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Abstract: Seasonal influenza is a primary public health burden in the USA and globally. Annual
vaccination programs are designed on the basis of circulating influenza viral strains. However,
the effectiveness of the seasonal influenza vaccine is highly variable between seasons and among
individuals. A number of factors are known to influence vaccination effectiveness including age, sex,
and comorbidities. Here, we sought to determine whether whole blood gene expression profiling
prior to vaccination is informative about pre-existing immunological status and the immunological
response to vaccine. We performed whole transcriptome analysis using RNA sequencing (RNAseq)
of whole blood samples obtained prior to vaccination from 275 participants enrolled in an annual
influenza vaccine trial. Serological status prior to vaccination and 28 days following vaccination
was assessed using the hemagglutination inhibition assay (HAI) to define baseline immune status
and the response to vaccination. We find evidence that genes with immunological functions are
increased in expression in individuals with higher pre-existing immunity and in those individuals
who mount a greater response to vaccination. Using a random forest model, we find that this
set of genes can be used to predict vaccine response with a performance similar to a model that
incorporates physiological and prior vaccination status alone. A model using both gene expression
and physiological factors has the greatest predictive power demonstrating the potential utility of
molecular profiling for enhancing prediction of vaccine response. Moreover, expression of genes that
are associated with enhanced vaccination response may point to additional biological pathways that
contribute to mounting a robust immunological response to the seasonal influenza vaccine.

Keywords: influenza; vaccine response; gene expression; random forest

1. Introduction

In non-pandemic years, seasonal influenza generally imposes considerable mortality
and morbidity burdens resulting in three to five million severe illnesses per year and 290,000
to 650,000 respiratory deaths worldwide [1]. Public health initiatives to annually administer
the seasonal influenza vaccine, targeting predominant circulating influenza strains, are
an effective means of mitigating the impact of the virus. However, the effectiveness
of the seasonal vaccine—defined as the percent reduction in the frequency of influenza
illness among vaccinated individuals compared to the frequency among unvaccinated
individuals [2]—shows considerable variation between seasons and among individuals
within a season. Between season variation in vaccine effectiveness is primarily attributed
to mismatches between the vaccine strain selection and circulating viruses. By contrast,
within season variation in vaccine effectiveness is impacted by both viral and host factors,
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including age, preexisting health conditions such as obesity [3], and prior vaccination
and infection history. Understanding the sources of interindividual variation in vaccine
effectiveness is critical to the development of robust vaccination strategies.

Host biomolecular factors may be an underlying source of interindividual variation in
vaccine effectiveness, specifically antibody repertoires. A number of observational studies
provide evidence that pre-existing immunity, due to either prior infection or vaccination,
may impact the immune response to vaccination, a phenomenon known as “original anti-
genic sin” [4,5]). The immune response to infection may be dominated by antibodies to
previously encountered hemagglutinin (HA) epitopes, resulting in varying vaccine effec-
tiveness that depends largely on an individual’s age and vaccination history. Additionally,
antigenic similarity between consecutive vaccine strains may dampen an individual’s
ability to generate antibodies following repeated vaccinations. Antibodies from the ini-
tial encounter may mask similar vaccine epitopes in the second encounter, resulting in a
diminished response, a phenomenon known as the antigenic distance hypothesis [6,7].

Preexisting immunity and vaccine response can be assessed using the hemagglutina-
tion inhibition (HAI) assay, which detects the presence of antibodies that prevent the HA
protein of the influenza virus from agglutinating red blood cells [8]. Vaccine response is
quantified on the basis of an increase in antibody titer, which can be inferred using the
HAI assay for which a 4-fold rise in antibody titers is typically used to define seroconver-
sion [9]. Although not a direct measure of vaccine effectiveness, there is strong evidence
that seroconversion is predictive of vaccine effectiveness [10]. However, a caveat to the
serological-based assessment of vaccine response using the HAI assay is that it may be
inaccurate if most antibodies target the neuraminidase [11]. HAI tests with oseltamivir are
used to eliminate such effects [12].

Prior studies have shown that there is considerable variation in the capacity to respond
to vaccination [13] with reduced responsiveness associated with biological variables such
as sex [14]. Differences in gene expression may be related to, and predictive of, variation in
vaccine effectiveness. For example, one large-scale study identified nine genes and three
gene modules that show significant expression variation associated with the magnitude
of the antibody response [15]. Other studies have identified age-associated differences in
gene expression that are associated with differences in vaccine response [16]. These studies
indicate that gene expression profiles could be informative about how well an individual
will respond to vaccination. However, whether these findings hold in other cohorts and
the interactive effects of biological and molecular factors on the predictive value of gene
expression in the context of the vaccine response have not previously been assessed.

In this study we sought to determine whether whole blood mRNA expression profiles
are informative about pre-vaccination immunity and if they can be used to predict the
response to influenza vaccination. We analyzed gene expression prior to vaccination
and identified genes that are differentially expressed reflecting differing pre-vaccination
immune states. We then tested whether gene expression differences were associated with
differences in vaccine response among individuals. We find that a predictive model of
vaccine response that uses only the gene expression state of individuals prior to vaccination
shows comparable performance to a model that uses only physiological factors (e.g., body
mass index (BMI), sex, and age) and knowledge of prior vaccination history. A model that
incorporates both gene expression and physiological and demographic factors outperforms
either of these models indicating that they contain complementary information. Our study
demonstrates that gene expression states prior to vaccination show variation that reflects
the preexisting immunological state of individuals. Furthermore, these profiles can enhance
prediction of vaccine response when used in combination with physiological information
and vaccination history.
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2. Methods
2.1. UGA4 Study
2.1.1. Study Design

Participants were enrolled at the University of Georgia Clinical and Translational
Research Unit (Athens, GA, USA) (IRB #3773) from September 2019 to February 2020.
All volunteers were enrolled with written, informed consent and excluded if they al-
ready received the seasonal influenza vaccine. Other exclusion criteria included acute
or chronic conditions that would put the participant at risk for an adverse reaction to
the blood draw or the flu vaccine (e.g., Guillain-Barré syndrome or allergies to egg prod-
ucts), or conditions that could skew the analysis (e.g., recent flu symptoms or steroid
injections/medications). All participants received a commercially available seasonal in-
fluenza vaccine, Fluzone™ (Sanofi Pasteur), which is a split-inactivated vaccine derived
from influenza viruses propagated in embryonated chicken eggs. Most participants re-
ceived a standard dose, quadrivalent vaccine which was formulated with 15 µg HA per
strain of A/H1N1 (A/Brisbane/02/2018), A/H3N2 (A/Kansas/14/2017), B/Victoria
(B/Colorado/6/2017-like strain), and B/Yamagata (B/Phuket/3073/2013). Some par-
ticipants 65 years and older chose the high-dose vaccine which was a trivalent composition
lacking a B/Yamagata strain, but formulated with 60 µg HA/strain of the others.

2.1.2. HAI Assay

Hemagglutinin inhibition (HAI) assays were performed with serum from each partic-
ipant pre-vaccination (day 0) and post-vaccination (day 28). Sera was used at a starting
concentration of 1:10 following treatment with a receptor-destroying enzyme (RDE) (Denka
Seiken) to inactivate non-specific inhibitors. RDE-treated sera (25 µL) were serially diluted
in PBS two-fold across 96-well V-bottom microtiter plates to column 11, leaving the last
column without sera as a negative control. Similarly treated positive control ferret sera was
included on some plates. An equal volume of influenza virus (25 µL), adjusted beforehand
via hemagglutination (HA) assay to a concentration of 8 hemagglutination units (HAU)
per 50 µL, was added to all wells, plates were mixed by agitation, and then incubated
at room temperature for 20 min. Next, 0.8% turkey red blood cells (Lampire Biologicals,
Pipersville, PA, USA) in PBS were added, plates mixed by agitation, and then incubated at
room temperature for 30 min. The HAI titer was determined by the reciprocal dilution of
the last well that contained non-agglutinated RBCs, and a value of 5 was assessed in cases
where no HAI was detectable.

2.2. RNA Sequencing
2.2.1. Library Preparation and Sequencing

We obtained 275 whole blood samples from the UGA4 study previously described.
Each tube contained 2.5 mL of blood that was collected prior to vaccination (day 0) into
PAXgene Blood RNA Tubes according to the manufacturer’s protocol (PreAnalytiX, Hom-
brechtikon, Switzerland). Before freezing, blood was incubated in the tube’s proprietary
reagent at room temperature for a minimum of two hours to ensure stabilization of in-
tracellular RNA. Total RNA was isolated from each blood sample in randomized batches
using the PAXgene Blood miRNA Kit (QIAGEN, Hilden, Germany) according to the manu-
facturer’s recommendations and stored at −80 ◦C in a LoBind twin.tec 96-well PCR plate
(Eppendorf, Hamburg, Germany). All samples were quantified with the Qubit BR RNA
Assay on a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and their
fragment size distribution was measured with an RNA Screentape on a 4200 TapeStation
System (Agilent, Santa Clara, CA, USA). Sample yield ranged considerably (min: 0.6 µg,
max: 24 µg) but all samples had sufficient input mass for downstream library prep and
RIN values were consistently >7.0.

Sequencing libraries were prepared using the NEBNext Poly (A) mRNA Magnetic
Isolation Module and NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB, Ipswich,
MA, USA) according to the manufacturer’s protocols using either 1 µg of input RNA or,
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in the case of several low-yield samples, the maximum possible input mass. AMPure XP
Beads (Beckman Coulter, Brea, CA, USA) were used in place of the supplied NEBNext
Sample Purification Beads. Libraries were prepared in 3 batches with two negative library
prep controls in each batch to monitor for reagent or sample-to-sample contamination.
Each library was barcoded with NEBNext Multiplex Oligos for Illumina (NEB, Ipswich,
MA, USA) in a rotating scheme, which ensured that each pool had a unique set of barcodes.
Each library was quantified with the Qubit dsDNA HS Assay on a Qubit 2.0 Fluorometer
and fragment size was measured with an HSD1000 Screentape (Agilent, Santa Clara, CA,
USA) on a 4200 TapeStation System. All libraries made from experimental samples were
of sufficient molarity for pooling and sequencing. Libraries were pooled with equimolar
input at either 2 nM or 3 nM into sets of 96 libraries for sequencing on a NovaSeq 6000 with
the S1 2 × 150–300 Cycle configuration (Illumina, San Diego, CA, USA) at the Genomics
Core Facility (Center for Genomics and Systems Biology, New York University).

2.2.2. Data Processing

Sequence reads were aligned to the human transcriptome using the nf-core/rnaseq
nextflow pipeline [17] with default parameters. This pipeline aligned reads to the human
genome (GRCh37) using STAR [18] followed by BAM-level quantification with Salmon [19]
to generate a feature counts table. All gene expression information and fastq files have
been submitted to GEO.

After quantifying human transcripts at the gene level, the count data was processed to
keep only one sample per individual with the highest number of gene counts. Additionally,
counts from pseudogenes, as annotated by biomaRt in the hsapiens_gene_dataset Ensembl
database, were filtered out from any downstream analyses along with the three genes
ENSG00000188536, ENSG00000244734, and ENSG00000206172, which correspond to highly
expressed hemoglobin genes. TPM values were calculated for all remaining genes using
the average gene length of the individual transcripts encoded by their corresponding gene.

2.2.3. Univariate Differential Expression Analyses

Differentially expressed genes as a function of seroconversion score, baseline HAI,
age, gender, BMI, race, month vaccinated, and previous vaccination status were separately
identified using edgeR v. 3.30.3 [20] with a FDR cutoff of 0.05. For seroconversion score, age,
and BMI a fit spline with 1 degree of freedom was used to construct the design matrix while
for all other variables, discrete groups were used. Only genes with at least 10 counts-per-
million (CPM) in 70% of samples in the smallest group were kept for differential expression
analyses. The remaining counts in each sample were normalized by trimmed mean of
M-values (TMM) [21] and dispersions were estimated and fit to a quasi-likelihood negative
binomial generalized log-linear model (glmQLFit) with robust set to true. UpSet plots [22]
used to display intersections of differentially expressed genes were plotted using the R
package UpSetR v1.4.0.

GSEA analyses for the sets of genes differentially expressed as a function of serocon-
version score and baseline HAI were done using gene lists ranked by a decreasing FC
value. GSEA were conducted using the two sets of ranked gene lists individually using
the human annotation org.Hs.eg.db v3.11.4, and the R package clusterProfiler v.3.16.1 [23]
with the function gseGO with minGSSize = 3, maxGSSize = 800, and a p-value cutoff of 0.05.
Redundant GO terms were removed using both the simplify function from clusterProfiler
with a similarity cutoff of 0.7 (baseline HAI) and 0.4 (seroconversion) and manual curation.

2.2.4. Bivariate Differential Expression Analyses

For seroconversion score and baseline HAI, bivariate differential expression analyses
were done using edgeR v. 3.30.3 [20] with a FDR cutoff of 0.05 by constructing a design
matrix with one of the two immune terms paired with age, gender, and BMI. A full rank
design matrix was unable to be constructed when pairing initial HAI with sex, so those
pairings were excluded from downstream analyses. Normalization, dispersion estimation,
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and linear model fitting were done the same way as for the univariate differential expression
analyses. UpSet plots [22] used to display intersections of differentially expressed genes
were plotted using the R package UpSetR v1.4.0.

GSEA analyses for both DEGs of seroconversion score and initial HAI as a function
of BMI were done using a list of genes ranked by a decreasing FC value. GSEA was
conducted using both sets of ranked gene lists individually using the human annotation
org.Hs.eg.db v3.11.4, and the R package clusterProfiler v.3.16.1 [23] with the function gseGO
with minGSSize = 3, maxGSSize = 800, and p-value cutoff of 0.05. Redundant GO terms
were simplified using both the simplify function from clusterProfiler with a similarity cutoff
of 1 (baseline HAI) and 0.4 (seroconversion) and manual curation.

2.2.5. Multi-Scale Network Analysis

We performed Multiscale Embedded Gene Co-Expression Network Analysis
(MEGENA) [1] to identify host modules of highly co-expressed genes in influenza in-
fection. The MEGENA workflow comprises four major steps: (1) Fast Planar Filtered
Network construction (FPFNC), (2) Multiscale Clustering Analysis (MCA), (3) Multiscale
Hub Analysis (MHA), (4) and Cluster-Trait Association Analysis (CTA). The total rele-
vance of each module to influenza virus infection was calculated by using the Product of
Rank method with the combined enrichment of the differentially expressed gene (DEG)
signatures as implemented: Gj = ∏i gji, where, gji is the relevance of a consensus j to a
signature i; and gji is defined as

(
maxj

(
rji
)
+ 1− rji

)
/ ∑j rji, where rji is the ranking order

of the significance level of the overlap between module j and the signature. The correlation
between modules and traits was performed using Spearman’s correlation.

2.3. Identification of Enriched Pathways and Key Regulators in Transcriptome Modules

The biological functions of identified modules in this study were assessed by enrich-
ment analysis for established pathways and pathway (gene) signatures, including the gene
ontology (GO) [24] biological processes (BP) category and MSigDB [25] canonical pathways
(C2.CP) [26]. Enrichment analysis was performed using Fisher’s Exact Test (FET; inhouse
and the hypergeometric test from the Category R-package).

The analysis to identify key regulators takes as input a set of genes (G) and a co-
expression network. The objective is to identify the key regulators for the gene sets with
respect to the given network. This approach first generates a subnetwork NG, defined as
the set of nodes in N that are no more than h layers away from the nodes in G, and then
searches the h-layer neighborhood (h = 1, . . . , H) for each gene in NG (HLNg,h) for the
optimal h*, such that

ESh
∗ = max

(
ESh,g

)
∀g ∈ Ng, h ∈ {1, . . . , H}

where ESh,g is the computed enrichment statistic for HLNg,h. A node becomes a candidate
driver if its HLN is significantly enriched for the nodes in G. Candidate drivers without
any parent node (i.e., root nodes in directed networks) are designated as global drivers and
the rest are local drivers. To identify the system specific key regulators in their coexpression
networks, the corresponding SRGs have been used as gene set G.

2.4. Random Forest Models

Random forest models to predict seroconversion category (low: seroconversion score < 2;
high: seroconversion score ≥ 2) were done using the R package randomForest v4.6-14
using a combination of (1) clinical variables including initial HAI, BMI, age, race, sex
prevaccination status, and month vaccinated, (2) the 741 genes identified to be differentially
expressed as a function of seroconversion, and (3) one of the first five principal components
of the identified expression modules. A total of 10 iterations for each input data set were
used to generate random forest models. Samples were first split such that 75% of samples
were used in the training set with the remaining 25% being used as a test set. The tuneRF
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function was used, with the options ntreeTry = 500, stepFactor = 1.5, improve = 0.01, using a
start mtry value equal to the square root of the number of features. The optimal mtry value
was identified as the value at which the out-of-bag error is minimized and stabilized. From
this, a random forest model was generated using the optimal mtry value with 500 trees
grown. The average out of bag (OOB) error rate and area under the curve (AUC) for the
plotted ROC curves of the 10 random forest iterations for a given dataset were used to
assess the efficacy of each model in predicting seroconversion category. Cross validation
using the test dataset was done using a start mtry value equal to the square root of the
number of features and a cv.fold value of 100. The average importance values for each
set of features for each random forest model was identified by calculating mean decrease
accuracy and the mean decrease in Gini index.

3. Results

To investigate the utility of global gene expression profiling in predicting the response
to seasonal influenza vaccination, we studied a cohort of participants recruited by the
University of Georgia (UGA). The study included a total of 275 participants from a cohort
herein referred to as UGA4 that was conducted during the 2019–2020 influenza season.
Volunteers provided a blood sample for baseline serology prior to vaccination (Day 0).
They were then given a commercially available, seasonal influenza split inactivated virus
vaccine (Fluzone, Sanofi Pasteur), and subsequently provided a blood sample 28 days after
vaccination to assess response serology. The vaccine was formulated with influenza A
strains for H1N1 (A/Brisbane/2/2018) and H3N2 (A/Kansas/14/2017), in addition to
influenza B strains for Victoria (B/Colorado/6/2017) and Yamagata (B/Phuket/3073/2013).
Standard dose (SD) quadrivalent vaccines (0.5 mL dose with 15 µg HA/strain or 60 µg HA
total) were administered to most participants (n = 214); however, those participants aged
65 years and older were given the option of a high-dose (HD) formulation (trivalent 0.5 mL
dose with 60 µg HA/strain or 180 µg HA total; n = 61) in which the Yamagata component
was excluded.

The 275 study participants included adult males (n = 102) and females (n = 173),
ranging in age from 18–85 years (mean ± one standard deviation age = 50.3 ± 17.2 years).
Self-declared race was recorded: study participants predominantly self-identified as white
(n = 220), with a small number of black (n = 27), hispanic (n = 17), asian (n= 6), and Native
American (n = 2) participants. Body mass index (BMI) of participants ranged from 17.43 to
59.1 with 199 of the 275 study participants exceeding a BMI of 25 (Table 1, Table S1) which
is classified as overweight using standard CDC definitions [27]. Participants were assessed
for risk factors including smoking (n = 94 previous or current smokers) and comorbidities
of which hypertension was the most common (n = 49). Overall, health metrics are consistent
with enrichment for high risk factors among study participants.

Whole blood samples were acquired from participants prior to and following vaccina-
tion (Figure 1A). To assess immunogenicity to the influenza HA protein, a hemagglutination
inhibition (HAI) assay was performed using two-fold serial dilutions of serum from each
participant and turkey red blood cells (RBCs) (Section 2). A numerical HAI value was
assigned based on the reciprocal of the final serum dilution at which RBC agglutination
inhibition was still observed. For example, if an individual’s serum sample inhibited
viral-mediated agglutination of RBCs at a dilution of 1:40, but did not inhibit agglutination
at a dilution of 1:80, an HAI score of 40 was assigned. The HAI assay was performed with
serum diluted 1:5 using a two-fold dilution series of serum (i.e., 1:10, 1:20, 1:40, . . . ). Thus,
HAI values vary from 5 to 1280 with an HAI of 5 corresponding to no detectable antibody
titer and higher values reflecting higher antibody titers.
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Table 1. Demographic and health metrics of study participants. A total of 275 participants in the
UGA4 (2019–2020) split inactivated virus (Fluzone, Sanofi Pasteur) influenza vaccine trial were
included in the study.

Metric Categories Mean
(+/−Standard Deviation) Range

Age 50.3 (± 17.2 years) 18–85 years

Sex Males 102
Female 173 -

Race/Ethnicity

White 220
Black 27

Hispanic 17
Asian 6

Native American 2
Multiracial 3

- -

BMI Overweight (BMI ≥ 25) 199
Healthy (BMI 18.5–25) 76 29.36 (±6.66) 17.43–59.1

Smoking

Previously 73
Current 21
Never 179

N/A 2

- -

Comorbidities

Hypertension 43
High cholesterol 23

Depression 17
Type II diabetes 12

Sleep apnea 31

- -

Prior vaccination

Vaccinated 2018–2019 231
Vaccinated 2017–2018 211
Vaccinated 2016–2017 193

Not in prior 3 years 34

- -

To test the specificity of immunogenicity, HAI assays were performed with each of
the four vaccine strains prior to vaccination (day 0, or “baseline HAI”) and four weeks
post-vaccination (day 28, or “response HAI”) for all participants (Section 2). However,
because the Yamagata strain was not included in the HD formulation the day 28 HAI value
was excluded in the serology metrics calculated for those individuals who received the HD
vaccine. To account for the different number of strains used in the two formulations we
computed average baseline and response serology metrics.

The distribution of baseline HAI values for the four different strains varies between
individuals and strains (Figure S1) reflecting significant variation in strain-specific pre-
existing immunity among individuals. We observed an increase in the distribution of
HAI values for all four strains 28 days after vaccine administration (Figure S2). High
response HAI values for each of the four strains reflect both an immunogenic response to
the administered vaccine and pre-existing immunity. In general, baseline and response
HAI values for each strain show positive correlation (Figure S3). However, individuals
with low baseline HAI values show extensive variation in response HAI.

To quantify the response to vaccination, a seroconversion score was computed for
each strain by taking the ratio of the response HAI to the baseline HAI. Seroconversion
scores were computed separately for each of the four influenza strains and expressed
as log2 value (i.e., a seroconversion score of 1 corresponds to a twofold increase in HAI
value). We find that there is a negative correlation (ρ ≤ −0.2) between baseline HAI and
seroconversion for each of the four strains (Figure S4) as high seroconversion scores are
generally only observed in those participants with low baseline HAI values. Seroconversion
with respect to the Yamagata strain is significantly higher in those individuals who received
the SD formulation compared with those receiving the HD formulation, which lacks the
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Yamagata component, consistent with a specific response to vaccine components (Figure S5).
Moreover, with a single exception, none of the participants receiving the HD vaccine had a
seroconversion score greater than 2 (i.e., a fourfold increase in HAI) for the Yamagata strain
supporting the use of a fourfold increase as indicative of a specific antibody response.
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Figure 1. Study design and response to vaccination. (A) 275 participants from the UGA4 vaccination
study were selected for whole blood gene expression analysis. HAI for four strains was determined
prior to vaccination (baseline HAI) and 28 days (response HAI) after vaccination and used to compute
an average seroconversion score. (B) There is a significant negative relationship between average
baseline HAI and average seroconversion (ρ =−0.34, p-value = 1.12× 10−8). (C) There is a significant
positive relationship between BMI and average seroconversion (ρ = 0.21, p-value = 0.0005). (D) There
is a slight negative relationship between age and average seroconversion (ρ = −0.13, p-value = 0.02).
(E) Those individuals who were not previously vaccinated have higher average seroconversion scores
than previously vaccinated individuals.

To define an average seroconversion score that incorporates information for each strain
we computed the average untransformed seroconversion score for the four (SD) or three
(HD) strains and expressed the average as a log2 value (adapted from [28]). In general,
we treated seroconversion scores as continuous values; however, to increase the statistical
power of some analyses, we defined a categorized seroconversion score. Therefore, for
these analyses we categorized average seroconversion as “low” (<2, which corresponds to
less than a fourfold average change in HAI) or “high” (≥2, which corresponds to a fourfold
or higher average change in HAI), consistent with the US Food and Drug Administration
Guidance [29]

Average baseline HAI values, incorporating information from all strains, are negatively
correlated with average seroconversion scores (ρ = −0.34, p-value = 1.12 × 10−8; Figure 1B).
Among our study participants we find a significant positive relationship between BMI and
seroconversion (ρ = 0.21, p-value = 0.0005) (Figure 1C) and a slight negative correlation
between age and seroconversion (ρ = −0.13, p-value = 0.02; Figure 1D). Seroconversion
does not differ significantly between males and females (F statistic = 3.435, p-value = 0.649).
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The majority of study participants received at least one vaccine in the three years
prior to the study. However, a small number of participants (n = 34) reported no prior
vaccination. We find that these individuals have significantly higher seroconversion scores
(t-statistic = −61.8, p-value = 2.2 × 10−16) (Figure 1E) consistent with immunologically
naive individuals mounting an enhanced response to vaccination.

3.1. Differential Gene Expression Analysis

We performed whole transcriptome analysis of whole blood samples for all study par-
ticipants using RNA sequencing (RNAseq) and processed sequencing data using standard
bioinformatic pipelines (Section 2) to generate a table of gene counts (Table S2). We obtained
a median of 15 million reads per sample (Figure S6). Within samples, the distribution of
counts per gene is highly skewed as just three genes, encoding hemoglobin, account for
almost 50% of the total transcript counts in each sample (Figure S7). Therefore, these three
genes were excluded from downstream analyses (Section 2). To identify major sources of
variation in the data we performed dimensionality reduction analysis. More than 50% of
the variance in the data is captured by the first three principal components (Figure S8).
However, visual inspection failed to identify covariates that were non-randomly distributed
across these principal components.

We sought to identify genes that show evidence for differences in expression as a
function of study participant physiological and serological metrics (Table 1). Therefore,
we performed differential gene expression analysis to identify genes with statistically
significant differences in expression (methods). Variables that had highly unbalanced
categories (i.e., prior vaccination history, and self-reported race) were not considered. We
performed differential gene expression analyses using either discrete groups (e.g., for
sex) or linear models for continuous variables (e.g., age, BMI, HAI, and seroconversion).
We assessed differential gene expression as a function of (1) log2 transformed average
baseline HAI, to identify genes that are differentially expressed with variation in pre-
existing immunity, and (2) log2 transformed average seroconversion, to identify genes
whose expression prior to vaccination are predictive of the vaccine response.

When considering the pre-existing immune status of individuals we find only 45 genes
that are differentially expressed as a function of baseline HAI (Figure 2A, Table S3). 9 of
these genes were uniquely differentially expressed as a function of baseline HAI, while the
other 36 were also differentially expressed as a function of different physiological factors.
Among the genes that are significantly increased in expression with higher baseline HAI lev-
els are immunoglobulin genes, including IGLV3-25 (Figure 2B), whereas some genes, such as
LDOC1, show significant negative expression relationships with baseline HAI (Figure 2C).
Another immunoglobulin gene, IGLV4-69 (logFC = 4.52, FDR = 7.91 × 10−8), is also in-
creased in expression with baseline HAI. Other immunoglobulin genes are also among the
45 differentially expressed genes, and include IVLG8-61 (logFC = 3.88, FDR = 1.89 × 10−5),
IGLV4-60 (logFC = 3.32, FDR = 1.59 × 10−3), IGLV3-10 (logFC = 2.79, FDR = 4.63 × 10−3),
and IGLV3-1 (logFC = 1.71, FDR = 3.1 × 10−2) (Figure S9). Among the genes that show the
greatest negative relationship to baseline HAI are non-immunoglobulin genes that encode
tryptase gamma 1 (TPSG1, logFC = −5.82, FDR = 7.91 × 10−8) and fibromodulin (FMOD,
logFC = −5.58, FDR = 1.63 × 10−7). Immunoglobulins are expected to be associated with
pre-existing immunity and their increased expression may reflect greater plasmablast cell
populations in whole blood from individuals with higher baseline HAI. By contrast, the
reduced expression of TPSG1 with increasing baseline HAI may reflect the role of mast
cell protease tryptase gamma 1 in mediation of IL-13/IL-4R/STAT6-dependent proinflam-
matory pathways via T-cell induction [30]. Quenching of proinflammatory pathways may
be required for maintaining a high level of immune response as lower levels of TPSG1
indicate a lower risk of COVID-19 hospitalization [31]. FMOD encodes a member of the
small interstitial proteoglycans which may play a role in the assembly of the extracellular
matrix as well as in regulating TGFβ activity.
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baseline HAI and sex (1621), age (911), and BMI (111) (Figure 3A). In our bivariate anal-
ysis with seroconversion and other covariates, we found the greatest number of interac-
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and 840 genes that display significant interaction effects between seroconversion and sex 
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Figure 2. Differential gene expression analysis of pre-existing immunity and vaccine response.
(A) Genes that are differentially expressed with variation in baseline HAI and seroconversion. An
UpSet plot shows the top 12 subsets ranked by size of differentially expressed genes grouped by
physiological features. Sets of genes differentially expressed with two or more variables are con-
nected by lines. Representative genes with (B) increased and (C) decreased expression in participants
with higher baseline HAI. Representative genes that are (D) increased and (E) decreased in par-
ticipants with higher seroconversion. (F) Gene function enrichment using GSEA of the 45 genes
differentially expressed with baseline HAI (top) and the 741 genes differentially expressed with
seroconversion (bottom). Note that the histogram in panel (A) has been truncated for values less
than 9 for visualization purposes.

When considering differential expression as a function of seroconversion, we identi-
fied a set of 84 genes that are uniquely differentially expressed (i.e., show no significant
gene expression differences with other participant metrics). A larger set of 741 genes
are differentially expressed as a function of seroconversion, but also show significant as-
sociation with at least one other factor (Figure 2A; note that smaller subsets with fewer
than 9 shared genes are omitted to improve visualization quality, Table S4). These genes
exhibit both increased (Figure 2D) and decreased (Figure 2E) expression with increasing
seroconversion. The most significantly differentially expressed genes among this gene
set include an uncharacterized transcript ENSG00000273956 (FDR = 7.52 × 10−22), and
immunoglobulin genes IGLV4-69 (FDR = 6.07 × 10−11) and IGLV8-61 (FDR = 5.43 × 10−7)
(Figure S10). Interestingly, IGLV4-69 has been identified as a component of a monoclonal
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antibody in a prior vaccination cohort and possesses a broad spectrum binding affinity
against a broad range of H3N2 strains, including against the A/Hong Kong/4801/2014
(HK14) vaccine strain used in the 2019–2020 season [32].

To determine the functions of genes that are differentially expressed depending on
baseline HAI and seroconversion score, we performed gene set enrichment analysis (GSEA)
of the set of significant genes, (Figure 2F). Gene functions that are related to increased
baseline HAI include those involved with homeostatic processes. Gene functions that are
positively associated with increased seroconversion include immunoglobulin production,
and chromatin organization. Conversely, we find gene functions related to growth factor
beta responses and neurogenesis to be decreased in expression in individuals with high
seroconversion scores. (Figure 2F).

3.2. Interactive Effects on Differential Gene Expression

Genes that are differentially expressed as a function of immune status may show
differing behaviors depending on other physiological factors. To test for interactive effects
between immunological metrics and factors that vary among study participants such as age,
BMI, and sex, we used bivariate linear models for both baseline HAI and seroconversion
score. We found a number of genes with interactive effects between baseline HAI and sex
(1621), age (911), and BMI (111) (Figure 3A). In our bivariate analysis with seroconversion
and other covariates, we found the greatest number of interactive effects between sero-
conversion and age (1834 genes) (Figure 3B). We also found a set of 1048 genes that show
significant interactive effects between seroconversion and BMI, and 840 genes that display
significant interaction effects between seroconversion and sex (Figure 3B).

We were particularly interested in the interaction between BMI and either baseline
HAI or seroconversion as BMI has been identified as one of the major factors associated
with increased influenza risk [3]. The differential expression of 111 genes with baseline
HAI is influenced by BMI (Figures 3B and S11, Table S5). For example, KRT79 increases
in expression with higher baseline HAI in overweight individuals, but decreases in indi-
viduals with normal BMI (Figure 3C). A similar effect of BMI on the relationship between
gene expression and baseline HAI is observed for IGLV4-60 (Figure 3D). The differential
expression of 1048 genes with seroconversion is influenced by BMI (Figures 3B and S12,
Table S6). For example, PCSK1N increases in expression with seroconversion in overweight
individuals, but not individuals with normal BMI (Figure 3E). Conversely, DAAM2 de-
creases in expression with seroconversion in overweight individuals but not in individuals
with normal BMI (Figure 3F).

We investigated enrichment of gene sets that show significant interaction between BMI
and either baseline HAI or seroconversion. Genes that show interactive effects with BMI
and baseline HAI are enriched for immunoglobulin production and immune responses
(Figure 3G upper panel). Genes that show interactive effects between BMI and seroconver-
sion are positively enriched for diverse functions including metabolism, immunoglobulins
and the adaptive immune response, and T cell receptor functions (Figure 3G lower panel).
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Figure 3. Interactive effects of physiological variables on differential expression with baseline HAI and
seroconversion. Sets of genes showing interactive effects with sex, BMI and age on differential gene
expression with (A) baseline HAI and (B) seroconversion. Representative genes in which BMI impacts
(C) positive and (D) negative differential expression with baseline HAI. Representative genes in which
BMI impacts (E) positive and (F) negative differential expression with seroconversion. (G) Gene
function enrichment using GSEA of 111 genes that show interactive effects with BMI and baseline
HAI (top) and 1048 genes that show interactive effects with BMI and seroconversion (bottom).

3.3. Identification of Gene Expression Modules Related to Serological Outcome

We sought to identify molecular processes that show coherent gene expression be-
havior among individuals. Therefore, we defined sets of genes that show correlated
co-expression patterns across individuals using MEGENA (Section 2). The MEGENA
method identifies modules of correlated gene expression across samples and defines a
hierarchical relationship between modules defined by different levels of stringency. Us-
ing the 275 transcriptomes, we identified 184 hierarchically ordered expression modules
containing between 5 to 2450 genes.

We employed different measures based on correlation, differential gene expression
enrichment, and a combination of both, to quantify the association between modules and
physiological and serological metrics. We use the product of rank method (Section 2)
to compute an aggregated rank from individually ranked modules. The top ten highest
ranked modules after enrichment of modules for baseline HAI, response HAI and sero-
conversion differentially expressed gene (DEG) signatures, are related to the adaptive
immune response and immunoglobulin complexes (Figure 4). These modules are strongly
enriched for genes that are differentially expressed as a function of response HAI, but
show only marginal enrichment for genes that are differentially expressed as a function
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of baseline HAI and seroconversion (Figure 4A). However, we find significant positive
correlation between these modules and all three serological scores (Figure 4B). The hi-
erarchical organization of five of the top ten modules is M11→ M64→ M175 and M23
→M116, where M11 is the parent module that includes each subset of smaller modules
(Figure 4C). Module M11 contains many immunoglobulin genes that show increased ex-
pression in subjects with high seroconversion (Figure 4D). The most highly connected,
or hub genes, of M11 are the variable chain immunoglobulin genes IGHV5-51, IGKV1-5,
IGKV3-11, IGKV3-15, IGKV3-20, IGKV4-1, and IGLV1-40. It is noteworthy that a proteomic
analysis of influenza haemagglutinin-specific antibodies following H1N1pdm09 influenza
A vaccination identified IGKV3-20 as the dominant light chain variant [33]. Modules de-
fined by the M11 module family are enriched for functions related to the adaptive immune
response (Figure 4E). Interestingly, these modules are also strongly negatively correlated
with age (Figure 4B). This points to a potential indirect effect of age on serological outcome
manifested in the expression state of these immunoglobulin-enriched modules that may
underlie the observed negative relationship between age and seroconversion (Figure 1D).

Additional highly ranked modules are suggestive of other relationships between gene
expression and serology. For example, module M37 is enriched for inflammatory response
and is negatively correlated with seroconversion (Figure 4C) and positively correlated
with baseline HAI. The module family M23→M116, is enriched for mRNA 5′-splice site
recognition, lyase activity regulation and extracellular matrix function and is positively
correlated with baseline HAI. The most significant module relationships are found with
age and BMI (Figure S13). The module with the most significant correlation with age
is M192 (ρ = −0.63, FDR = 4.58 × 10−30), which contains 15 genes, including the type I
transmembrane glycoprotein CD248, Rho guanine nucleotide exchange factor 4 (ARHGEF4),
Wnt signaling factor regenerating family member 4 (REG4). M192 also has fibroblast growth
factor 1 (FGFR1) functionality (PTK7, CD248, PHGDH, FBLN2; FDR = 0.006).

With respect to age association, most modules are enriched for age-specific differential
gene expression (Figure S14A) and all are strongly correlated with age (Figure S14B).
Interestingly, the modules with the most significant enrichment for age-specific DEGs
are the same as the highest ranked modules based on the serological response (Figure 4).
The module M11→ M64→ M175, which is enriched for immunoglobulin functions, is
negatively correlated with age and positively correlated with baseline HAI, response HAI,
and seroconversion. Although M192 is enriched for GO functions related to nervous
system development, it involves hub-gene CD248 related to the promotion of CCL17
expression in pro-fibrotic macrophages (Figure S14D). Another example of an age-related
DEG enriched module is M311. This module is positively correlated with age and does
not show any significant correlation with the serological responses. M311 is enriched for
molecule transducer and signaling receptor activity with serine protease 23 (PRSS23) as a
key regulator (Figure S14E).

With respect to BMI, the highest ranked module is M10 with basophil/mast cell
regulation functions. M10 and related module M62 are weakly positively correlated with
Baseline HAI values (Figure S15B). Key regulators histidine decarboxylase (HDC) and
IgE-receptor β-subunit MS4A2 modulate immune response (Figure S15D). The IgE-receptor
is expressed on basophils and mast cells, required for a robust vaccination response [34]. A
second set of key regulators involve A-kinase anchoring protein 12 (AKAP12) and GATA
binding protein GATA2. Both genes are responsible for cell proliferation and migration. A
second example of a module enriched for BMI DEGs is M13 (Figure S15E). This module
is positively correlated with both age and BMI but not with serological responses. M13
is enriched for immune effector process functions involving defensins including the key
regulator, CEA cell adhesion molecule 8 (CEACAM8), a cell-adhesion protein in neutrophils,
and defensin DEFA4, which is involved in host defense.
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Figure 4. Multi-scale co-expression network analysis. Using MEGENA we defined gene co-expression
network modules associated with participant metrics and immune status. The 10 best ranked
modules are shown using a combined rank based on the correlations related to serological effects
and outcome (average baseline, average seroconversion and average response). (A) The module
enrichment for DEGs are depicted in this heatmap. (B) The dot-plot shows the correlation coefficients
and corresponding p-value of module/trait correlations. (C) A sunburst plot with the hierarchical
structure of the module. (D) Module M387 enriched for immunoglobulin functionality. Node colors
indicate fold change with respect to high versus low average seroconversion, red for increased
expression in subjects with high seroconversion compared to subjects with low seroconversion,
blue refers to decreased gene expression between these two groups of subjects. (E) The functional
enrichment of the corresponding modules for GO functions are shown. The hierarchical relationship
of the modules shown in (A,B) are as follows: M8→M50/M52; M11→M64→M175; M23→M116.
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3.4. Prediction of Vaccine Response

We tested the predictive value of physiological information and gene expression
with respect to seroconversion. For this purpose, we generated random forest models
using different combinations of three distinct classes of features: (1) physiological metrics,
(2) expression of genes that are differentially expressed as a function of seroconversion,
and (3) co-expression modules. For our set of differentially expressed genes, we tested
three subsets to account for the possibility of overfitting. We used gene sets consisting of
(1) all 741 genes differentially expressed as a function of seroconversion, (2) the top 75% of
seroconversion differentially expressed genes sorted by FDR, the same fraction used for our
training set, and (3) a set of 84 genes differentially expressed exclusively as a function of
seroconversion and no other physiological data. We initially attempted to predict quantita-
tive seroconversion scores, but determined that all models performed poorly. Therefore, we
classified individual seroconversion scores as high (average seroconversion ≥ 2, n = 124)
or low (average seroconversion < 2, n = 151) for the purpose of prediction.

When used to predict seroconversion, we find that a random forest model generated
using only physiological metrics results in the lowest out-of-bag (OOB) error rate. The
random forest models generated using only sets of differentially expressed genes yield
the highest OOB error rate whereas the combined data results in an intermediate error
(Figure 5A). We then evaluated the accuracy of each model’s average predictions by using
a receiver operating characteristic (ROC) curve and calculating the resulting area under the
curve (AUC). The random forest model generated using a combination of the physiological
data and the expression data of the set of 84 genes exclusively differentially expressed as a
function of seroconversion yielded the highest average AUC of 0.73 while all other models
have AUCs less than 0.70 (Figure 5B).

To confirm that our results are reproducible, we repeated our OOB and AUC tests
varying the number of initial trees from 50 to 5000. We obtained similar results for each test
in that the model generated using only physiological data had the lowest OOB error while
the model generated using physiological data combined with the set of 84 DE genes had
the best AUC regardless of the number of initial trees (Figure S16). Of our data sets that
only use expression data, the smallest set of 84 genes that were only differentially expressed
as a function of seroconversion performs the best. Similarly, when combining expression
data with physiological data for our models, using the set of 84 genes results in the best
performance.

To identify the specific instances for which our random forest models fail, we gen-
erated confusion matrices using the average predictions of each of three of the datasets
consisting of (1) only physiological data, (2) expression data of the 84 exclusively differen-
tially expressed genes, and (3) the two data sets combined (Figure 5C). All three random
forest models have difficulty correctly categorizing high seroconversion, often mistakenly
categorizing them as low. However, when assessed using the test dataset, the random
forest model generated using only physiological data accurately classifies 53.3 of the 93
high seroconversion individuals on average compared to the models generated using only
expression data (42.6 of 93 correctly assigned) and clinical data paired with expression data
(47.1 of 93 correctly assigned), respectively.



Viruses 2022, 14, 2446 16 of 22

Viruses 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

ure S18). Of the clinical variables, baseline HAI, BMI, and previous vaccination status 
consistently are in the top 10 variables for this set of random forest models. While no 
modules appear in the top 10 most important features across multiple random forest 
models in this set, similar to the models without module inclusion (Figure 6) we do see 
the genes C8B, ENSG00000267009, LINC01960, NRAV, and TROAP show up in the top 10 
features in multiple random forest models in this set (Figure S18). 

When combining physiological features with gene expression, previous vaccination 
status, BMI, and baseline HAI remain highly predictive along with above mentioned 
genes and lncRNAs in addition to ENSG00000255835, NCBP2L, NKX3.1, PTGER1, and 
VANGL2. Complement factor C8B, NRAV and PTGER1 have immune system relevant 
functions. C8B is the 𝛽-chain of the membrane attack complex, which mediates cell lysis, 
and initiates membrane penetration of the complex. The lncRNA NRAV modulates anti-
viral responses through suppression of interferon-stimulated gene transcription [35]. 
Prostaglandin E receptor 1 (PTGER1), a member of the G protein-coupled receptor fam-
ily, plays a role in inflammatory response and modulates inflammation by 
down-regulation of COX-2 [36]. Overall, the main biological functions of these genes are 
related to immune processes. 

 
Figure 5. Prediction performance of random forest models generated using physiological and dif-
ferential gene expression data to predict seroconversion. The average (A) out-of-bag (OOB) error 
rate and (B) average area under the curve (AUC) values generated using 10 iterations of random 
forest models constructed using a combination of physiological data, expression data, and both 
combined. (C) The confusion matrices displaying true and false positives and negatives for the 

Figure 5. Prediction performance of random forest models generated using physiological and
differential gene expression data to predict seroconversion. The average (A) out-of-bag (OOB) error
rate and (B) average area under the curve (AUC) values generated using 10 iterations of random forest
models constructed using a combination of physiological data, expression data, and both combined.
(C) The confusion matrices displaying true and false positives and negatives for the random forest
models using physiological data (left), expression data from the 84 exclusively differentially expressed
genes as a function of seroconversion, (middle), and both combined (right). (D) A cross validation
analysis plotting a varying number of variables for the physiological data (left), expression data from
the 84 exclusively differentially expressed genes as a function of seroconversion (middle), and both
combined (right) random forest models against the resulting cross validation error.

We performed cross validation analyses for each of the three random forest models to
assess the reproducibility of the model on unseen data as well as to identify the optimal
number of features for each model. We find that for models that contain physiological
data the error is lowest when less than 5 features are used (Figure 5D). By comparison,
the random forest generated using only gene expression data requires almost all features
to obtain a similar predictive error. This suggests that physiological information is more
informative about serological response than baseline gene expression. For each random
forest model, we calculated and ranked the average importance value for each feature
(Figure 6). When using a model with only physiological metrics to predict seroconversion,
prior vaccination status is the most important variable (Figure 6A), but BMI, baseline HAI,
sex and age also contribute to model performance and reproducibility as measured using
the GINI coefficient (Figure 6B). When using only the set of 84 differentially expressed genes
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we find that removal of individual genes has incremental effects on model performance as
measured by the decrease in model accuracy (Figure 6C) and GINI coefficient (Figure 6D)
as do models that combine physiological metrics and differentially expressions genes
(Figure 6E,F). This is consistent with no single gene having an expression value that
is especially information of seroconversion. However, we do find that the non coding
RNAs ENSG00000267009, LINC01960, negative regulator of antiviral response NRAV as
well as complement C8B, novel protein ENSG00000255835, trophinin associated protein
TROAP, and planar cell polarity protein 2 VANGL2 consistently make the most significant
contribution to seroconversion prediction.
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Figure 6. Identification of factors underlying random forest model performance. Variable importance
measured through mean decrease accuracy and mean decrease in Gini coefficient for random forest
models generated using participant (A,B) physiological metrics, (C,D) the 84 DEGs as a function of
exclusively seroconversion, and (E,F) physiological metrics and the 84 DEGs combined.

We further investigated whether prediction of seroconversion outcome would improve
with the inclusion of the aggregated module data generated using MEGENA. Combination
of one of principal components 1–5 of the module data from the top 20 ranked modules
with the physiological data and DEGs yields a comparable OOB error rate but a decreased
AUC compared to random forest models generated with physiological data with DEGs
(Figure S17). An exception is the contribution by the principal component 2 of the top
ranked modules, which results in a similar AUC compared to the physiological data
plus DEG only models. However, we did not observe any improvement in prediction
by including module contributions. Similarly, ranking variables by importance in this
set of random forest models consistently indicates previous vaccination status to be the
most important variable in predicting seroconversion category (Figure S18). Of the clinical
variables, baseline HAI, BMI, and previous vaccination status consistently are in the top
10 variables for this set of random forest models. While no modules appear in the top 10
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most important features across multiple random forest models in this set, similar to the
models without module inclusion (Figure 6) we do see the genes C8B, ENSG00000267009,
LINC01960, NRAV, and TROAP show up in the top 10 features in multiple random forest
models in this set (Figure S18).

When combining physiological features with gene expression, previous vaccination
status, BMI, and baseline HAI remain highly predictive along with above mentioned genes
and lncRNAs in addition to ENSG00000255835, NCBP2L, NKX3.1, PTGER1, and VANGL2.
Complement factor C8B, NRAV and PTGER1 have immune system relevant functions. C8B
is the β-chain of the membrane attack complex, which mediates cell lysis, and initiates
membrane penetration of the complex. The lncRNA NRAV modulates antiviral responses
through suppression of interferon-stimulated gene transcription [35]. Prostaglandin E
receptor 1 (PTGER1), a member of the G protein-coupled receptor family, plays a role in
inflammatory response and modulates inflammation by down-regulation of COX-2 [36].
Overall, the main biological functions of these genes are related to immune processes.

4. Discussion

The immunological response to the seasonal influenza vaccine exhibits significant
heterogeneity among individuals. In this study, we addressed two key questions with
respect to the observed variation: (1) to what extent do whole blood gene expression profiles
and physiological variables relate to serological status prior to, and following, vaccination,
and (ii) are gene expression and physiological metrics predictive of vaccine response.

We first assessed the effect of physiological factors on serological status. As expected,
the response to the vaccine is strongly impacted by existing immunity. We quantified
existing immunity to each of the four influenza strains included in the vaccine and observed
significant variation among individuals. Among those individuals with higher existing
immunity we detect a muted increase in immune status following vaccination. Individuals
who had not been vaccinated in the prior three years show a much greater response than
those who received at least one influenza vaccine in the prior three years. Surprisingly, we
detect a trend of higher BMI associated with increased vaccine response. This could reflect
either systematically decreased pre-existing immunity, or a greater degree of immunological
priming, in higher BMI individuals.

Gene expression profiling revealed a large number of genes that are differentially
expressed with physiological factors including BMI (3814 genes), sex (2977 genes), and
age (2977 genes). By contrast, only 45 genes are differentially expressed as a function of
baseline HAI. Surprisingly, a much larger number of genes are differentially expressed with
seroconversion (741) although only 11% (84) of these are not associated with one of the
physiological factors. This discrepancy suggests that whole blood gene expression profiles
obtained prior to vaccination are more informative of the response to vaccination than the
pre-existing immunological state of an individual.

Among genes that are increased in expression with increasing seroconversion are
several immunoglobulin genes. As gene expression is assayed prior to vaccination this
may indicate that those individuals who will mount the greatest serological response to
the vaccine are predisposed to do so as a result of increased pre-existing immunological
activity [37,38]. It is possible that these expression values may be influenced by imprecise
mapping of RNAseq reads to variable gene segments of immunoglobulins. However, we
believe that this is unlikely as visual inspection of aligned reads for a representative example
(IGLV4-69) indicates high quality mapping and BLAST searches of IGLV4-69 mapped reads
against the reference genome identify this feature as the most likely source. Our findings
suggest the interesting possibility that enhanced vaccine response may result from either
increased plasmablast subpopulations or enhanced expression of specific immunoglobulins.
Testing these hypotheses requires additional analyses, possibly through variable sequence
reconstruction using RNAseq reads [39,40], and cell profiling of participants.

Using a network-based approach we identified co-expression modules that were sig-
nificantly associated with serological status. As with our gene-level analysis, we identified
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modules involving immunoglobulins. Module M11 with hub genes IGHV5-51, IGKV1-5,
IGKV3-11, IGKV3-15, IGKV3-20, IGKV4-1, and IGLV1-40, together with modules M64 and
M175 are positively correlated with baseline HAI, response HAI and seroconversion. These
modules are functionally enriched for antigen binding, immunoglobulin complex, and acti-
vation of adaptive immune response. We further observed negative correlations between
these immunoglobulin modules and age, which may reflect reduced immunity with age.

Central to our analysis was the identification and assessment of factors for the pre-
diction of seasonal influenza vaccine response. For this purpose we employed a random
forest approach for both feature selection and modeling. Consistently, the most impor-
tant physiological predictive features are baseline HAI, BMI, and prior vaccination status.
When combining physiological features with gene expression, these three features re-
main highly predictive along with genes and lncRNAs, such as C8B, ENSG00000267009,
ENSG00000255835, LINC01960, NCBP2L, NKX3.1, NRAV, PTGER1, TROAP, and VANGL2.
Complement factor C8B, NRAV, and PTGER1 have immune system relevant functions. C8B
is the β-chain of the membrane attack complex, which mediates cell lysis, and initiates
membrane penetration of the complex. Complement activation is associated with vaccine
efficacy, although the exact mechanisms are still unclear [41]. A recent study suggested
active modulation of glycosylation of serum glycoproteins by the immune system to estab-
lish effective post vaccine protection via complement activation [42]. The lncRNA NRAV
modulates antiviral responses through suppression of interferon-stimulated gene tran-
scription [35]. Prostaglandin E receptor 1 (PTGER1), a member of the G protein-coupled
receptor family, plays a role in inflammatory response and modulates inflammation by
down-regulation of COX-2 [36]. Among the other, not directly immune-system related
genes are three with unknown functions, two lncRNA, ENSG00000267009 and LINC01960,
and one protein coding gene, ENSG0000025583 with hypothetical pyrroline-5-carboxylate
reductase function. These predictive but unknown molecular factors may require further
investigation in their role affecting vaccination outcome. However, despite the predictive
value of gene expression we find that response prediction using exclusively physiological
information performs better than models that include gene expression, either exclusively
or additionally.

Overall, our study further highlights the importance of physiological variables on the
vaccine response, and identifies key genes and co-regulatory networks associated with
the individual vaccine response. Whereas physiological factors, such as prior vaccination
status, age, and BMI are major determinants of vaccination outcome, we demonstrate
that an individual’s baseline gene expression also impacts their response to vaccination.
This finding has important implications for the prediction of vaccine response, and may
point to biological pathways that are critical for mounting an effective immune response to
influenza vaccination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112446/s1, Figure S1: Distribution of baseline HAI for each
influenza strain among study participants, Figure S2: Distribution of response HAI for each influenza
strain among study participants, Figure S3: Relationship between baseline HAI and response HAI for
each strain, Figure S4: Relationship between baseline HAI and seroconversion score for each strain,
Figure S5: Seroconversion differences between vaccine formulations, Figure S6: RNAseq read count
distribution across 275 study participants, Figure S7: Genes with highest average transcripts per
million (TPM) across all study participants, Figure S8: Principal component analysis of per sample
transcript counts from RNA sequencing data, Figure S9: Top 10 DE genes as a function of baseline
HAI ranked by FDR, Figure S10: Top 10 DE genes as a function of seroconversion ranked by FDR,
Figure S11: Top 10 DE genes as ranked by correlation coefficient to the interaction variable of initial
HAI and BMI, Figure S12: Top 10 DE genes as ranked by correlation coefficient to the interaction
variable of seroconversion score and BMI, Figure S13: Volcano Plots of Module / Trait relationships,
Figure S14: Best ranked modules after significant age response (related to Figure 4), Figure S15:
Best ranked modules after significant BMI response (related to Figure 4), Figure S16: Random forest
prediction performance of random forest models varying the ntree parameter, Figure S17: Random
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forest prediction performance of random forest models generated using clinical, single unit, and
aggregated transcriptional data, Figure S18: Variable importance values for top 10 clinical data, DEGs,
and modules for random forest models generated with clinical data, DEGs, and module principal
component; Table S1: UGA4 study participant information, Table S2: Gene counts for each study
participant obtained from RNAseq performed on whole blood, Table S3: Univariate differential gene
expression analysis of baseline HAI, Table S4: Univariate differential gene expression analysis of
seroconversion, Table S5: Bivariate differential gene expression analysis of baseline HAI and BMI,
Table S6: Bivariate differential gene expression analysis of seroconversion and BMI.
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