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Abstract: SARS-CoV-2 virus pathogenicity and transmissibility are correlated with the mutations
acquired over time, giving rise to variants of concern (VOCs). Mutations can significantly influence
the genetic make-up of the virus. Herein, we analyzed the SARS-CoV-2 genomes and sub-genomic
nucleotide composition in relation to the mutation rate. Nucleotide percentage distributions of 1397
in-house-sequenced SARS-CoV-2 genomes were enumerated, and comparative analyses (i) within
the VOCs and of (ii) recovered and mortality patients were performed. Fisher’s test was carried
out to highlight the significant mutations, followed by RNA secondary structure prediction and
protein modeling for their functional impacts. Subsequently, a uniform dinucleotide composition
of AT and GC was found across study cohorts. Notably, the N gene was observed to have a high
GC percentage coupled with a relatively higher mutation rate. Functional analysis demonstrated
the N gene mutations, C29144T and G29332T, to induce structural changes at the RNA level. Protein
secondary structure prediction with N gene missense mutations revealed a differential composition
of alpha helices, beta sheets, and coils, whereas the tertiary structure displayed no significant changes.
Additionally, the N gene CTD region displayed no mutations. The analysis highlighted the importance
of N protein in viral evolution with CTD as a possible target for antiviral drugs.

Keywords: molecular modeling; mutation analysis; nucleotide diversity; RNA secondary
structure; VOCs

1. Introduction

The origin of new RNA viral quasispecies pathogenic to humans, particularly severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has made the research community
come together and put massive collective efforts towards a better understanding of the
viral RNA genome dynamics [1]. Despite great heterogeneity displayed by the RNA
viruses within their population, higher mutation rates are not always reflected in the rapid
evolution. There are conditions in which viruses replicate efficiently and yet accumulate a
few viable mutations through which they can attain genome stability [2]. For instance, the
1918 H1N1 virus had evolved to suppress the CpG presence in their genome, showing a
positive selection for the UpA motifs. Later, it was found that the CpG motifs can potentially
trigger an antiviral response through interaction with the pattern recognition receptors
(PRRs). Therefore, the selective reduction in the CpG motifs could be a viral strategy to
escape the immune recognition by the host. Thus, it is important to investigate, understand,
and elucidate the driving force of RNA virus heterogeneity caused by the mutations that
could alter the viral genetic content [3,4]. Hence, it is vital to address questions such as what
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configuration of A, T/U, G, and C makes the viral genome stable? Does it vary among the
different variants of a virus? What is the characteristic pattern of mutations that drives the
viral RNA genome plasticity? Are these findings important for other RNA virus infections
for disease severity?

The corona virus disease 2019 (COVID-19) outbreak caused by SARS-CoV-2 has been
one of the most rogue pandemics in modern times, which led to unexpected infections
and mortality worldwide [5]. However, the number of infected cases and mortality rates
vary from country to country [6]. It is important to note that the first available genome
sequence of SARS-CoV-2 placed it in the Sarbecovirus subgenus of the Coronaviridae [7].
With the genome sequence availability, it enabled an immediate analysis of its ancestry,
and consequently, Zhou et al. reported a probable bat origin for the COVID-19 outbreak
due to the high genetic relatedness of SARS-CoV-2 to RaTG13 [8]. Later, Makarenkov et.al
suggested that the SARS-CoV-2 was a chimera of RaTG13 and pangolin coronaviruses,
which reasserted that the pangolins might be an intermediate host of SARS-CoV-2 [9].
Moreover, in addition to the suggested zoonotic origin of SARS-CoV-2, several scientists
proposed a potential laboratory origin of COVID-19 [10]. Although the zoonotic origin
hypothesis is considered more likely, it is still not clearly defined. Hence, it is significant
to study the SARS-CoV-2 genome variations due to mutations, which may help us to
understand the origin of the virus.

Fortunately, worldwide sequencing and tracking of SARS-CoV-2 during the current
pandemic have given us the opportunity to delve deeper into the RNA genome archi-
tecture of the virus. Consequently, the emergence of SARS-CoV-2 variants of concern
(VOCs) has led to the natural selection of mutations with distinct functional consequences,
which has globally augmented the propagation of the virus over the course of time [11,12].
Subsequently, the Delta variant (B.1.617.2) was observed to be more contagious, with
heightened reinfections and mortality rates [13]. Furthermore, the Omicron variant was
often attributed to causing a milder disease manifestation [14], but it simultaneously led to
increased cases of hospital admissions in children compared to the previous waves of infec-
tions [15]. Recently, a study by Saifi et.al highlighted that the mutations associated with
COVID-19 mortality patients potentially reduced the drug-binding efficiency of remdesivir
in comparison with the recovered of both Delta and Omicron variant-infected patients [16].
Additionally, it is important to note that despite mass immunization of populations against
the virus at an unprecedented rate, several vaccine breakthrough infection cases are being
reported globally. Consequently, the spike mutations L425R,Y453F [17], and N439K [18] in
the receptor-binding motif have been shown to evade the human host immune response
and potentially reduce antibody neutralization.

Although intensive efforts have been made to study the spike region dynamics, the
mutations outside of the spike region are also likely to contribute to the viral evolution
and adaptation. In this regard, a study by Thorne et. al. reported that the Alpha variant
has increased sub-genomic RNA and protein levels of the N, ORF9b, and ORF6—the
genes which are known to facilitate the virus escaping the human host’s innate immune
response [19]. Therefore, it is essential (i) to understand the seemingly independent but
interrelated genome architecture of the SARS-CoV-2 VOCs; (ii) study the evolution of the
RNA genomes, which contributes to differential mutation rates; and (iii) perform evaluation
of disease severity caused by different variants, which can help in understanding the
variants’ impacts on public health and decision making [20].

To gain insights into the viral genome architecture that can differentially distinguish
the SARS-CoV-2 VOCs combined with their clinical outcomes, we comprehensively ana-
lyzed the distinct nucleotide composition that provides stability to the genome and alters
the transmission rate and disease severity over the course of time. Herein, we enumerated
the AT and GC composition of the SARS-CoV-2 genome at the lineage level—Alpha, Delta,
and Omicron; and for the clinical outcomes—Delta recovered (DR), Delta mortality (DM),
Omicron recovered (OR), and Omicron mortality (OM). Subsequently, we investigated the
mutation profile of these groups and integrated it with the nucleotide composition of the
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SARS-CoV-2 genome as well as different genomic regions. Further, two-tailed Fisher’s test
was performed to highlight the statistically significant mutations, and their functional im-
pacts were elucidated through RNA secondary structure prediction and protein modeling.
The findings highlighted the importance of the SARS-CoV-2 N gene that could serve as a
potential target for antiviral drugs, which can aid us in better management of COVID-19
with future VOCs on the anvil.

2. Materials and Methods
2.1. Genome Sequencing of SARS-CoV-2

Whole genome sequencing of 1397 SARS-CoV-2 samples was performed using the
Oxford Nanopore Technology (ONT, Oxford, UK) and Illumina sequencing platforms
(Illumina, San Diego, CA, USA).

2.1.1. Nanopore Sequencing

A total of 310 samples were sequenced using ONT library preparation protocol—PCR
tiling of SARS-CoV-2 virus with rapid barcoding (version: PCTR_9125_v110_revB_24Mar2021,
ONT, Oxford, UK). In brief, 50 ng of total RNA was taken to synthesize single-stranded
cDNA using LunaScript RT SuperMix (New England Biolabs, Cat. No. E3010L, Ipswich,
MA, USA)). The cDNA–RNA hybrid was used to amplify the SARS-CoV-2 genome with
its specific primer sets (IDT product number: 10007184) and Q5® High-Fidelity 2X master
mix (New England Biolabs, Cat. No. M0494S). For sequencing library preparation, the
amplified products were ligated with rapid barcode sequences (SQK-RBK110.96) followed
by SPRI bead purification. The purified library was then ligated with an adapter protein
and loaded on the MinION Mk1B or MinION Mk1C platform.

2.1.2. Illumina Sequencing

Sequencing library preparation was performed using Illumina COVIDSeq for the
1087 samples (Cat. No. 20043675 and reference guide: 1000000126053 v04). The total
RNA was utilized to synthesize cDNA, and the viral genome was further amplified using
two separate PCR reactions. The pooled amplicons then underwent tagmentation to frag-
ment and tag amplicons with adapter sequences. This was followed by post-tagmentation
cleanup, a second round of PCR amplification, and ligation of index adapters. The indexed
amplicons were pooled and cleaned using the purification beads. The pooled library was
then quantified using Qubit dsDNA HS Assay kit (Cat. No. Q32854). A loading concentra-
tion of 11 pM was prepared by denaturing and diluting the libraries in accordance with
the MiSeq System Denature and Dilute Libraries Guide (Illumina, Document no. 15039740
v10). Sequencing was performed on the MiSeq system using the MiSeq Reagent Kit v3
(150 cycles) and 2 × 75 bps read length.

2.2. Sequencing Data Analysis
2.2.1. Nanopore Sequencing

The ARTIC end-to-end pipeline [21] (2021) was used for the analysis of MinION raw
fast5 files up to the variant calling. Raw fast5 files of the samples were base-called and
demultiplexed using Guppy basecaller, which uses the base-calling algorithms of Oxford
Nanopore Technologies with a Phred quality cutoff score > 7 on a GPU-Linux accelerated
computing machine. Reads with a Phred quality score of less than 7 were discarded to
filter the low-quality reads. The resultant demultiplexed fastq files were normalized by a
read length of 1200 (approximate size of amplicons) for further downstream analysis and
aligned to the SARS-CoV-2 reference (MN908947.3) using the aligner Minimap2 v2.17 [22].
Nanopolish was used to index the raw fast5 files for variant calling from the minimap
output files. To create the consensus fasta, bcftools v1.8 [23] was used over the normalized
minimap2 output.
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2.2.2. Illumina Sequencing

Fastqc [24] was performed for all the raw fastq files generated from the Illumina
sequencing in order to check the Phred quality scores of all the sequences. A Phred quality
score threshold of >20 was used for filtering reads from all the samples. Subsequently,
adapter trimming was performed using the Trim Galore tool [25], and alignment of the se-
quences with the SARS-CoV-2 genome was performed using the HISAT2 algorithm [26,27].
BEDTools was used to generate the consensus fasta using the unaligned/filtered reads, and
variant calling was performed using the high-quality reads. The sequencing depth and
genome coverage for all the samples are available in the Table S1.

2.3. Data Collection and Patient Categorization

A total of 1397 SARS-CoV-2 positive nasopharyngeal RNA samples included in the
study were anonymized. Moreover, all the samples had ≥80% genome coverage and an
average sequencing depth of >100X (Supplementary File S1: Table S1). Further, the samples
were stratified at two levels based on the lineage infected and the clinical outcome of the
COVID-19 patients, recovered and mortality. Random sampling was performed at the
second level of classification using python packages to avoid any sample size bias.

2.4. Nucleotide Composition Analysis

The percentage distribution of A, T/U, G, and C were calculated using the aligned
Fasta sequence of the study groups: (i) VOCs—Alpha, Delta, and Omicron, and (ii) Delta
recovered (DR), Delta mortality (DM), Omicron recovered (OR), and Omicron mortality
(OM). Furthermore, the distributions of AT/U and GC dinucleotides were also calculated
for the sample cohorts. All the calculations were performed for the whole genome of
SARS-CoV-2 as well as for the different genomic regions within the SARS-CoV-2 genome
(Supplementary File S2: Table S2).

2.5. Mutation and Statistical Analysis

To obtain the mutation spectra of our cohort, the VCFs of Alpha, Delta, and Omicron as
well as DR, DM, OR, and OM subgroups were merged separately using bcftools [23]. Sub-
sequently, the relative frequency of each mutation was calculated (Supplementary File S3:
Table S3). To highlight the statistically significant mutations, Fisher’s exact test was per-
formed for lineage-based and clinical-outcome-based groups separately using python
programming. Furthermore, the Phi correlation coefficient test using R programming
was carried out to examine the associations of the significant mutations with the clinical
outcomes—recovered and mortality (Supplementary File S4: Table S4).

2.6. RNA Secondary Structure Prediction

To elucidate the functional consequence of mutations, RNA secondary structure pre-
diction was performed using the RNAfold program [28], one of the core programs of the
Vienna RNA package that can predict the minimum free energy (MFE) using the dynamic
programming algorithm [29]. Selective statistically significant synonymous mutations were
used to determine their impact on RNA structure as compared to the wild-type SARS-
CoV-2 by taking the 250 nucleotides upstream and downstream of the mutation sites. The
minimum free energy (MFE) was obtained for both wild type and mutant, which is an
important indicator to highlight whether the mutations affect the folding stability of the
respective RNA structure (Supplementary File S5: Table S5).

2.7. Molecular Modeling and Optimization

To determine the effects of mutations on the protein structure, molecular modeling was
performed for selected significant mutations. We retracted the protein Fasta sequence from
Uniprot (accession id: P0DTC9.1) and modeled the protein using the Phyre Server [30].
The modeled structure was further optimized using the WHAT IF web interface [31]
and validated through Ramachandran plot analysis (Supplementary File S6: Table S6).
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Subsequently, the modeled protein was used for secondary structure prediction using the
PDBsum online server [32]. Key mutations were incorporated in the modeled protein using
PyMOL software [33]. Energy minimization is a key computational step for obtaining a
minimized stable structure of the modeled protein. In this study, GROMACS software [34]
was used to minimize the wild-type and mutated proteins. AMBER force field [35] was
used to optimize the geometry of the modeled/generated N proteins, and the steepest
descent method was used for energy minimization.

3. Results
3.1. Sample Segregation

The lineage-level stratification of our cohort (n = 1397) yielded a total of three groups—
Alpha (n = 34), Delta (n = 320), and Omicron (n = 1043). Subsequently, the secondary
categorization based on clinical outcome level resulted in four groups—Delta recovered
(DR; n = 100), Delta mortality (DM; n = 100), Omicron recovered (OR; n = 17), and Omicron
mortality (OM; n = 17) (Supplementary File S1: Table S1). It is important to mention that
the selection of 17 OR samples was based on random sampling for clinical outcome-driven
stratification taking gender and age into consideration (Figure 1A).

3.2. Nucleotide Composition Analysis
3.2.1. Nucleotide Distribution across the Whole Genome

The nucleotide composition analysis performed both at the lineage and outcome levels
revealed a uniform distribution of A, T/U, G, and C across all the VOCs groups in com-
parison with the Wuhan reference genome, with T/U having the highest representation
amongst all the nucleotides (~32%) (Supplementary File S2: Table S2), which was consistent
with the other reported studies. Further, looking into the dinucleotide distribution, we
found a uniform distribution of AT/U (61.9–62%) and GC (35.88–35.96%) within the VOCs
and in comparison to the reference Wuhan strain (62.03% and 37.97%, respectively), both at
the lineage and outcome levels (Figure 1B,C). Notably, though the nucleotide distribution
was uniform and similar, we found a small percentage difference between the AT/GC com-
positions, which in terms of numbers is a handful of nucleotides that may have functional
role across the VOCs, genomic regions, and clinical outcomes (Supplementary File S2).
Even the microscale difference in the nucleotide abundance is important, as it could possi-
bly be present in the specific domains of the SARS-CoV-2 genome, which can affect RNA
structure and the protein domains.

3.2.2. Nucleotide Distribution across Different Genomic Regions

Furthermore, delineating from the whole genome level to different sub-genomic
regions of SARS-CoV-2, the analysis highlighted a distinct composition of AT/GC across
the genomic regions in the respective groups (Supplementary File S2: Table S2). Intriguingly,
we found the structural gene, N, to have the highest GC content across the lineage-based
groups, followed by the M and ORF3a genes. On the other hand, ORF6 had the lowest GC
percentage in Alpha and Delta, whereas ORF7b was the lowest in Omicron, followed by
ORF10 across all the VOCs (Figure 2A,B). The same characteristics were reflected in the
recovered and mortality patients of Delta and Omicron (Figure 2C). This possibly highlights
the significance of other structural genes during viral evolution in addition to the widely
studied genes, ORF1ab and spike.
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Figure 1. Study design and the Dinucleotide distribution across VOCs at the lineage and clinical
outcome level. (A) the steps highlight the sample distribution across Alpha, Delta, and Omicron,
sequencing data processing, and downstream analysis of the significant mutations. (B) AT/U and
GC distribution in the genomes of the Alpha, Delta, and Omicron samples included in the study.
(C) AT/U and GC distribution across the clinical outcomes with VOCs infection—DR, DM, OR,
and OM.
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Figure 2. Dinucleotide distribution across the genomic regions of lineage- and clinical-outcome-based
sub-groups. (A) AT/U percentage across distinct sub-genomic regions of Alpha, Delta, and Omicron.
(B) GC percentage across different sub-genomic regions of Alpha, Delta, and Omicron. (C) Average
GC distribution in the clinical outcome groups of Delta—Recovered and Mortality. (D) Average GC
distribution in the clinical outcome group of Omicron—Recovered and Mortality.

3.3. Mutation Analysis Revealed High Mutation Rate in the N Gene with Highest GC Percentage

To examine the mutational diversity in our cohort, individual mutation analysis
was carried out across all 1397 samples. The analysis revealed a total of 1777 muta-
tions, of which 1718 were SNPs, 37 were deletions, and the remaining 3 were insertions
(Supplementary File S3). Upon further classification of mutations as synonymous and
nonsynonymous, we observed a total of 694 and 950 mutations, respectively (Figure 3A
and Supplementary File S3: Table S3). To comprehend the effects of mutations vis-a-vis nu-
cleotide distribution within genomes and the different sub-genomic regions, we classified
the variations into (i) mutations that increase the GC content (GC-up) and (ii) decrease the
GC content (GC-down). GC-up mutations consisted of A > G, A > C, T > C, and T > G,
whereas GC-down mutations were G > A, G > T, C > A, and C > T. Here, we observed an
overall higher number of GC-down mutations across the genomes, and notably, the C > T
variation was present in a higher number (Figure 3B). Further examination of GC-up and
GC-down mutations across the different sub-genomic regions also revealed a dominant
representation of GC-down mutations compared to the GC-up mutations.

Further, to investigate the relative abundance of mutations present in different genomic
regions across the lineage- and clinical-outcome-based categories, the mutations were
normalized with respect to their corresponding gene length. Subsequently, these genomic
regions were correlated with their average GC %age distribution. The analysis revealed
two genes, N and ORF3a, to have a higher GC percentage (46.9% and 39.3%) and mutation
rate (9.29% and 10.51%), respectively. Strikingly, we observed a very high mutation rate in
ORF6 (10.22) even though it had the lowest GC percentage amongst all the sub-genomic
regions (Figure 3C). This characteristic mutation pattern was consistent in the genomic
regions of outcome-based patient categories—Delta (recovered and mortality) and Omicron
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(recovered and mortality) (Figure 3D). This seems to highlight that the selection pressure in
the coding regions is higher at the amino acid level [36].
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Figure 3. Mutation spectra of the samples and their correlation with GC percentage. (A) Synony-
mous and nonsynonymous mutation distribution across all the samples. (B) GC-up and GC-down
mutations in the SARS-CoV-2 genomes. (C) Correlation of GC percentage and the mutation rate at
the lineage level—Alpha, Delta, and Omicron. (D) Correlation of GC percentage and mutation rate in
the clinical outcome groups—DR, DM, OR, and OM.

3.4. Statistically Significant Mutations within the Different Categories

To gain further insights into the mutation associations with different VOCs and clin-
ical outcomes, Fisher’s test was carried out along with Phi coefficient analysis to under-
stand the direction of association of the mutations. Resultantly, we obtained a total of
432 mutations at the lineage level (Figure 4A), where Delta had the highest percentage
of mutation distributions at 46%, followed by Alpha at 29.6% and Omicron at 24.3%
(Figure 4B and Supplementary File S4: Table S4). Moreover, a higher number of mutations
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was predominantly seen in the ORF1ab, spike, and nucleocapsid region overall as well
as within each VOC—Alpha, Delta, and Omicron. Herein, notably, we observed that
three mutations, G28881A, G28882A, and G28883C, in the N gene co-occurred and were
present at a high frequency in Alpha and Omicron, whereas they were missing from the
Delta lineage. Though these mutations were seen in Alpha and Omicron at a considerable fre-
quency, they were significantly associated with the Omicron lineage (p value = 7.7 × 10−225;
6.41 × 10−202; 1.47 × 10−204). Interestingly, we also observed the occurrence of two differ-
ent mutations at the same position 28881 in the N gene, where G28881A was significantly
associated with Omicron (p value = 7.7 × 10−225) and G28881T was significantly associated
with Delta (p value = 1.53 × 10−271).
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Figure 4. Significant mutations across the study cohorts in the whole genome and different sub-
genomic regions. (A) Significant mutations associated with Alpha, Delta, and Omicron. (B) Mutation
count across the sub-genomic regions of SARS-CoV-2. (C) Significant mutations associated with the
clinical outcome groups of DR, DM, OR, and OM. (D) Mutation count in the clinical outcome groups
correlated with the distinct genomic regions of SARS-CoV-2. (E) Lollipop plot displaying significant
mutations of N gene across the study cohorts.

Although the mutation G28881A was present in Alpha at a high frequency (82.35%),
it is interesting to note that it became a clade-defining mutation in the Omicron lineage
with an observed mutation skip in Delta during its evolution. In contrast, the frequency of
the mutation G28881T was much higher (96.25%) in Delta, whereas it was zero in Alpha
and 1.24% in Omicron, thus showing a significant predominant association with the Delta
lineage only. Additionally, we also noticed the co-occurrence of three other mutations—
G28280C, A28281T, and T28282A—with equal high-frequency presence (91.17%) in Alpha
but which became deselected in Delta and Omicron during their evolution.



Viruses 2022, 14, 2499 10 of 17

Fisher’s test performed at the outcome level in the Delta cohort revealed a total of
61 mutations, of which 14 mutations were significantly associated with the recovered
group and 47 mutations were significantly associated with the mortality group. On the
other hand, we observed 10 mutations in the Omicron recovered and 31 mutations in the
Omicron mortality group (Figure 4C). Intriguingly, a higher number of mutations was
associated with mortality cases in both Delta and the Omicron (Figure 4D). Additionally,
the genomic regions of ORF1ab, spike, and N genes were observed to have a higher number
of mutations. With the highest GC percentage and a high mutation rate in the N gene, the
mutations significantly associated with the N gene were further delineated to study the
functional impacts on the RNA structure and the protein. Figure 4D depicts the significant
mutations in the N gene.

3.5. RNA Secondary Structure Modulated by the Specific Mutations

To elucidate the impact of mutations on the RNA secondary structure, we selected
five synonymous mutations from the N gene (Figure 5A). While the mutation G28882A
was significantly associated with Omicron, the rest of the four mutations were significantly
associated with Delta (Figure 5A). From the analysis, we found that the RNA secondary
structure is changed when C to U and G to U occur at positions 29144 and 29332, respec-
tively. Subsequently, we observed that both G29332U mutations formed a stem instead
of hairpin loop in the mutant with distinct minimum free energy (MFE) (Figure 5). In-
triguingly, the mutation C29144U resulted in more negative MFE, which enhanced the
RNA thermodynamic stability, while the mutation G29332U gave rise to less negative
MFE, which showed a destabilizing effect on the RNA (Figure 5A). Additionally, secondary
structure prediction for all the N gene synonymous mutations was performed, and MFEs
were observed in the RNA secondary structures (Supplementary File S5: Table S5).
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the wild type and the mutant with red arrows depicting the site of mutation. (C) RNA secondary
structure of G29332T mutation, the wild type and the mutant with red arrows depicting the site
of mutation.
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3.6. Structural Modification in the N Protein

The statistically significant missense mutations from the N gene of the lineage- and the
outcome-level groups (Table 1) were used for protein secondary structure prediction, using
PDBsum with the default parameters. Notably, there were no significant N gene mutations
in the OR group. The result showed that the wild-type N protein was made up of 16.7%
helix, 7.9% beta-sheet, and 75.4% coil region. Similarly, the secondary structures of the
other variants (Alpha, Delta, Omicron, DR, DM, and OM) were observed in the ranges of
16.7–18.1% (helix), 6.9–7.9% (beta-sheet), and 74–75.8% (coil region) (Figure 6A and Table 1).
To understand a protein’s biological function, the three-dimensional structure (arrangement
of atoms of amino acids in 3D) plays an important role. Further, for tertiary structure
prediction, the mutations were incorporated into the structure of the N protein (wild
type), which generated six structures of different variants (Figure 6B). The structures were
validated via Ramachandran plots (Supplementary File S6: Table S6) and were found to
have more than 97% residues in the allowed regions. After validation, energy minimization
(using GROMACS) of the modeled and the generated structures was performed and
achieved the most stable conformation of the protein. The minimized N protein structures
(variants) were superimposed with the wild type and were found to have RMSD in the
range of 0.066–0.209 Å, which suggests that wild-type and the variants of N protein are
structurally similar.

Table 1. Secondary structure changes in overall N Protein.

N Protein Mutations Incorporated Helix (%) Beta Strand (%) Coil Region (%)

Wild type - 16.7 7.9 75.4

Alpha D3H/V/E, G34W, I84V, A156S, P168S,
S235F, Q409R, and Q148H 17.9 7.9 74.2

Delta Q9L, D63G, A173V, S180N, R203M, P207S,
G215C, A251V, D377Y, and R385K 17.4 7.9 74.7

Omicron P13L, R203K, G204R, D343G, and S413R 18.1 7.9 74
DR G215C 17.2 6.9 75.8
DM D63G, D377Y, and R385K 17.2 6.9 75.8
OM S413R 17.2 6.9 75.8

3.7. Validation of the Findings in Independent Cohorts

We carried out the same analysis using two datasets of different origins, (i) Indian
but non-CSIR-IGIB, with India being a very vast country with a diverse population and
geographical regions, and (ii) from the USA. A total of 1007 SARS-CoV-2 genome sequence
data were retrieved from GISAID with a filter of the mentioned origins (500 sequences
from India and 507 from the USA) and the timeline of December 2021 to February 2022
(Supplementary File S8: Table S8). Since our study focused on only the protein-coding genes,
the same was considered to interpret the results of the USA and the Indian origin samples.

The analysis across the USA sample cohort showed the N gene to have the highest GC%
(46.97%) followed by the M (42%) and ORF3a (39.32%) genes. Subsequently, the normalized
mutation rate comparison analysis showed the ORF3a to have a 14.86% mutation rate,
followed by the N (8.41%) and the M (6.58%) genes. A similar trend was observed in the
Indian sample cohort as well, where the N gene had the highest GC content of 47.01%,
followed by the M (42%) and ORF3a (39.27%) genes (Supplementary File S9: Table S9). The
mutation analysis revealed a higher mutation rate in the M gene with 7.32%, followed by the
N and ORF3a (6.98 and 6.76%) genes, respectively (Supplementary File S10: Table S10a–d).
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Alpha (b), Delta (c), Omicron (d), DM (e), and DR (f).
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Combinedly, correlating the GC% of the respective genes and the normalized mutation
rates, the N gene shows the highest GC content coupled with a high mutation rate in the
SARS-CoV-2 genomes, which is consistent with the findings drawn from our in-house sam-
ple dataset of 1397 samples. Supplementary File S8 contains the metadata, Supplementary
File S9 shows the average AT and GC percentage of the sample cohorts, and Supplementary
File S10 shows the mutations with their normalized rates.

4. Discussion

RNA viruses exist as dynamic and diverse populations shaped by constant mutation(s)
and selection for better adaptability to different micro-environments in the multitude of
hosts [37]. One such RNA virus, SARS-CoV-2, caused the worldwide COVID-19 pandemic
and has had devastating impacts on public health and the economy. At the same time,
undoubtedly, the control measures that were taken to contain the infection, with vaccine
development being the primary measure to immunize the population against the virus, pro-
gressed at an unprecedented rate as an immediate response to COVID-19. [38]. Yet, several
vaccination breakthrough cases were reported and became less common with time globally,
which potentially raises questions about the efficacy of the developed vaccines [39–42].
This reinforces the need to explore the multi-dimensionalities of the underlying observation,
wherein it is imperative to study the pathogen characteristics leading to different disease
trajectories [43–45]. With the emergence of several variants of SARS-CoV-2, which led to a
big surge of infections in different populations, the central question concerns whether the
viral sequences have evolved to differentially optimize genome stability through mutations
that could affect the genome nucleotide composition or vice versa [1]. To gain insights
into this issue, we comprehensively studied if there could be a differential nucleotide
composition that provides stability to the genome to alter the transmission rate and disease
severity over the course of time.

The nucleotide composition analysis across all the VOC groups at the lineage and
outcome level demonstrated a higher presence of the nucleotide U, which is consistent with
other reported studies [46–48]. This could be a result of natural selection because higher U
content and smaller genome size can make the virus replicate more efficiently. Moreover,
less host energy is required to disrupt the viral RNA secondary structures with relatively
higher U content, which can make the virus more infectious, thus essentially increasing the
transmission rate [49]. Consequently, we also observed that the mutations C > T and G > T
were much higher in number, reflecting the SARS-CoV-2 genome bias towards a higher U
content. Particularly, the C > T variation was observed in the highest number among all
the study samples, possibly because C to T changes require a mere deamination of the C
nucleotide. Consequently, the lower abundance of the GC dinucleotide has been widely
seen in SARS-CoV-2 virus genomes and is also correlated with its moderate virulence
as compared to MERS-CoV and SARS-CoV-1 [46]. Though the comparative nucleotide
composition analysis demonstrated an average minimal sequence divergence across the
VOC groups at the lineage and clinical outcome levels, it is imperative to explore the
functional importance of the differential nucleotide numbers seen across the same groups.

Upon examining the nucleotide diversity across the distinct SARS-CoV-2 sub-genomic
regions, the N gene showed the highest GC percent of around 47%, which is higher
than the average GC percentage of the entire genome. The N gene is reported to be one
of the important structural proteins in a virus particle that can modulate the genome
transcription and the virulence [50]. Moreover, the SARS-CoV-2 N gene was observed to be
highly conserved [51]. Interestingly, in our study, we found the N gene to have a higher
mutation ratio after the ORF3a gene, combined with the highest GC percentage across all the
groups. Furthermore, Fisher’s test was performed to see the statistical significance of these
mutations, which also revealed a high number of mutations in the N region of the SARS-
CoV-2 genome after ORF1ab and spike—at the lineage level (Alpha, Delta, and Omicron)
and the clinical outcome level (Delta—recovered and mortality; Omicron—recovered and
mortality). Notably, the N gene mutations that are almost exclusive to Delta—D63G (95.6%)
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and D377Y (92.05%)—were significantly associated with mortality and were also reported
in breakthrough infections [52]. Strikingly, the mutation D63G was reported to be present
in the recombinant strain of Delta and Omicron [53].

Elucidating the functional impact of mutations is very important in order to determine
the stability of virus propagation over the course of time. In our study, we found that in
the N gene, the RNA secondary structure was changed when C to T and G to T mutations
occurred at positions 29144 and 29332, respectively. While the mutation C29144U stabilized
the RNA structure, G29332U resulted in a comparatively unstable structure with lower
negative MFE than the wild type. Interestingly, there is evidence from the previous study
that the most frequent mutations to occur in the SARS-CoV-2 genomes are C to T and G to A.
These mutations are related to the role of the cell-derived apolipoprotein B mRNA-editing
enzyme, which leads to C-to-U deamination of a single cytidine base in the nuclear apoB
transcript, introducing a translational termination. Besides that, the G29332U mutation
reduced the folding stability of the RNA secondary structure, which could affect the
polypeptide translation and folding. The previous studies suggested that stable RNA
structures play a key role in reducing the translation speed to prevent “ribosomal traffic
jams” so that the newly translated polypeptides can fold properly [54].

Furthermore, we studied the N gene missense mutations’ effects on protein stability.
SARS-CoV-2’s N protein is a 419 AA, 45.6 kDa, positively charged, unstable hydrophobic,
and poorly heat-resistant protein that is essential for virus survival [55]. In this study, the
secondary and tertiary structure of the N protein (wild type and mutants) were predicated
computationally, and we found that they are structurally similar. Few variations observed
in the secondary structures, such as the helix (15–18 AA), were found in Delta, Omicron,
DR, DM, and OM, whereas they were absent (converted into coil) in the wild type and
Alpha. A beta-sheet structure (93–94 AA) was present in the wild type, Alpha, and Delta,
whereas it was missing (converted into coil) in Omicron, DM, DR, and OM. Similarly,
the coil region (220–222 AA and 353–356 AA) was converted into a helix in the Alpha
variant. Moreover, Alpha, Delta, and Omicron had helix regions at 398–414 AA, whereas
the wild type at 401–402 AA and OM, DR, and DM at 401–403 AA had coil regions between
the helix structures. In three-dimensional structures, a lower deviation was observed
after the superimposition of the variant’s N protein structure with the wild type. Most of
the mutations were found in the RNA-binding domain or NTD and intrinsically domain
regions (IDRs) of the SARS-CoV-2’s N protein. Interestingly, no mutations were reported in
the C-terminal domain except D343G in the Omicron variant, which suggests that CTD of
the N protein could be used as a potential drug-binding site. Several researchers reported
that the CTD of the N protein plays an essential role in viral RNA binding, packaging of
the SARS-CoV-2 viral RNA, and transcriptional regulations [56,57]. A drug repurposing
approach or novel lead design technique may be used to identify/design drug molecules
for the treatment of COVID-19 by targeting CTD of the N protein for the betterment of
the disease. This is especially important as we foresee the continued evolution of the new
SARS-CoV-2 sub-lineages with a regional and global footprint.

To understand this further, we additionally carried out recombination analysis for the
1397 whole genome sequences of in-house samples used in our study using RDP4 software
(Supplementary File S7: Table S7). Resultantly, a total of two recombinant events were
observed in a consensus between at least three detection methods, with 36% of the total
genome sequences being detected as recombinant. For these recombination events, we
noted the breakpoint positions to be in the 5’ region of the ORF1ab gene. However, it is
important to note that the recombinant events observed were flagged by RDP4 as being pos-
sibly driven by other processes despite the support of at least three recombination detection
methods. Furthermore, the recombinant sequences in the second recombinant event were
labeled as possibly misidentified recombinant sequences by RDP4 (Supplementary File S7).
It seems promising, but we did not detect any high-confidence recombination signals in
the SARS-CoV-2 genomes of the VOCs—Alpha, Delta, and Omicron.
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In conclusion, the results reported here show our efforts to comprehensively investi-
gate the viral RNA dynamics vis-a-vis the mutations and their functional impacts on the
virus. This can aid us in understanding the emergence and tracking of new variants along
with the elucidation of different disease trajectories. Moreover, examining the immune
escape mutations could possibly guide us in better designing of vaccinations and antiviral
drugs to ameliorate the observed COVID-19 severity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112499/s1, Table S1: Sample-wise sequence information;
Table S2: Average Percentage of AT and GC across sample cohort; Table S3: List of mutations across
lineages and clinical outcomes; Table S4: Statistical significance of lineages and outcomes; Table S5:
RNA Secondary Structure prediction; Table S6: Protein quality check; Table S7: Recombination
analysis: Table S8: Metadata for sample cohort; Table S9: Average Percentage of AT and GC across
USA and India (non-IGIB) sample cohort; Tables S10a–d: List of mutations and normalized mutation
rates across USA and India cohort.
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