
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the most parsimonious explanation of the data) for a given time period was determined
using the model selection procedure described by Lin et al. [22]. As in the study of Lin
et al. [22], the model has 14 parameters with universal fixed values (applicable to all
regions). The model also has 3(n + 1) + 3 parameters with region-specific adjustable
values determined through Bayesian inference, where n + 1 denotes the number of social-
distancing periods. In this study, for a given region, we censored case-reporting data
whenever the cumulative reported case count was less than 10 cases. We also specified the
onset time of the first social-distancing period, σ, as the earliest day on which the cumulative
reported case count was 200 cases or more. A full description of model parameters is given
in Lin et al. [22].

2.2. Simulations

Each region-specific model consists of a coupled system of ordinary differential equa-
tions (ODEs), which are given by Lin et al. [22]. The ODEs were numerically integrated us-
ing the SciPy [31] interface to LSODA [32] and the BioNetGen [33] interface to CVODE [34].
Python code was converted to machine code using Numba [35]. The initial conditions were
determined as in Lin et al. [22].

2.3. Calculation of Epidemic ParametersR0 and λ

To find the basic reproduction numberR0, we considered a reduced form of the model
of Lin et al. [22], which is given in Equations (1)–(8) of the Supplementary Materials Text S1.
The reduced model omits consideration of interventions, including social distancing,
quarantine, and self-isolation, which are all considered in the full model. From the re-
duced model, we derived an expression for R0 by applying the next-generation matrix
method [36]. In this procedure, R0 is determined as the spectral radius of the so-called
next-generation matrix. Denoting this matrix as N , the (i, j) entry of N is the expected
number of new infections in the ith compartment produced by persons initially in the jth
compartment. The expression forR0 given in the Results section below was obtained using
Mathematica [37]. The matrix N was obtained using Mathematica’s LinearSolve function,
andR0 was computed as the dominant eigenvalue of N .

To characterize the initial rate of exponential growth for a local epidemic within a
given region, we computed the epidemic growth rate λ as the dominant eigenvalue of
the Jacobian of the reduced model linearized at the disease-free equilibrium [38]. The
derivation of λ is provided in the SI.

2.4. Bayesian Inference

To infer region-specific values of adjustable model parameters (and R0 and HIT
estimates), we followed the Bayesian inference approach of Lin et al. [22]. In inferences,
we used all region-relevant confirmed COVID-19 case-count data available in the GitHub
repository maintained by The New York Times newspaper [23] for the period starting on
21 January 2020 and ending on 21 May 2020, 21 June 2020, or 21 July 2020 (inclusive
dates). The first case in the US was reported on 21 January 2020 [39]. We focused on
early surveillance data (vs. all available surveillance data) so as to characterize COVID-19
transmission within populations that are nearly wholly susceptible. Markov Chain Monte
Carlo (MCMC) sampling was performed using the Python code of Lin et al. [22] and
a new release of PyBioNetFit [40], version 1.1.9, which includes an implementation of
the adaptive MCMC method used in the study of Lin et al. [22]. Inference job setup
files for PyBioNetFit, including data files, are provided for each of the 50 states online
(https://github.com/lanl/PyBNF/tree/master/examples/Mallela2021States (accessed on
19 September 2021). Results from both methods were found to be consistent (Supplementary
Materials Figure S1). To ensure that the MCMC sampling procedures converged, we
visually inspected trace plots for log-likelihood (Supplementary Materials Figure S2),
parameters (Supplementary Materials Figure S3) and pairs plots (Supplementary Materials
Figure S4). We also performed simulations using maximum likelihood estimates (MLEs)

https://github.com/lanl/PyBNF/tree/master/examples/Mallela2021States
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for parameter values to assess the agreement of the simulations with the training data
(Supplementary Materials Figure S5).

The maximum a posteriori (MAP) estimate of a parameter is the value of the parameter
corresponding to the peak of its marginal posterior distribution, where probability density is
highest. Because we assumed a proper uniform prior distribution for each of the adjustable
parameters, as in the study of Lin et al. [22], the MAP estimates are MLEs.

3. Results
3.1. Bayesian Uncertainty Quantification

Following the Bayesian inference approach of Lin et al. [22], we quantified uncertainty
in the predicted trajectories of confirmed case counts for all 50 states, using data from 21
January to 21 June 2020. As illustrated in Figure 1 for the states of New Jersey, Wyoming,
Florida, and Alaska, we find that each region-specific model parameterized on the basis of
our MCMC sampling procedure reproduces the corresponding surveillance data over the
period of interest. Results for the remaining states are shown in Supplementary Materials
Figure S5. At the end of each MCMC sampling procedure, we obtained a marginal posterior
distribution for β (the rate constant in the model for disease transmission) which provides a
probabilistic characterization of region-specific SARS-CoV-2 transmissibility. If the marginal
posterior was narrow, we have high confidence in the MAP estimate of β; if it is wide,
we had less confidence in its value. Each state-specific marginal posterior yielded a MAP
estimate for β.

We can propagate the uncertainty in β into uncertainty inR0 and HIT estimates, using
the formula for R0 given below and HIT = 1− 1/R0. In Figure 2, we show marginal
posterior distributions forR0 and HIT for the states of New Jersey, Wyoming, Florida, and
Alaska. We provide MAP estimates of the model parameters for all states in Supplementary
Materials Table S1. The model parameters were found to be identifiable in practice (we had
no proof of identifiability). MAP estimates forR0 and HIT for all 50 states are provided in
Supplementary Materials Table S2. These tables also provide 95% credible intervals. These
estimates characterize the infectiousness of SARS-CoV-2 ancestral strains in each region
of interest.

3.2. Region-Specific Basic Reproduction Numbers and Herd Immunity Thresholds

To calculate the herd immunity threshold (HIT) for a specific region, we need to know
the corresponding region-specific value of the basic reproduction number R0, which is
given by the following formula (obtained as described in Materials and Methods and
Supplementary Materials Text S1):

R0 = β×
(

1− fA
cI

+
fAρA
cA

+
(m− 1)ρE

kL

)
(1)

where β characterizes the rate of transmission attributable to contacts between persons
who are not protected by social distancing, fA denotes the fraction of infected persons
who never develop symptoms (i.e., the fraction of asymptomatic cases), cA characterizes
the rate at which asymptomatic persons recover during the immune clearance phase of
infection, cI characterizes the rate at which symptomatic persons with mild disease recover
or progress to severe disease, ρE is a constant characterizing the relative infectiousness of
presymptomatic persons compared to symptomatic persons (with the same behaviors), ρA
is a constant characterizing the relative infectiousness of asymptomatic persons compared
to symptomatic persons (with the same behaviors), m denotes the number of stages in
the incubation period, and kL characterizes disease progression from one stage of the
incubation period to the next and ultimately to an immune clearance phase. The value
ofR0 depends on one inferred region-specific parameter, β, and seven fixed parameters,
which have values taken to be applicable for all regions (i.e., fA, cA, cI , ρE, ρA, kL, and m).
Estimates of these fixed parameters were taken from Lin et al. [22].
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Figure 1. Bayesian predictive inferences for daily confirmed case counts of COVID-19 in (A) New
Jersey (B) Wyoming (C) Florida (D) Alaska, from 21 January to 21 June 2020 (inclusive dates). The
compartmental model [22] accounts for an initial social distancing period followed by n additional
periods. We considered n = 0, 1 and 2 and selected the best n using the model selection procedure
of Lin et al. [22]. Plus signs indicate daily case reports. The shaded region indicates the prediction
uncertainty and inferred noise in the detection of new cases. The color-coded bands within the shaded
region indicate the median and different credible intervals (e.g., the dark purple band corresponds
to the median, the band with lightest shade of yellow corresponds to the 95% credible interval,
and gradations of color between these two extremes correspond to different credible intervals, as
indicated in the legend). In each panel, the vertical broken line indicates the onset time of the first
social-distancing period. For states with n = 1 (Alaska and Florida), there is an additional broken
line, which indicates the onset time of the second social-distancing period. The model was used to
make forecasts of new case detection for 14 days after 21 June 2020. The last prediction date was
5 July 2020.
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Figure 2. Marginal posterior distributions of R0 (left panels) and HIT (right panels) for ancestral
strains of SARS-CoV-2 in four US states: (A,B) New Jersey, (C,D) Wyoming, (E,F) Florida, and (G,H)
Alaska. Inferences are based on daily reports of new cases from 21 January to 21 June 2020. EachR0

posterior was obtained from the corresponding marginal posterior for β and Equation (1). Each HIT
posterior was obtained from the relation HIT = 1− 1/R0 and the corresponding marginal posterior
forR0. The 95% credible intervals forR0 are as follows: (6.44, 7.67) for New Jersey, (2.26, 2.47) for
Wyoming, (5.20, 6.41) for Florida, and (2.26, 2.45) for Alaska. The 95% credible intervals for the HIT
estimates are as follows: (0.84, 0.87) for New Jersey, (0.56, 0.59) for Wyoming, (0.81, 0.84) for Florida,
and (0.56, 0.59) for Alaska. For each panel, the endpoints of the corresponding credible interval are
indicated with vertical broken lines.

The SARS-CoV-2 variant Delta (lineage B.1.617.2) has been estimated to be 1.64 times
more infectious than variant Alpha (lineage B.1.1.7) [28], which has been estimated to be
1.50 times more infectious than ancestral strains [27]. Assuming that Delta is the dominant
circulating SARS-CoV-2 strain throughout the US (as of 20 September 2021) and that
β for Delta is 1.64 × 1.50 = 2.46 times greater than β for ancestral strains (with other
parameters in Equation (1) remaining the same), the MAP estimate of the Delta-adjusted
R0 ranges from 5.6 for Wyoming to 18 for New Jersey (from the multiplier given above
and Supplementary Materials Table S2). The population-weighted Delta-adjustedR0 for
the US is 12. These estimates indicate that the herd immunity threshold (HIT) for the Delta
variant of SARS-CoV-2 ranges from 82% to 94%.

3.3. Estimates of Initial Region-Specific Epidemic Growth Rates

HIT estimates were directly determined by estimates of the basic reproduction number,
which were related to the initial growth rate of the epidemic in a given region. Here, our
R0 estimates were conditioned on a compartmental model that has been parameterized
to reproduce case-reporting data available for each region over a five-month period (21
January to 21 June 2020). We can use parameter estimates obtained for each region to calcu-
late the initial epidemic growth rate λ, which is directly comparable to early surveillance
data (Figure 3 and Supplementary Materials Figure S6). We provide MAP estimates and
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95% credible intervals for λ, R0, and HIT for selected states in Table 1. MAP estimates
and 95% credible intervals for λ,R0, and HIT for all states are provided in Supplementary
Materials Table S2. These estimates are based on the state-specific marginal posteriors for
the parameter β of our compartmental model. State-specific MAP estimates and 95% credi-
ble intervals for β (and other adjustable model parameters) are given in Supplementary
Materials Table S1. As can be seen (e.g., in Figure 3), our λ estimates are consistent with
early case reporting data during the exponential takeoff phase of disease transmission.
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Figure 3. Consistency of model-derived λ estimates with empirical growth rates during initial
exponential increase in disease incidence in (A) New Jersey, (B) Wyoming, (C) Florida, and (D)
Alaska. In each panel, the initial slope of the solid curve corresponds to λ (calculated as described in
Materials and Methods), the crosses indicate empirical cumulative case counts, and the broken line is
the model prediction based on MAP estimates for adjustable parameters. The solid curve is derived
from the reduced model (Equations (1)–(8) in the Supplementary Materials Text S1). This curve shows
cumulative case counts had there not been any interventions to limit disease transmission. As can be
seen, the initial slopes of the solid and broken curves are comparable. We selected n = 0 for New
Jersey and Wyoming and n = 1 for Florida and Alaska. Among 35 states with n = 0, New Jersey had
the largest inferred λ value (0.45) and Wyoming had the smallest inferred λ value (0.13). Among
15 states with n = 1, Florida had the largest inferred value of λ (0.39) and Alaska had the smallest
inferred value of λ (0.13). It should be noted that, in contrast with Figure 1, the y-axis here indicates
cumulative (vs. daily) number of cases on a logarithmic (vs. linear) scale.
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Table 1. Maximum a posteriori (MAP) estimates and 95% credible intervals for epidemic parameters
(β, λ,R0, HIT, and Delta-adjusted HIT) for the states of New Jersey, Wyoming, Florida, and Alaska.

State β (d−1) λ (d−1) * R0 ** HIT *** Delta-Adjusted
HIT ****

New Jersey 0.65 (0.59–0.71) 0.45 (0.41–0.48) 7.1 (6.4–7.7) 0.86 (0.84–0.87) 0.94 (0.94–0.95)
Wyoming 0.21 (0.21–0.23) 0.13 (0.13–0.15) 2.3 (2.3–2.5) 0.56 (0.56–0.59) 0.82 (0.82–0.84)

Florida 0.55 (0.48–0.59) 0.39 (0.34–0.41) 6.0 (5.2–6.4) 0.83 (0.81–0.84) 0.93 (0.92–0.94)
Alaska 0.21 (0.21–0.23) 0.13 (0.13–0.14) 2.3 (2.3–2.5) 0.56 (0.56–0.59) 0.82 (0.82–0.84)

In this analysis, we used surveillance data (daily reports of new cases) available from 21 January 2020 to 21 June
2020 (inclusive dates) to estimate parameter values through Bayesian inference. * Computed as described in SI.
** Calculated using Equation (1). *** Obtained through the relation HIT = 1− 1/R0. **** Based on Delta being
2.46 times more infectious than ancestral strains.

3.4. Sensitivity of β to the Surveillance Data Used in Inference

For each state, we used surveillance data available from 21 January to 21 June 2020 to
infer the MAP estimate of β (and the values of the other region-specific adjustable model
parameters). This time window encompasses the onset time σ for all 50 states (Figure 4),
which ranged from 10 March to 7 April 2020. Recall that σ is a region-specific parameter
of the model of Lin et al. [22], which we take as the first time at which the cumulative
confirmed case count for a given state was 200 or more. The value of σ provides a rough
estimate of the start of sustained community transmission. To check the robustness of the
MAP estimates for β to variations in training data, we performed a sensitivity analysis
wherein we inferred β using data collected over three distinct periods in 2020, namely:
(1) 21 January to 21 May, (2) 21 January to 21 June, and (3) 21 January to 21 July 2020.
By visualizing our estimates with a rank order plot (Figure 5) and conducting pairwise
two-sample Kolmogorov–Smirnov tests [41], we found that the 4-, 5-, and 6-month training
datasets yielded estimates for β that were not statistically significantly different from each
other. The MAP estimates for β obtained using the 4-, 5-, and 6-month datasets are listed in
Supplementary Materials Table S3. We assessed sensitivity by computing the relative error
between the β estimates obtained from the 5-month dataset and the average β estimate
over all datasets considered. We found that none of the state-level MAP estimates for β
showed sensitivity (i.e., a relative error exceeding 100% in magnitude) to variations in
the training data (Supplementary Materials Table S4). The largest relative error was 12%
(for Kansas).

3.5. Global Asymptotic Stability of the Disease-Free Equilibrium

The model of Lin et al. [22] has a globally asymptotically stable disease-free equilibrium
(DFE) ifR0 < 1, which can be deduced by following the approach of Shuai and van den
Driessche [42]. As a consequence, the model predicts that the epidemic will be extinguished
as the system dynamics are attracted to the DFE.

To confirm that the model behaves as expected around the HIT, we conducted a pertur-
bation analysis for the states of New York (Figure 6A,B) and Washington (Figure 6C,D). We
simulated disease dynamics starting from an arbitrarily chosen initial condition near the
HIT number of persons, Sh, given by the following formula: Sh = HIT× S0, where S0 de-
notes the population size of the region considered. We defined the size of our perturbation
as ε = 0.2× Sh for Figure 6A,C and as ε = −0.2× Sh for Figure 6B,D. The initial condition
was S0 − Sh − 1 + ε susceptible persons, 1 infected person, and Sh − ε recovered persons.
As expected, for Sh < HIT× S0 (Figure 6A,C), the number of infectious persons grows over
time, whereas for Sh > HIT× S0 (Figure 6B,D), the number of infectious persons decays
over time.
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Figure 4. Onset times of COVID-19 disease transmission for ancestral strains of SARS-CoV-2 in all 50 US
states. The onset time σ is defined as the first day on which the cumulative reported case count was
200 cases or more. Dates corresponding to σ values on the vertical axis are indicated above each bar.
States are indicated using two-letter US postal service state abbreviations (https://about.usps.com/who-
we-are/postal-history/state-abbreviations.pdf (accessed on 19 September 2021)).

In the two scenarios considered above (i.e., introduction of an infected person into
a disease-free population with or without herd immunity), the rate at which disease
burden changes is sensitive to different factors (Figure 7). As illustrated in Figure 7A, the
rate at which disease burden decreases in a population with herd immunity (as in the
scenario considered in Figure 6B,D) depends sensitively on the duration of the incubation
period. As illustrated in Figure 7B, the rate at which disease burden increases (as in the
scenario considered in Figure 6A,C) depends sensitively on the size of the subpopulation
of susceptible persons.

3.6. Progress toward Herd Immunity

From our state-specific HIT estimates and other information (discussed below), we
were able to calculate percent progress toward herd immunity for each state (Figure 8,
Supplementary Materials Table S5). We estimated the percent progress of each state’s
population toward herd immunity, P ∈ [0%, 100%], using the following equation (the
derivation of which is given in the Supplementary Materials Text S1):

P ≡ (εv(1− fr) fv + εr fr)

(
1− 1

YDeltaR0

)−1
× 100% (2)

where R0 is the population-specific basic reproduction number that we estimated for
ancestral strains (Supplementary Materials Table S2), YDelta is a multiplier that accounts for
the increased transmissibility of SARS-CoV-2 variant Delta, fr denotes the fraction of the
population with immunity acquired through infection, fv is the fraction of the population

https://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf
https://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf
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that has been vaccinated [24], εr is the fraction of infected persons who are protected against
productive infection (i.e., an infection that can be transmitted to others), and εv is the fraction
of vaccinated persons who are protected against productive infection. Recall that we use
YDelta = 2.46 [27,28]. We estimate that εr = 1.0 [43] and εv = 0.66 [44]. We obtain four
different estimates for fr as follows. In the first case, we obtain fr as the cumulative number
of detected cases within a population divided by the population size. In the second case,
we adjust our previous estimate for fr by a multiplier of 5.8 [45]. In other words, we assume
that the true disease burden is 5.8 times higher than the detected number of cases. In the
third case, we obtain fr as the fraction of the population that has been infected according
to the latest serological survey results reported online at Ref. [25]. In the fourth case, we
assume fr = fr,0/(1− fA), where fr,0 denotes the estimate of seroprevalence in a given
region and fA denotes the fraction of all cases that are asymptomatic. With this approach,
we are assuming that asymptomatic cases are not detected in serological testing [46]. We
adopt the estimate of Lin et al. [22] that fA = 0.44.
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Figure 5. MAP estimates of the basic reproduction numberR0 for ancestral strains of SARS-CoV-2
in all 50 US states. The different symbols refer to different training datasets used to estimate R0.
Open triangles correspond to surveillance data collected from 21 January to 21 May 2020, filled
circles correspond to surveillance data collected from 21 January to 21 June 2020, and open squares
correspond to surveillance data collected from 21 January to 21 July 2020. Estimates ofR0 are sorted
by state from largest to smallest values according to theR0 estimates derived from the surveillance
data collected for 21 January to 21 June 2020. The whiskers associated with each filled circle indicate
the 95% credible interval (inferred from the 5-month dataset). States are indicated using two-letter
US postal service state abbreviations (https://about.usps.com/who-we-are/postal-history/state-
abbreviations.pdf (accessed on 19 September 2021)).
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Figure 6. Perturbation analysis using the full model of Lin et al. [22] for the states of New York (panels
(A,B)) and Washington (panels (C,D)). In each panel, the black solid line represents the number of
infectious persons (initially 1), the black broken line represents the threshold number of persons
required for herd immunity (i.e., Sh), and the gray broken line represents the number of recovered
persons (initially Sh − ε, obtained as described in Results). Simulations are based on MAP estimates
for model parameters obtained using surveillance data collected from 21 January to 21 June 2020.

As can be seen in Figure 8C, which is based on case reporting data, 18 of the 50 states
have reached herd immunity. However, in Figure 8D, which is based on serological survey
data, none of the states have reached herd immunity. South Dakota is closest to herd
immunity, with the 84% of immune persons required for herd immunity. Idaho is furthest
from herd immunity, with 45% of the immune persons required for herd immunity. The
mean (median) progress toward herd immunity, across all states, is 63% (63%).
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Figure 7. Dependence of disease burden on key model parameters for the states of New York and
Washington. In each panel, the solid line corresponds to New York and the broken line corresponds
to Washington. In Panel (A), rate of decline in infections is plotted as a function of the mean duration
of the incubation period (in days), which is obtained as m/kL, where m is the number of stages in the
incubation period and kL characterizes disease progression from one stage to the next. We take m = 5
as in the study of Lin et al. [22]. In Panel (B), the rate of growth in infections is plotted as a function of
the relative distance from the herd immunity threshold number of persons, which is defined as ε/Sh.
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Equation (2). Black bars (Panel (A)) correspond to the first scenario (i.e., fr estimated as the number
of detected cases divided by population size), gray bars (Panels (A,C)) correspond to the second
scenario (i.e., fr estimated as the number of detected cases within a population divided by the
population size, adjusted for lack of detection of undiagnosed SARS-CoV-2 infections), black bars
(Panel (B)) correspond to the third scenario (i.e., fr given by seroprevalence survey results), and
gray bars (Panels (B,D)) correspond to the fourth scenario (i.e., fr given by seroprevalence survey
results adjusted for lack of detection of asymptomatic cases). Estimates for P are sorted by state
from largest to smallest values according to the second scenario (Panels (A,C)) and the fourth
scenario (Panels (B,D)). North Dakota was omitted from Panels (B,D) because a recent estimate of
seroprevalence was not available at Ref. [25]. States are indicated using two-letter US postal service
state abbreviations (https://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf
(accessed on 19 September 2021)).

In Figure 9, we show the fraction of each state’s population that has been vaccinated
and the fraction that is eligible for vaccination based on data available as of 20 September
2021. Vaccination data was taken from Ref. [24]. We assumed that only persons 18 years
or older were eligible for vaccination. Age data were taken from Ref. [47]. In Figure 9, we
also show Delta-adjusted HITs from Supplementary Materials Table S2. As can be seen,
vaccine coverage is below that required for herd immunity (in the face of Delta) in all cases,
even if we take vaccines to provide sterilizing immunity in 100% of cases. For example,
vaccine coverage for New Jersey (Wyoming) is 63% (41%) (Figure 9) and the corresponding
Delta-adjusted HIT is 94% (82%) (Figure 9, Table 1, Supplementary Materials Table S2). It
seems that herd immunity cannot be reached through vaccination alone.

Viruses 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

the fourth case, we assume 𝑓𝑟 = 𝑓𝑟,0/(1 − 𝑓𝐴), where 𝑓𝑟,0 denotes the estimate of sero-

prevalence in a given region and 𝑓𝐴 denotes the fraction of all cases that are asympto-

matic. With this approach, we are assuming that asymptomatic cases are not detected in 

serological testing [46]. We adopt the estimate of Lin et al. [22] that 𝑓𝐴 = 0.44.  

As can be seen in Figure 8C, which is based on case reporting data, 18 of the 50 states 

have reached herd immunity. However, in Figure 8D, which is based on serological sur-

vey data, none of the states have reached herd immunity. South Dakota is closest to herd 

immunity, with the 84% of immune persons required for herd immunity. Idaho is furthest 

from herd immunity, with 45% of the immune persons required for herd immunity. The 

mean (median) progress toward herd immunity, across all states, is 63% (63%). 

In Figure 9, we show the fraction of each state’s population that has been vaccinated 

and the fraction that is eligible for vaccination based on data available as of 20 September 

2021. Vaccination data was taken from Ref. [24]. We assumed that only persons 18 years 

or older were eligible for vaccination. Age data were taken from Ref. [47]. In Figure 9, we 

also show Delta-adjusted HITs from Supplementary Materials Table S2. As can be seen, 

vaccine coverage is below that required for herd immunity (in the face of Delta) in all 

cases, even if we take vaccines to provide sterilizing immunity in 100% of cases. For ex-

ample, vaccine coverage for New Jersey (Wyoming) is 63% (41%) (Figure 9) and the cor-

responding Delta-adjusted HIT is 94% (82%) (Figure 9, Table 1, Supplementary Materials 

Table S2). It seems that herd immunity cannot be reached through vaccination alone. 

 

Figure 9. Vaccine eligibility and vaccine coverage in each of the 50 US states on 20 September 2021. 

Purple bars correspond to vaccine coverage, i.e., the population fraction that is fully vaccinated [24]. 

Teal bars correspond to vaccine eligibility, i.e., the population fraction that is eligible for vaccination. 

We estimated the eligible population fraction as the adult fraction of the population [47], i.e., the 

population fraction 18 years or older. Yellow bars correspond to Delta-adjusted HIT estimates from 

Supplementary Materials Table S2. States are indicated using two-letter US postal service state ab-

breviations (https://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf 

(accessed on 19 September 2021)).  

Figure 9. Vaccine eligibility and vaccine coverage in each of the 50 US states on 20 September 2021.
Purple bars correspond to vaccine coverage, i.e., the population fraction that is fully vaccinated [24].
Teal bars correspond to vaccine eligibility, i.e., the population fraction that is eligible for vaccination.
We estimated the eligible population fraction as the adult fraction of the population [47], i.e., the
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Viruses 2022, 14, 157 14 of 18

population fraction 18 years or older. Yellow bars correspond to Delta-adjusted HIT estimates
from Supplementary Materials Table S2. States are indicated using two-letter US postal service
state abbreviations (https://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf
(accessed on 19 September 2021)).

4. Discussion

One of our most important findings is a quantification of how COVID-19 transmissi-
bility, in terms of the basic reproduction number R0, varies across the 50 US states. The
MAP value ofR0 for ancestral strains of SARS-CoV-2 ranges from 2.3 for Wyoming to 7.1
for New Jersey. The population-weighted mean for the US is 4.7. These estimates indicate
that the herd immunity threshold (HIT) for the Delta variant of SARS-CoV-2 ranges from
82% to 94%, assuming that Delta is 2.46 times more transmissible than ancestral strains.
The uncertainty in eachR0 estimate was quantified: 95% credible intervals are indicated in
Figure 5. The 95% credible intervals for ancestral HIT estimates are given in Supplementary
Materials Table S2. Because we can estimate the relative effort required to reach herd
immunity across the US (in terms of HIT), resources for vaccination campaigns can be
targeted to those areas where it is more difficult to achieve herd immunity.

Our R0 and HIT estimates differ from estimates given in previous studies. For
example, various researchers derived point estimates for R0 from data using tools from
time-series analysis, without assuming an underlying mechanistic model [13,15]. These
tools depend on slope estimation and thus can be expected to depend sensitively on noise
and errors in early case-reporting data. Ives and Bozzuto [16] provided state-level estimates
for R0 (in 36 states), and Fellows et al. [17] used a Bayesian framework to obtain state-
level estimates for R0 (in all 50 states). For the 30 states that are considered in Ives and
Bozzuto [16], Fellows et al. [17], Milicevic et al. [18], and the present study, our estimates for
R0 were most similar to those of Milicevic et al. [18] (Supplementary Materials Table S6).
Milicevic et al. [18] provided state-levelR0 point estimates (for 45 states) that are statistically
consistent with our MAP estimates ofR0 for ancestral strains of SARS-CoV-2. The main
points of difference between these earlier studies and the present study are as follows. Our
R0 and HIT estimates were obtained from a model consistent with new case-reporting data,
as illustrated in Figs 1 and 3. We were able to provide estimates for all 50 states (Figure 5,
Supplementary Materials Table S2), and we were able to obtain a Bayesian quantification
of the uncertainty in each estimate (Figure 5, Supplementary Materials Table S2).

In the face of Delta, the estimates of Figure 8C (based on case reporting data) suggest
that a majority of states have yet to achieve herd immunity, and the estimates of Figure 8D
(based on serological survey results) suggest that no state in the US has achieved herd
immunity as of 20 September 2021. In either case, persons in the US lacking immunity
are still at risk [48]. The perspective provided by Figure 8D is consistent with the study
of Moghadas et al. [49] indicating that only 62% of persons in the US had some form
of immunity as of 15 July 2021 (either through infection or vaccination). Given that the
percentage of immune persons required for herd immunity according to Figure 8D ranges
from 84% for South Dakota to 45% for Idaho (Figure 8D) ~20 months (counting from
January 2020) into the COVID-19 pandemic and ~9 months after vaccines became widely
available, it seems that this situation will persist for months, if not years.

How can the US accelerate the approach to herd immunity (if herd immunity is
even possible)? Policies that encourage infection of children and vaccinated persons who
have healthy immune systems may be rationalized because such persons seem to be well-
protected against severe (but not mild) disease [50] and infected persons seem to have
greater protection against productive infection [43]. However, this approach has obvious
drawbacks, starting with the risks of infection. Another is that non-immune persons
may not be able to self-identify as such. Unfortunately, it seems that we cannot rely on
currently available vaccines to stop community transmission. Delta-adjusted HITs are
mathematically impossible to achieve through vaccination alone because these HITs are
close to 1 (Supplementary Materials Table S2) and vaccine protection against productive
infection is imperfect (i.e., εv is significantly less than 1) [44]. This situation is exacerbated
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by the emergence of the SARS-CoV-2 variant Omicron (lineage B.1.1.529) [51], which has
been estimated to be roughly 2 to 4 times more transmissible than Delta [52–54]. Other
factors influencing the feasibility of herd immunity are waning immunity [55–57], limited
vaccine uptake, and vaccine eligibility (Figure 9). Thus, use of variant-targeted vaccines
may be needed to achieve herd immunity and to minimize COVID-19 impacts.

As is well-known, population features, not just pathogen features, affect the value
ofR0 [58]. These features potentially include numerous biological, sociobehavioral, and
environmental factors, such as age, physical fitness, social network structure, population
density, and aspects of the built environment. Variations in these features across regions
can give rise to spatial heterogeneity in β and R0, although not in immediately obvious
ways. One benefit of our comprehensive state-level R0 estimates is that they quantify
how differences in population features across the US influence the spread of an aerosol-
transmitted virus [59,60]. This information, by identifying the regions in the US where
transmission is likely to be highest, could be useful in preparing for and responding to
future pandemics caused by viruses similar to SARS-CoV-2. Disease transmission can be
reduced through nonpharmaceutical interventions, such as early detection and isolation of
infected persons [61–63].

Our study has several notable limitations. Our HIT estimates are potentially biased
downward because of general awareness within the US of the impacts of COVID-19 in
other countries (e.g., China and Italy), which could have resulted in a fraction of the
US population changing their behaviors to protect themselves from COVID-19 before
the start of the local epidemic. In addition, our estimation of percent progress toward
herd immunity crucially depends on the seroprevalence estimates of the true disease
burden. These estimates are associated with some uncertainty [64–66]. As illustrated in
Figure 8, percent progress toward herd immunity is underestimated if serological tests
fail to detect all cases of infection. The reader must also be cautioned that our analysis
depends on a number of assumptions. For example, we considered a compartmental model
in which populations are taken to be well-mixed and to lack age structure. This is clearly
a simplification. More refined estimates could be obtained by making the model more
realistic, but this would have the drawback of increasing the complexity of inference, which
at some point would make inference impracticable.
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